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Abstract

The selection of optimal feature representations is a crit-
ical step in the use of machine learning in text clas-
sification. Traditional features (e.g. bag of words and
n-grams) have dominated for decades, but in the past
five years, the use of learned distributed representa-
tions has become increasingly common. In this paper,
we summarise and present a categorisation of the state-
of-the-art distributed representation techniques, includ-
ing word and sentence embedding models. We carry out
an empirical analysis of the performance of the various
feature representations using the scenario of detecting
abusive comments. We compare classification accura-
cies across a range of off-the-shelf embedding models
using 10 labelled datasets gathered from different social
media platforms. Our results show that multi-task sen-
tence embedding models perform best with consistently
highest classification results in comparison to other em-
bedding models. We hope our work can be a guideline
for practitioners in selecting appropriate features in text
classification task, particularly in the domain of abuse
detection.

Introduction
When using supervised machine learning approaches to
tackle the task of text classification, the text must first be
transformed into an interpretable and compact representa-
tion of its content prior to its input to an algorithm. For many
years, the dominant approach to feature representation for
text has been based upon bag of words or n-grams. In this
traditional approach, a term document matrix is used, where
each text document is represented as a numeric vector of
feature occurrence (denoted by 0 or 1) or feature frequency.
However, there are several downsides of using this tradi-
tional feature representation. The vector is typically sparse
as each dimension represents a specific term from the train-
ing corpus. In addition, the ordering of words is lost, which
reduces the ability to capture semantic or syntactic aspects
of the content. To alleviate these issues, previous studies
used feature selection techniques to reduce the feature space,
and feature engineering to supplement missing language in-
formation. For example, Chen et al. (2017b) applied docu-
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ment frequency to remove 50% of features without damag-
ing the performance of the classification algorithm; Agarwal
et al. (2011) exploited part of speech (POS) information, and
the occurrence of negation (e.g. ‘not’) to classify the senti-
ment polarity; For the task of identifying abusive comments,
Dadvar et al. (2013) incorporated expert domain knowledge
into feature engineering where the features were designed
by several experts who have a strong background in social
studies and psychological science.

However, hand-crafting of features requires domain spe-
cific knowledge, which limits the generalisation ability of
the classifier. Recent research has explored the use of dis-
tributed representations where the text content is mapped
into a fixed-length vector by a pre-trained embedding model.
Given that the embedding model is trained on a general lan-
guage corpus, it preserves intrinsic language information,
providing richer input to the downstream text classification
algorithm. Word level distributed representations, known as
word embeddings, have been a success story in natural lan-
guage processing (NLP) since Mikolov et al. (2013a) pro-
posed word2vec. This word embedding model captures se-
mantic and syntactic aspects of words through a neural net-
work architecture, and has been widely used as an input for
many downstream NLP tasks such as language modeling
(Kiros et al. 2015), text classification (Wang et al. 2015), and
multilingual translation (Mikolov, Le, and Sutskever 2013)
etc. By contrast, sentence level distributed representations,
known as sentence embeddings, have been relatively under-
developed thus far. A few studies have started to explore
general sentence embeddings in recent years. For example,
Hill et al. (2016) proposed two language models that can
be used to generate sentence embeddings; Cer et al. (2018)
presented a model to encode sentences into a dense vector.
However, there is little work to systematically evaluate sen-
tence embedding models due to the lack of gold-standard
corpora. Unlike word embeddings which can be evaluated
by the use of a dictionary, the quality of sentence embed-
dings can only be evaluated through comparative results
from downstream NLP tasks, such as text classification.

In this work, we assess and compare distributed feature
representations, including word embeddings and sentence
embeddings, using a classification task - the identification of
abusive comments written in English on social media web-
sites. Our contribution is twofold: First, we summarise the
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cutting-edge distributed representation techniques and cate-
gorise them based on how they are generated; Second, we
carry out an empirical analysis of the performance of these
distributed features using the scenario of abusive comments
detection. To generalise our results, we carry out experi-
ments on multiple datasets across a variety of data sources.

