
Optimally Solving the Multiple Watchman Route Problem with Heuristic Search
(Extended Abstract)

Yaakov Livne, Dor Atzmon, Shawn Skyler,
Eli Boyarski, Amir Shapiro, Ariel Felner

Ben-Gurion University of the Negev
{livnya, dorat, shawn, boyarske}@post.bgu.ac.il, {ashapiro, felner}@bgu.ac.il

Introduction and Definitions
In the Watchman Route Problem (WRP), the task is to find
a path for a traveling agent (watchman) on a map such that
any location on the map is seen from at least one location
on the path (Chin and Ntafos 1986; Seiref et al. 2020). In
WRP, the sight of the agent is modeled using a Line-of-Sight
(LOS) function. Recently, WRP has been optimally solved
on grids using heuristic search while proving that it is NP-
hard (Seiref et al. 2020). Hereafter, we refer to that paper as
S20. S20 developed a variant of A* called WRP-A*. A sim-
ple admissible heuristic, called hSingleton, was proposed. It
uses the cost of reaching a location that sees the farthest cell.
More complex admissible heuristics were based on abstrac-
tion of the grid to the Disjoint Line-of-Sight Graph (GDLS).
The best heuristic was based on a solution to a variant of the
Traveling Salesman Problem (TSP) applied on GDLS .

In this paper, we extend WRP to the case of multiple
agents (watchmen) and denote this problem as Multiple
Watchman Route Problem (MWRP). The input for MWRP
is a grid map and a set of agents, where each agent has a start
cell. Between two consecutive timesteps, each agent can per-
form a move action to one of its empty neighbouring cells.
All agents have a LOS function. Following Yaffe, Skyler,
and Felner (2021), we work only with BresLos. Our work
can be easily adjusted to other LOS functions or to cases
where agents can perform other movements on the grid, e.g.,
more complex moves (Rivera, Hernández, and Baier 2017).

In MWRP, the task is to find a path for each of the agents
from its start cell through the grid such that all empty cells
in the map will be covered by LOS from at least one cell
of one of the paths. That is, if all agents follow their paths
then every cell will be seen by at least one of the agents.
Following S20, we assume that agents do not have to return
to their start cells and the whereabouts of agents after all
cells have been seen is of no importance.

The cost of a single path is the number of actions per-
formed in it. A set of paths is optimal iff it has the minimal
cost among all sets of paths, according to a given objective
function for aggregating the costs of multiple paths. While
in WRP the shortest path is desired, in MWRP, we consider
two objective functions: (1) The sum of the costs (SOC) of

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all the paths of the agents, and (2) Makespan (MKSP) – the
cost of the longest path among these paths. MWRP is appli-
cable in WRP applications where multiple agents exist, such
as in a museum with guards that need to tour the venue.

Modeling MWRP as a Search Problem
To solve MWRP with heuristic search, we first define the
corresponding search tree which generalizes that of S20. A
Node consists of (1) the current locations of the agents and
(2) a set of cells that have already been seen by at least one
of the agents. The Root node contains (1) the start cells of
all agents and (2) all cells that are seen from these start cells.
A node is a Goal node if all cells are seen. As the solution
may contain paths of different lengths, we add a terminate
action which prevents the agent to move and it stays in its
last location. When a node is expanded, a new node is gener-
ated for each possible combination in the Cartesian product
of actions (move or terminate) for the agents. We exclude
the combination of all agents performing a terminate action.

MWRP-A*: A*-like Search Algorithm
Following S20, we propose MWRP-A*, an A*-like search
algorithm for optimally solving MWRP. In MWRP-A*, each
node n is associated with g(n) and h(n). g(n) represents the
cost of reaching n from the root. That is, g(n) is calculated
according to SOC or MKSP. h(n) estimates the remaining
cost for reaching a goal from n.

Singleton Heuristic. In MWRP all cells need to be seen.
Thus, in hSingleton, we first calculate the cost of seeing each
unseen cell by the closest agent. Then, hSingleton takes the
maximum value among all unseen cells as a heuristic. As
each unseen cell needs to be seen, it is easy to see that
hSingleton is admissible for both SOC and MKSP.

MTSP Heuristic. S20 abstracted the grid into a graph and
showed that a TSP solution on that graph is an admissible
heuristic to WRP. We generalize their heuristic to hMTSP

and use the solution to the Multiple Traveling Salesman
Problem (MTSP) (Kivelevitch, Cohen, and Kumar 2013)
as an admissible heuristic to MWRP.

Combining Heuristics. Our two heuristic functions can
be considered as a simple heuristic (hSingleton) and a com-
plex heuristic (hMTSP ). As both are admissible, they can

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

302



Figure 1: Success rate: 11× 11 grid from S20 for MKSP

be admissibly combined. Thus, we consider (1) Max, which
calculates both heuristic functions for each node and takes
their maximum as a heuristic, and (2) Lazy A* (Tolpin
et al. 2013), which first calculates hSingleton and calculates
hMTSP when the node is extracted from Open. A node is
expanded if both heuristics have already been calculated.

Expanding Border Enhancement (EB). In the standard
expansion method, when a node is expanded, new nodes
are generated for each combination of move actions (or ter-
mination) for the agents. For some of these move actions,
no new unseen cells are seen. We therefore suggest a more
advanced expansion mechanism, called the Expanding Bor-
der mechanism (EB). EB is inspired by Jump Point Search
(JPS) (Harabor et al. 2019), a framework that implements
A* on grids. In EB, when expanding a node, agents may
jump to farther locations than their immediate neighbors.
For each non-terminated agent located at cell c, a breadth-
first search (BFS) is executed from its location. If the BFS
encounters a cell c′ that has a LOS to some unseen cell, we
consider the movement to c′ as a direct move action. In EB,
all such cells c′ are the direct neighbors of cell c. Unlike
basic expansion, with EB, agents may be in their locations
at different timesteps for a given node n. Thus, these nodes
do not represent a true time-space configuration. Therefore,
we now directly compute the f -values by aggregating the
cost-so-far (usually treated as g-values when there is no time
difference) directly into the f -values.

