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Abstract

Probabilistic Simple Temporal Networks (PSTN) are used to
represent scheduling problems under uncertainty. In a tempo-
ral network that is Strongly Controllable (SC) there exists a
concrete schedule that is robust to any uncertainty. We solve
the problem of determining Chance Constrained PSTN SC as
a Joint Chance Constrained optimisation problem via column
generation, lifting the usual assumptions of independence and
Boole’s inequality typically leveraged in PSTN literature. Our
approach offers on average a 10 times reduction in cost versus
previous methods.

Introduction
Probabilistic Simple Temporal Networks (PSTN) are net-
works made up of time-points (nodes) and constraints
(edges) used to represent and reason over scheduling prob-
lems involving uncertain durations (Tsamardinos 2002).
Strong Controllability (SC) (Vidal and Fargier 1999) is a
property of temporal networks which implies the existence
of a single schedule that is robust to any uncertainty in the
problem. However in PSTNs this characteristic is rarely ap-
plicable due to the unbounded nature of continuous proba-
bility distributions.

SC can be imposed on a PSTN through truncating
the probability distributions over durations (Fang, Yu, and
Williams 2014; Santana et al. 2016). However, this increases
the risk of the schedule. Another approach would be to re-
lax some of the constraints (Yu, Fang, and Williams 2015)
and pay a cost relative to the amount of relaxation. With the
Chance Constrained PSTN (CC-PSTN) it is possible to min-
imize the relaxation cost subject to a user-defined bound on
risk (Fang, Yu, and Williams 2014; Yu, Fang, and Williams
2015). However, previous approaches at tackling this prob-
lem use Boole’s inequality, which is a loose upper bound
on the true risk, and are therefore not guaranteed to find
the optimal schedule minimising cost. Furthermore they as-
sume independence of uncontrollable outcomes, which does
not always hold. For example if we consider vehicle rout-
ing, then clearly a correlation exists between the travel times
- driven by uncertainty factors such as traffic at a particu-
lar time of day. In this extended abstract we present an ap-
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X1 ∼ N (3, 1) [0, 5 + r̂12] X2 ∼ N (3, 1) [0, 5 + r̂23]

Figure 1: Relaxable CC-PSTN example. Uncertain durations
are continuous probability distributions (X1, X2). Con-
straints are lower and upper bounds between time-points.

proach that overcomes both of these limitations based on es-
tablished techniques from the field of convex optimisation.

Motivating Example
We motivate our problem by considering the relaxable CC-
PSTN introduced in Yu et al. (2015). In the example in
Figure 1, we have two adjacent uncontrollable constraints
c(e1, b2) and c(e2, b3), with relaxable upper bounds.

c(e1, b2) : 0 ≤ b2 − b1 −X1 ≤ 5 + r̂12
c(e2, e3) : 0 ≤ b3 − b2 −X2 ≤ 5 + r̂23

We consider that the decision maker has defined a risk
bound of 0.3, the random variables X1 and X2 are indepen-
dent and there is a schedule such that b2− b1 = b3− b2 = 7.
Since the normally distributed random variables have iden-
tical distributions, we can write X1 = X2 = X . Finally, we
note that the total relaxation cost is given by: r̂12 + r̂23.

Boole’s Inequality Using Boole’s inequality the chance
constraint is formulated as a sum of the two risks:
(1−P (2−r̂12 ≤ X ≤ 7))+(1−P (2−r̂23 ≤ X ≤ 7)) ≤ 0.3

We can choose r = argminr∈{r̂12,r̂13}{1−P (2− r ≤ X ≤
7)} and rewrite the sum of probabilities as:

2(1− P (2− r ≤ X ≤ 7)) ≤ 0.3

Therefore the cumulative probability function FX(2− r) ≤
FX(7) − 0.85 and subsequently r ≥ 0.04, i.e. to satisfy the
chance constraint we need to relax at least one of the bounds
by at least 0.04 and therefore the cost, r̂12 + r̂23 ≥ 0.04.