The remainder of this paper is framed as follows. In Sec-
tion 2, we present a categorisation of general distributed fea-
ture representations. Then, we review the state of the art
in feature representation for detecting abusive content; Sec-
tion 3 describes the datasets and methodology that we have
used to assess the performance of different feature represen-
tations; In Section 4, the experiments used to compare the
different representations are explained and results analysed;
Section 5 is our conclusion and future work.

Literature Review
Distributed representations have existed in natural language
processing for years (Hinton et al. 1984) but have become
more widespread with the availability of deep learning mod-
els to facilitate the training of representations. There are
two types of distributed representation used for text: word
and sentence. Word distributed representation maps a single
word to a vector. Sentence distributed representation maps
blocks of text to a vector. For this paper, we standardise the
terminologies, using ‘sentence embedding’ to cover ‘sen-
tence embedding’, ‘paragraph embedding’, and ‘document
embedding’, all of which refer to a distributed representa-
tion for a chunk of text content. Fig. 1 shows our categori-
sation of distributed representations. There are two types
of word embedding models, predictive and co-occurrence
matrix. For distributed representations at sentence level, the
straightforward approach is the aggregation of word vectors
that occur in the sentence, which we term ‘simple calcula-
tion model’. Beyond this approach, the most recent approach
is pre-training of sentence embedding on a large language
corpus. The generated sentence vector can be directly used
in the downstream classification task. As shown in Fig. 1, we
categorise pre-trained sentence level representations based
on their requirement or not for supervised learning.

Word Level Distributed Representation
Word embedding is now an integral part of text classifica-
tion. It has been widely used since Tomas Mikolov et al.
(2013a) proposed Word2vec, a predictive word embedding
model. This model is based on a three-layer neural network
that leverages the surrounding information to predict the
central word (known as CBOW) or uses the central word to
predict the surrounding information (known as Skip-gram).
However, it has no ability to capture global language infor-
mation due to the lack of local context. Glove (Penning-
ton, Socher, and Manning 2014), which is a co-occurrence
matrix model, provides better word representation by using
global matrix factorisation.

While both Word2vec and Glove are the predominant
models for word representation, alternatives have been pro-
posed in recent years. Bojanowski et al. (2016) introduced
a modification to Skip-gram named ‘fastText’ which takes

into account the word component information via the inte-
gration of character n-grams. This model addresses the lack
of word morphology knowledge, and tackles the problem
of out-of-vocabulary (OOV) words where the words are un-
known in the test dataset. Another criticism of the origi-
nal Word2vec is that it is unable to capture word polysemy
where a word has several meanings. To alleviate this issue,
Peters et al. (2018) proposed an ELMo framework (Embed-
dings from Language Models) that can generate word vec-
tors dynamically based on context in a downstream dataset,
rather than a word statically represented by one vector. In
addition, Lai et al. (2016) proposed that using a suitable do-
main corpus to train word embeddings benefits the down-
stream task.

Figure 1: The Category of Distributed Representations

Sentence Level Distributed Representation
The success of word embedding has motivated the genera-
tion of ‘universal’ embedding for groupings of text content.
The straightforward approach to generating sentence rep-
resentation from pre-trained word embedding is based on
the simple model of word vector aggregation. Both Wiet-
ing et al. (2015) and Arora et al. (2016) show the perfor-
mance of word vector averaging is comparable to the more
complex approaches using neural networks such as recurrent
neural network with long short-term memory units (LSTM)
for the task of sentiment analysis. Ruckle et al (2018) gen-
eralised the concept of word embedding averaging to use
power mean, where the average value can be replaced by
either maximum or minimum values. The concatenation of
various power mean word embeddings for inducing the sen-
tence representation outperforms the simple averaging ap-
proach in several text classification tasks.

