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Abstract
The Multi-agent Multi-item Pickup and Delivery problem
(MAMPD) stands for a problem of finding collision-free tra-
jectories for a fleet of mobile agents transporting a set of items
from their initial positions to specified locations. Each agent
can carry multiple items up to a given capacity. We study the
solution quality of the naive decoupled approach, which de-
couples the problem into task assignment (TA) and Multi-
Agent Pathfinding (MAPF). By computing the gap between
the lower bound of the MAMPD cost, estimated using the TA
cost, and the upper bound, given by the final MAMPD cost,
we show that the decoupled approach is able to obtain near-
optimal solutions in a wide range of cases.

Introduction
One field of application for mobile robotics is autonomous
warehouses. Consider a fleet of autonomous mobile robots
collecting requested items from different locations in the
warehouse and then delivering them to specified zones for
further processing, e.g., packaging. Assuming that the robots
can be controlled centrally, this problem can be divided into
two subproblems: task assignment (TA) and path planning.

In the TA, the goal is to decide which items will each robot
pick up and in which order. The second problem is to find a
set of collision-free paths for the robots that realize the TA
plan.

The TA can be formulated as the Vehicle Routing Prob-
lem (VRP) (Gendreau et al. 2008) and the latter as the
Multi-Agent Pathfinding (MAPF) (Stern et al. 2019). Solv-
ing these two problems optimally is, however, NP-hard (Yu
and LaValle 2016) and many solvers focus on quickly find-
ing near-optimal solutions.

As the problem has been formulated recently, mainly
decoupled approaches to the problem were introduced.
However, there were multiple coupled approaches pro-
posed (Nguyen et al. 2017; Liu et al. 2019; Choudhury et al.
2021; Chen et al. 2021), which aim to perform better than
the decoupled solvers.

In this work, we attempt to answer the question whether
the decoupled approach, combined with a near-optimal
MAPF solver, is able to find near-optimal MAMPD solu-
tions in non-trivial scenarios. Furthermore, we explore the
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effect of the underlying MAPF solver on the solution qual-
ity of the decoupled approach.

We show that when used with a bounded suboptimal
MAPF solver, i.e., ECBS (Barer et al. 2014), the decoupled
approach is able to find near-optimal solutions, which means
that using more advanced approaches is not required. How-
ever, on instances specifically designed to be hard to solve,
ECBS cannot find a solution, and PBS generates solutions
with a significantly higher cost than the VRP solver. This in-
dicates that a more powerful MAMPD solver may produce
solutions of significantly better quality.

Problem Statement
Given an undirected graph G = (V,E), a set of agents A,
each with unique starting and goal locations, and a set of
items (tasks) T , each with its pickup location, the goal of
the MAMPD is to find a set of collision-free paths such that
every item is delivered. Delivering the item means that an
agent must visit the item’s pickup location. There is exactly
one path for each agent, originating in the agent’s starting lo-
cation and ending in the goal location. Each agent can carry
multiple items at the same time, up to a given capacity pa-
rameter c >= 1. We use the flowtime, also known as sum-
of-costs, as the objective function (Stern et al. 2019).

Decoupled Approach
We utilize a standard decoupled algorithm to solve the
MAMPD. First, we solve the TA using a VRP solver. Then,
a MAPF solver is used to find a set of collision-free trajecto-
ries for all agents that fulfill the plan obtained in the previous
step.

Hönig et al. (2018) show that decoupling the TA and path
planning may lead to a suboptimal solution. Since collisions
are not considered during TA and are only afterward re-
solved in MAPF, the MAPF cost can be significantly higher
than the TA cost. Furthermore, by including the requirement
for collision-free paths, the solution cannot become cheaper.
Therefore, the MAPF cost will always be higher or equal to
the TA cost. This allows us to use the TA cost as an estimate
of the lower bound and the MAPF cost as an estimate of the
upper bound. We then compute the gap between the lower
bound given by the VRP cost A and the MAPF cost B as
B−A
A and use it to evaluate the decoupled approach.
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(a) Flowtime gap (b) Success rate

Figure 1: Gaps in flowtime and success rate of the PBS and
ECBS solvers.

Empirical Evaluation
Algorithms For the VRP, we utilized a Variable Neigh-
borhood Search (VNS) algorithm (Gendreau et al. 2008),
one of the most efficient and widely used VRP algorithms
capable of finding solutions within 2% of the best known
solutions (Kytöjoki et al. 2007). To obtain the best possible
VRP solutions, we leveraged the randomized nature of VNS
by running the algorithm multiple times and selected only
the best found solution.

To find the collision-free paths of the VRP solution, we
used two different MAPF solvers. The first one is based on
the Priority-Based Search (PBS) (Ma et al. 2019), and the
second one on the ECBS (Barer et al. 2014). PBS is a sub-
optimal solver which is known to be very fast. Nevertheless,
it is able to find close-to-optimal solutions in practice. In
contrast, ECBS is a bounded suboptimal solver. It takes sub-
optimality factor w ≥ 1 as an input parameter, and if the
solver finds a solution, its cost is guaranteed to be within
the user-specified bound. By setting w = 1, the ECBS is
searching for an optimal solution. In general, setting w to
values close to 1 leads to longer runtime, which can result in
a failure to find a solution.