Joint Outcome Instead, if we consider the joint outcome
of X1 and X2, then the chance constraint becomes:

1− P (2− r̂12 ≤ X ≤ 7)P (2− r̂23 ≤ X ≤ 7) ≤ 0.3

Without considering any relaxation, we have: P (2 ≤ X ≤
7) = 0.84. Since 1−0.84×0.84 ≤ 0.3, the chance constraint
is satisfied with a cost of 0.
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Figure 2: Inner approximation of a uni-variate function.

Method
To consider the joint outcome in our optimisation, we en-
code SC of CC-PSTNs as a Joint Chance Constrained (JCC)
optimisation problem in the following form:

min{cTx | Ax ≤ l, P (Λx+ β ≥ ΨX) ≥ 1− α}
The decision variables, x ∈ Rn are the controllable time-
points which can be scheduled and any problem specific
variables (e.g relaxation variables in the relaxable CC-
PSTN). Controllable constraints, containing only control-
lable time-points, are defined by the polyhedron, Ax ≤ l.
Uncontrollable constraints, containing a time-point whose
outcome is dependant upon a random duration, are defined
by the JCC, P (Λx + β ≥ ΨX) ≥ 1 − α, in which
X ∼ N (µX ,ΣX), is the multivariate normal vector with
CDF FX(z) representing the uncertain durations and α is
the allowable tolerance on risk.

The linearly transformed normal vector, ξ = ΨX is
also a multivariate normal vector distributed according to:
ξ ∼ N (µξ,Σξ), where µξ = ΨµX and Σξ = ΨΣXΨT . If
the probability distribution is log-concave, then the chance
constraint ϕ(z) ≤ π, where ϕ = − log(Fξ(z)) and π =
− log(1 − α), is convex (Prékopa 1971, 1973) allowing for
tractable evaluation of the global optimum. We can then ex-
press the optimisation problem as a convex one:

min{cTx | Ax ≤ l, z ≤ Λx+ β, Φ(z) ≤ π}
We follow the approach of Fábián et al. (Fábián et al. 2018;
Fábián 2021) which forms a polyhedral approximation of
the JCC using a restricted set of approximation points:
z1, z2, ..., zk (see Figure 2). We iteratively solve the linear
program (1), which minimises the cost given the current
points; and the column generation problem (2), in which
we find a new approximation point, zk+1 that refines the
approximation. In the following, u, v ≤ 0 and ν ∈ R
are the optimal dual variables associated with constraints
Zλ− Λx ≤ β, ΦTλ ≤ π and 1Tλ = 1 respectively.

{min
x,λ

cTx | Ax ≤ l, Λx+ β ≥
k∑

i=0

λizi,
k∑

i=0

λi = 1,

λi ≥ 0,
k∑

i=0

ϕiλi ≤ π} (1)

{min
z

−vϕ(z)− uT z − ν} (2)

Figure 3: Results showing comparison of
cost (top) and runtime (bottom).

We denote M and C, the optimal objective to (1) and (2)
on iteration k. From Dantzig (1963), M+ C is a valid lower
bound and M is a valid upper bound on the optimal solu-
tion. If the difference between the upper and lower bound at
iteration k is within some allowable tolerance, ε:

(M− (M+ C))/(M+ C) ≤ ε (3)

then the solution so far is ε-optimal and the algorithm can
be terminated.

Results and Conclusion
We tested our method against a SC linear program using
Boole’s inequality on a number of CC-PSTNs generated
from IPC Planning domains. On average, the cost of our
method is approximately 10 times less. However, the run
time for the JCC approach was significantly longer for prob-
lems with a large number of probabilistic constraints - owing
to the computational effort of evaluating multivariate nor-
mal probabilities and gradients within the column generation
procedure (2). It’s worth noting that (3) allows for a trade-
off between the solution quality and runtime. We found that
even after 1 iteration (presented as JCC 1 in Figure 3), the
method offers improvements over the LP.

In conclusion, we recommend this approach for problems
in which cost is of high priority and runtime is not restrictive.
In future work we aim to investigate methods for improving
efficiency. Furthermore, because our approach generalises
to arbitrary covariance matrices, investigation into problems
containing correlation is a logical next step.
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Prékopa, A. 1971. Logarithmic concave measures with ap-
plications to stochastic programming. Acta Scientiarum
Mathematicarum, 32(1): 301–316.
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