Beyond the simple calculation model, the development of
pre-trained sentence embeddings has emerged only recently.
We categorise them into three types: unsupervised, super-
vised and multi-task model based on the requirement or not
for supervised learning in the pre-trained models.

Unsupervised Learning Unsupervised learning models
learn sentence representations as a by-product of language
modelling where word sequences are used to make proba-
bilistic predictions of surrounding text. The common unsu-
pervised models include:
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• Paragraph2vec Le et al. (2014) modified the word2vec
algorithm adding a paragraph token which can learn a rep-
resentation for blocks of text.

• Skip-Thought Inspired by the Skip-gram, Kiros et al.
(2015) proposed Skip-Thought which uses the central
sentence to reconstruct the surrounding sentences.

• Quick-Thoughts A modification of Skip-Thought was
proposed by Logeswaran et al. (2018). Quick-Thoughts
replaces the prediction of surrounding sentences by a clas-
sifier which aims to choose the target sentence amongst a
set of candidate sentences.

• SDAE The Sequential Denoising Autoencoder is a neural
network composed of the encoder (process the input to
the feature map) and the decoder (process the feature map
to the output). The encoder of SDAE (Hill, Cho, and Ko-
rhonen 2016) is impaired by using some noise functions.
The objective of the model is to recover the original data
from this impaired version.

• FastSent FastSent (Hill, Cho, and Korhonen 2016) is an
efficient extension of Skip-Thought where sentences are
encoded using a simple calculation model (sum of word
embeddings) instead of a sequential model (e.g. RNN).

A variety of data sources have been used for training the
various sentence embedding models. For example, Hill et al.
(2015) used the definitions of vocabulary in a dictionary as
a training corpus; Wieting et al. (2015) proposed a general
sentence embedding model that is trained on the Paraphrase
Database (a large volume of pairs of phrases); The Book
Corpus, which consists of 70 million sentences from over
7000 books, has been used in several studies (Hill, Cho, and
Korhonen 2016; Pagliardini, Gupta, and Jaggi 2017; Gan et
al. 2016).

Supervised Learning Although unsupervised learning is
the prevailing method used to generate sentence representa-
tions, recent work has shown that supervised learning can
also achieve high-quality sentence representations. Conneau
et al. (2017) introduced InferSent where the sentence em-
bedding model is pre-trained on a supervised dataset. It
uses the Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al. 2015) which consists of pairs of sen-
tences with 3 manual labels: entailment, contradiction, and
neutral. The generated embeddings show consistently bet-
ter performance than the representation generated by the un-
supervised learning models (e.g. Skip-Thought) on a wide
range of downstream NLP tasks such as binary classifica-
tion and semantic textual similarity.

Multi-Task Learning One difficulty of conducting su-
pervised learning is the decision on which supervised data
source will generate optimal sentence representations. To
prevent overfitting of supervised learning embeddings to a
specific domain, several studies have used multi-task learn-
ing. In brief, multi-task is a combinational approach that
uses both unsupervised and supervised learning. For exam-
ple, Yang et al. (2018) presented a framework based on
two neural networks. The first neural network is a language
model that is trained on an unsupervised dataset. The second

neural network is a classifier that is trained on a supervised
dataset. The resultant sentence embedding achieves state-
of-the-art performance on the Semantic Textual Similarity
(STS) benchmark. Likewise, Subramanian et al. (2018) pre-
sented a framework that combines various training objec-
tives (e.g. neural machine translation, natural language infer-
ence, language parsing) in a single model. According to their
observation, the syntax information can be learned from the
task of natural language inference, and the semantic infor-
mation can be learned from the task of neural machine trans-
lation. In addition, Cer et al. (2018) proposed a universal
sentence encoder where the sentence embedding model is
trained using a variety of data sources including unsuper-
vised (e.g. Wikipedia) and supervised (e.g. SNLI).