We modified both algorithms to be able to solve MAPF
instances where each agent has to visit multiple intermedi-
ate goals before stopping at the final goal, instead of only
requiring to move to its destination. To solve the MAPF in-
stances, we used a classical MAPF problem statement (Stern
et al. 2019) when time is discretized as all the agents can
perform only cardinal moves or wait in place. Furthermore,
agents occupy their final goal after reaching it and do not dis-
appear. The source code of our solver is publicly available
along with the configuration files used in our experiments 1.

Test Instances The empirical evaluation was conducted
on 4 different maps from the widely used MovingAI
benchmark (Sturtevant 2012) – den312d (81x65), maze
(128x128), map with 30% randomly blocked cells (64x64),
and rooms (64x64). These maps are further denoted as den,
maze, rand and room, respectively.

We also designed two warehouse-like maps, wh3 (11x84)
and a larger map with the same topology, wh15 (46x101),
both analogous to the maps presented in the MovingAI
benchmark. Thus, 6 different maps were evaluated in total.

For the MovingAI maps, we set the number of agents as

1github.com/zahrada2/mampd decoupled gaps

30, with capacity 8, and the number of tasks was 180. For
wh3 and wh15, we set the number of agents as 24 and 120,
the capacity as 4 and 5, and the number of items as 72 and
480, respectively. For each map, we generated 30 different
MAMPD instances. In 10 instances, we placed start and goal
locations manually to simulate a real-life scenario. In 20 in-
stances, they were positioned randomly in designated areas.

Item locations were chosen randomly. The maps wh3 and
wh15 were specifically designed to be difficult to solve us-
ing the decoupled approach in order to test its limits.

All maps and instances are publicly available 2.
We set the terminating condition for the VNS as 10000

iterations and for the MAPF solvers as 30 s of runtime. We
ran both MAPF solvers - PBS and ECBS - on the same VRP
solution. Since PBS is very fast, it found solutions within the
runtime limit every time except once. ECBS, in contrast, is
slower, and it was often unable to find a solution. Initially,
we ran ECBS with w set to 1. If it failed to find a solution
within the time limit, we restarted the algorithm with a grad-
ually increasing w. The following values were used gradu-
ally: 1.01, 1.02, 1.05, 1.1, 1.25. If it was able to find a solu-
tion, we recorded its cost. If no solution was found even for
w = 1.25, the instance was declared unsolvable for ECBS.
The runtime of the VRP solver ranges on average from 5 s
to 60 s, and the time needed by the PBS solver ranges on
average from 0.04 s to 0.5 s, depending on the instance com-
plexity. The runtime of ECBS was 0.77 s on average. The
wh15 map is an outlier due to its size, with 624 s VRP exe-
cution time and 20 s PBS execution time.

Results To evaluate the quality of the MAMPD solution,
we calculated the gap for every instance. The resulting gaps
and the solution success rate can be seen in Fig. 1.

The computed gaps can be seen in Fig. 1a. The solutions
found by PBS feature a noticeable gap, as high as 34%. This
means that there is a possible room for improvement. In con-
trast, solutions found by ECBS have a very small gap, signi-
fying a near-optimal MAMPD solution.

On some instances, the gap of PBS was very small. In
such cases, ECBS found a solution with a similar gap. This
shows that the decoupled approach, even with a suboptimal
MAPF solver, is able to find near-optimal solutions.

However, as seen in Fig. 1b, ECBS did not manage to
solve all scenarios, and could not solve any instance of wh3
and wh15. Since these maps were intentionally designed to
be difficult, these results are as expected. PBS managed to
solve all scenarios except one instance of wh15.

Summarizing the results, the decoupled approach paired
with a bounded suboptimal solver is capable of finding
near-optimal solutions for the MAMPD. In some cases, the
near-optimal solutions were found even using a suboptimal
MAPF solver without guarantees on the solution cost. How-
ever, a bounded suboptimal solver is not guaranteed to find
a solution on maps intentionally designed to be difficult. In
such cases, using a plain suboptimal solver might be nec-
essary. On these maps, the suboptimal PBS found solutions
that had a high gap. This signifies that there may be signifi-
cant room for improvement.

2github.com/zahrada2/mampd instances

330



Acknowledgments
The work has been supported by the European Regional
Development Fund under the project Robotics for Indus-
try 4.0 (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000470) and
by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS21/185/OHK3/3T/37. Computational
resources were supplied by the project ”e-Infrastruktura CZ”
(e-INFRA CZ LM2018140 ) supported by the Ministry of
Education, Youth and Sports of the Czech Republic.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of
The 7th Annual Symposium on Combinatorial Search (SoCS
2014), 19–27.
Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D. D.; and
Stuckey, P. J. 2021. Integrated Task Assignment and Path
Planning for Capacitated Multi-Agent Pickup and Delivery.
IEEE Robotics and Automation Letters, 6(3): 5816–5823.
Choudhury, S.; Solovey, K.; Kochenderfer, M. J.; and
Pavone, M. 2021. Efficient large-scale multi-drone deliv-
ery using transit networks. Journal of Artificial Intelligence
Research, 70: 757–788.
Gendreau, M.; Potvin, J. Y.; Bräysy, O.; Hasle, G.; and
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