
On the Reformulation of Discretised PDDL+ to Numeric Planning (Extended
Abstract)*

Francesco Percassi,1 Enrico Scala,2 Mauro Vallati1

1 School of Computing and Engineering, University of Huddersfield, UK
2 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

f.percassi@hud.ac.uk, enrico.scala@unibs.it, m.vallati@hud.ac.uk

Abstract

PDDL+ is an expressive planning formalism that enables the
modelling of hybrid discrete-continuous domains. The result-
ing models are notoriously difficult to cope with, and few
planning engines are natively supporting PDDL+. To foster
the use of PDDL+, this paper revisits a set of recently pro-
posed translations allowing to reformulate a PDDL+ task into
a PDDL2.1 one. Such translations permit the use of a wider
set of engines to solve complex hybrid problems.

Introduction
Automated planning is a solid branch of artificial intelli-
gence that aims at designing methodologies for the auto-
mated synthesis of decisions capable to transform a given
state, i.e., the initial state, into the desired state, i.e., the goal
state. In real-world scenarios, such a synthesis has to take
into account that hybrid systems can be quite complex, as
they are characterised by the coexistence of a discrete and
continuous dynamic.

Hybrid systems are modelled in the planning community
using the PDDL+ formalism (Fox and Long 2006). PDDL+
provides a representation that puts together an agent, via
an action-oriented formalisation, with an explicit representa-
tion of the environment and its exogenous dynamics. PDDL+
problems consist in finding a number of time-stamped ac-
tions along a continuous (or discrete) timeline, whilst con-
forming to the instantaneous and continuous changes pre-
scribed by events and processes, respectively. Valid plans are
those where actions have their preconditions satisfied when
they are executed, and the final state satisfies the goal. A
major challenge in tackling PDDL+ planning problems con-
cerns the ability of planning whilst tracking numeric vari-
ables that can change as an effect of processes and events
through time; only a restricted set of planning engines na-
tively support PDDL+ in an effective manner.

To overcome this problem, we show how to leverage the
consolidated approach of reformulation by translating prob-
lems expressed in a very expressive and rich formalism into
ones expressed in less complicated formalism (Percassi and

*The extended abstract reports on the work previously appeared
in the papers (Percassi, Scala, and Vallati 2021b,a).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gerevini 2019; Bonassi et al. 2021; Percassi, Scala, and Val-
lati 2022). In particular, here we report on a recent line of
research that investigate translations from PDDL+ problem
into discrete numeric planning (Percassi, Scala, and Vallati
2021a,b).

We give an overview of the theoretical properties of the
different translations, and novel experimental results ob-
tained using optimal numeric planners. We do this to provide
a crisper and more distilled picture of how different transla-
tions affect the search performed by planning techniques.

From Discretised PDDL+ To PDDL2.1
Percassi, Scala, and Vallati (2021b) proposed an exponen-
tial (EXP) and a polynomial (POLY) translation to increase
the pool of planning engine that can tackle PDDL+ problems.
The aim is to transform a time discretised PDDL+ into a sim-
pler problem expressed in PDDL2.1 (Fox and Long 2003).

Both schemata compile processes and events into the
agent’s actions. EXP does so anticipating the occurrence of
all contexts, i.e., a subset of processes that can be active in
a state, with a single simulation action having several con-
ditional effects. This has the advantage of keeping the depth
of the search tree limited, but the drawback of having expo-
nentially many conditional effects, one per each context.

POLY avoids such an exponential behaviour by unrolling
all processes into several consecutive actions. This sequence
is structured as ⟨start, seq(AP), end⟩, where start initialises
the unrolling, and each element in seq(AP) is an arbitrary
total order over actions from AP ; these actions are asso-
ciated to each numeric continuous effect of the processes.
Each such action applies if the corresponding process holds
when start is applied. Finally, end closes the unrolling. POLY
prevents the exponential blow-up but makes the search tree
much deeper. To produce a more compact encoding, a third
translation, namely POLY−, has been proposed (Percassi,
Scala, and Vallati 2021a). Intuitively, POLY− leverages the
advantages of EXP, using a single action for simulating the
advance of a discrete quantum of time, and avoids the ex-
ponential blow up with a schema that ignores some of the
possible transitions. This results in an approach that, differ-
ently from both EXP and POLY (which are both sound and
complete), is sound but complete only for a syntactic sub-
class of PDDL+ tasks.

In PDDL+ problems, there can be multiple processes that

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

314

hblind Coverage Time Exp. Nodes (×1000) hmax Coverage Time Exp. Nodes (×1000)
Domain POLYPOLY−EXP POLYPOLY− EXP POLY POLY− EXP Domain POLYPOLY−EXP POLY POLY− EXP POLY POLY− EXP

ROVER 1 1 1 61.2 20.3 33.7 12013 3622 3622 ROVER 1 1 1 121.8 28.7 54.1 11898 3513 3513
LIN-CAR 10 10 10 3.3 3.0 2.9 200 27 27 LIN-CAR 10 10 10 3.2 2.9 3.3 40 25 27
LIN-GEN✗ 1 1 1 3.1 3.2 3.3 84 25 23 LIN-GEN✗ 1 2 2 3.5 2.7 2.6 84 5 2
BAXTER✗ 4 7 0 51.3 9.2 — 1294 123 — BAXTER✗ 4 7 0 44.8 6.5 — 1041 68 —
OT-CAR 5 5 5 16.8 3.7 4.6 2644 252 252 OT-CAR 5 5 5 16.2 5.2 5.5 1271 278 278
DESCENT✗ 2 0 3 19.6 — 8.5 444 — 134 DESCENT✗ 2 0 3 13.6 — 8.7 246 — 112
HVAC 0 0 0 — — — — — — HVAC 0 16 16 — 3.5 3.5 — 7 7
Σ 23 24 20 Σ 23 41 37

Table 1: Performance achieved by hblind (left) hmax (right) when run on models generated using the POLY, POLY−, EXP transla-
tions with δ = 1. ✗ is used to indicate domain models for which there is no guarantee of optimality for the solution found over
the POLY− models.