Experimental Results
We first evaluate the following variants of MWRP-A* for
minimizing MKSP: (1) Standard breadth-first search with
no heuristic (BFS). (2) MWRP-A* with hSingleton (Single-
ton). (3) MWRP-A* with hMTSP (MTSP). (4) The maxi-
mum between both heuristics (Max). (5) Lazy A* that first
calculates hSingleton and, if needed, also calculates hMTSP

(Lazy A*). We use ”+EB” to denote the activation of EB.
We experimented on 100 problem instances for 2–6

agents whose start cells were randomly allocated on the
11 × 11 map taken from S20. Figure 1 shows the suc-
cess rate (y-axis) under a time limit of 5 minutes for differ-
ent numbers of agents (x-axis) for MKSP. As expected, for
all solvers, increasing the number of agents decreases the
success rate. Not using any heuristic (BFS), even with EB,

#Agents Solved h (+EB) MKSP SOC
Cost Exp. Time Cost Exp. Time

2 94%

Singleton

30.1

6,901 38.6

52.9

21,714 47.4
MTSP 108 16.1 387 6.6
Max 101 15.5 365 6.8

Lazy A* 101 10.2 366 5.5

3 74%

Singleton

19.1

2,124 26.9

43.6

23,731 55.3
MTSP 51 20.3 432 9.8
Max 41 19.1 368 9.9

Lazy A* 41 3.9 368 6.7

4 66%

Singleton

14.9

790 26.2

36.1

17,646 57.7
MTSP 94 50.9 632 19.7
Max 34 35.6 457 18.0

Lazy A* 34 2.1 457 9.5

5 61%

Singleton

12.2

493 23.4

30.5

11,009 59.4
MTSP 73 48.0 334 16.7
Max 14 26.8 234 16.8

Lazy A* 14 3.0 233 7.4

6 47%

Singleton

10.1

299 17.8

23.7

3,664 60.5
MTSP 99 52.9 114 12.6
Max 15 34.0 73 12.5

Lazy A* 18 3.0 73 6.8

Table 1: Results on the 11× 11 grid for MKSP and SOC

performed poorly. Clearly, EB increased the success rate.
MTSP tends to outperform Singleton for a small number
of agents but Singleton is better for more agents (the cross
points are marked) due to the large overhead of calculating
MTSP for many agents. Max had better success rate than
both heuristics alone, and Lazy A* was always the best.

We also experimented with minimizing SOC on the same
map. Table 1 presents the results, only for our solvers with
EB and excluding BFS on 2–6 agents (1st column). The per-
centage of instances that were solved by all solvers (MKSP
and SOC) are presented in column 2. For these instances, we
measured the average cost, number of expansions, and time
(in sec). For each heuristic (column 3), columns 4–6 present
results for minimizing MKSP and columns 7–9 for SOC.

Naturally, the average cost for SOC is higher than that of
MKSP because in SOC we sum up the cost of all paths while
in MKSP the cost is determined by the longest path. For min-
imizing MKSP, MTSP consumed larger runtime as the num-
ber of agents increased (due to its exponential overhead),
while Singleton consumed shorter runtime as the number
of agents increased. Hence, for more than 4 agents, Sin-
gleton outperforms MTSP, in terms of runtime. However,
for minimizing SOC, MTSP always outperforms Singleton.
There are two reasons for this: (1) Singleton is less accu-
rate when minimizing SOC. (2) As shown by Kivelevitch,
Cohen, and Kumar (2013), it is computationally harder for
MTSP solvers that use constraint programming to minimize
MKSP than minimizing SOC. Again, Lazy A* performed
best. In general, there is a trade-off between the branching
factor and the depth of the solution. More agents increases
the branching factor but decreases the solution depth.

To summarize, the best balance between simplicity and
efficiency is achieved by Singleton, which is easy to im-
plement and achieves reasonable success rate. Lazy A*
achieved the best performance, but is harder to implement.

303



Acknowledgments
This research was sponsored by the United States-Israel Bi-
national Science Foundation (BSF) under grant numbers
2017692 and 2021643, and by Israel Science Foundation
(ISF) under grant number 844/17.

References
Chin, W.-P.; and Ntafos, S. 1986. Optimum watchman
routes. In the Second Annual Symposium on Computational
Geometry, 24–33.
Harabor, D. D.; Uras, T.; Stuckey, P. J.; and Koenig, S. 2019.
Regarding Jump Point Search and Subgoal Graphs. In the
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1241–1248.
Kivelevitch, E.; Cohen, K.; and Kumar, M. 2013. A Binary
Programming Solution to the Min-Max Multiple-Depots,
Multiple Traveling Salesman Problem. In AIAA Infotech at
Aerospace Conference, 1–11.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
Pathfinding on the 2k Neighborhoods. In the AAAI Con-
ference on Artificial Intelligence (AAAI), 891–897.
Seiref, S.; Jaffey, T.; Lopatin, M.; and Felner, A. 2020. Solv-
ing the watchman route problem on a grid with heuristic
search. In the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 249–257.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward rational deployment of multiple heuristics
in A*. In the International Joint Conference on Artificial
Intelligence (IJCAI), 674–680.
Yaffe, T.; Skyler, S.; and Felner, A. 2021. Suboptimally
Solving the Watchman Route Problem on a Grid with
Heuristic Search. In the International Symposium on Com-
binatorial Search (SoCS), 106–114.

304