POLY EXP POLY−

soundness

✓
Lemma 2 (⇐) in

Percassi et al.,
2021b

✓
Lemma 1 (⇐) in

Percassi et al.,
2021b

✓
Prop. 1 in

Percassi et al.,
2021a

completeness

✓
Lemma 2 (⇒) in

Percassi et al.,
2021b

✓
Lemma 1 (⇒) in

Percassi et al.,
2021b

✗ (general case)
Prop. 2 in

Percassi et al.,
2021b

sizeZ Ntot 2|P | − 1 |P |

Table 2: Properties of soundness and completeness and
size of the numeric translated tasks obtained through Z ∈
{EXP, POLY, POLY−} for a PDDL+ task Π.

additively affect the same numeric variable. The generation
of the successor state when time flows in POLY− occurs in
parallel, whereas in POLY it occurs sequentially. The sequen-
tialisation allows the encapsulation of all the ways in which
the state can evolve over time according to the processes,
while parallelisation does not. To be specific, the invalid
transitions in POLY− concern those states in which there are
at least two processes affecting the same numeric variable.
This limitation causes the incompleteness of POLY−.

All the schemata produce encodings having a linear or a
polynomial number of variables and actions in the size of the
original PDDL+ task. What controls the size of the result-
ing encoding is how the contexts are enclosed in the com-
piled actions, which we denote as sizeZ . Since EXP explic-
itly enumerates all the possible contexts except the empty
one, the size of the resulting planning task is as follows:
sizeEXP = 2|P | − 1. In POLY, all possible contexts are im-
plicitly encoded in ⟨start, seq(AP), end⟩ within the AP op-
erators, and then sizePOLY = |AP | = Ntot where Ntot is
a constant denoting all continuous numeric effects of the
PDDL+ task. POLY− explicitly encloses a restricted num-
ber of contexts in one action. This restriction allows to get
sizePOLY− = |P |. Percassi, Scala, and Vallati (2021b; 2021a)
discussed the property of soundness and completeness for
the proposed translations by studying the relationship be-
tween the solution space of the PDDL+ task and the numeric
one. Table 2 summarises all the discussed results.

Experimental Results
To empirically compare the discussed translations we use
ENHSP20 (Scala et al. 2020), which allows us to tackle nu-
meric planning with non-linear dynamics, and provides the
use of customised search strategies. We tested two optimal
heuristics, i.e., hblind and hmax (Scala, Haslum, and Thiébaux
2016). As benchmarks we considered those used in (Per-
cassi, Scala, and Vallati 2021b), plus two non-linear do-
mains, i.e., the well-known DESCENT and HVAC. All ex-
periments were run on an Intel Xeon Gold 6140M CPU with
2.30 GHz. For each instance, we allotted 180 seconds and
limited memory to 8 GB.

Table 1 shows the results. In domains characterised by
few processes, POLY− and EXP are preferable to POLY. Con-
versely, when the PDDL+ tasks include numerous processes,
as in BAXTER, EXP becomes infeasible. The overhead in-
troduced in the search by POLY, due to the lengthening of
the plans, prevents finding solutions in HVAC. Finally, the
incompleteness of POLY−, although often advantageous in
terms of speedup, may lead to cases where all the solutions
are pruned from the search space, as in DESCENT.

Discussion
EXP is a didactical baseline and it has the limitation of being
infeasible for PDDL+ problems involving many processes.
On the contrary, POLY, in which the time flow involves the
execution of a polynomial number of actions, leads to a
greater search effort. However POLY produces polynomial
encoding, making the translation more feasible than EXP.

POLY− produces numeric tasks having the same structure
as those produced by EXP, and then it is advantageous in
terms of search, but its incompleteness allows it to be used
safely only in restricted cases. Overall EXP and POLY− ob-
tain an appreciable result in the optimal context but the latter
loses the guarantee on the optimality of the solutions found
in some domains.

We see several avenues for future work. We are interested
in exploring the online selection of the best translation to be
used according to the structure of the problem considered.
We are also interested in investigating the possibility of au-
tomatically combining different translations, and further ex-
ploiting the structure of the problem.

315

Acknowledgments
Francesco Percassi and Mauro Vallati were supported
by a UKRI Future Leaders Fellowship [grant number
MR/T041196/1].

References
Bonassi, L.; Gerevini, A. E.; Percassi, F.; and Scala, E. 2021.
On Planning with Qualitative State-Trajectory Constraints in
PDDL3 by Compiling them Away. In Proc. of ICAPS, 46–
50.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR,
20: 61–124.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. JAIR, 27: 235–297.
Percassi, F.; and Gerevini, A. E. 2019. On Compiling
Away PDDL3 Soft Trajectory Constraints without Using
Automata. In Proc. of ICAPS, 320–328.
Percassi, F.; Scala, E.; and Vallati, M. 2021a. A Sound
(but Incomplete) Polynomial Translation from Discretised
PDDL+ to Numeric Planning. In Proc. of AIxIA.
Percassi, F.; Scala, E.; and Vallati, M. 2021b. Translations
from Discretised PDDL+ to Numeric Planning. In Proc. of
ICAPS, 252–261.
Percassi, F.; Scala, E.; and Vallati, M. 2022. The Power
of Reformulation: PDDL+ Validation Through Planning. In
Proc. of ICAPS.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In Proc. of IJCAI, 3228–
3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. JAIR, 68: 691–752.

316