Features for Abusive Detection
At present, automatic detection of abusive user comments
on social media sites relies heavily on supervised text classi-
fication techniques. Most existing work has focused on fea-
ture engineering which aims to identify high quality features
that can be of benefit to the classifier. Traditional content-
based features (e.g. bag of words or n-grams) (Chen, Mc-
Keever, and Delany 2017b; Xu et al. 2012; Mangaonkar,
Hayrapetian, and Raje 2015; Sood, Churchill, and Antin
2012) have been widely used. In addition, classifier accuracy
has been enhanced by adding linguistic information (Zhang,
Robinson, and Tepper 2018) such as the usage of capital-
isation letters, hashtags, emoji and punctuation. Likewise,
Nobata et al. (2016) combined n-grams with syntactic part-
of-speech (POS). Apart from language-based features, Dad-
var et al. (2012) demonstrated that taking gender-specific
features into account boosts the discrimination capacity of
an SVM classifier. Chen et al. (2012) proposed an effec-
tive framework that includes the user’s conversation history
based on user’s identification. A significant number of stud-
ies (Van Hee et al. 2018; Reynolds, Kontostathis, and Ed-
wards 2011; Sood, Antin, and Churchill 2012) relied on pre-
defined profane words to improve the classifier performance.
However, Hosseinmardi et al. (2015) illustrated a high pro-
portion of negative words do not in fact constitute abuse.
The critical weaknesses of feature engineering are the re-
quirement for expert domain knowledge and time. The fact
that the designed features are dataset dependent and typi-
cally cannot be generalised across different sources. For ex-
ample, Chatzakou et al. (2017) suggested a promising ap-
proach to the task of detecting abusive language is combin-
ing user profile (e.g. the age of user account, the number of
tweets the user has made), but this information can only be
extracted from a Twitter dataset.

Recent research has focused on distributed feature repre-
sentations. Most distributed representations are at word level
where the pre-trained word embeddings are the input of a
deep learning classifier. The classic deep learning architec-
tures, CNN and RNN, were used by Gamback et al. (2017),
Park et al. (2017), and Gao et al. (2017). Zhang et al. (2018)
introduced a complex deep learning model that combines
both CNN and RNN and achieved better results than us-
ing CNN alone. Founta et al. (2018) proposed an advanced
framework that augments the metadata (e.g. emoticons us-

127



Table 1: The Summary of 10 Datasets
Published Data

Source
#of

Instances
Avg.

#Words
Class Dist.
(Pos./Neg.) Features Classifier Metrics

D1 (Xu et al. 2012) Twitter 3110 15 42/58 Ngrams SVM Recall
D2 (Dadvar, Trieschnigg, and de Jong 2014) YouTube 3466 211 12/88 Rule-Based SVM AUC
D3 (Bayzick, Kontostathis, and Edwards 2011) MySpace 1710 337 23/77 Lexical Rule-Based Overall Acc
D4 (Reynolds, Kontostathis, and Edwards 2011) Formspring 13153 26 6/94 Lexical Rule-Based Overall Acc
D5 (Yin et al. 2009) Kongregate 4802 5 1/99 Ngrams SVM Pos. Recall
D6 (Yin et al. 2009) SlashDot 4303 94 1/99 Ngrams SVM Pos. Recall
D7 (Yin et al. 2009) MySpace 1946 56 3/97 Ngrams SVM Pos. Recall
D8 (Mangaonkar, Hayrapetian, and Raje 2015) Twitter 1340 13 13/87 Ngrams LR Recall
D9 (Chen, McKeever, and Delany 2017c) News Forum 2000 59 21/79 Ngrams SVM Recall

D10 (Wulczyn, Thain, and Dixon 2017) Wikipedia 115864 67 12/88 Ngrams LR,MLP AUC

age, and sentiment polarity), which increases the area under
the curve (AUC) measure by approximately 5%. In addition
to the use of distributed word representations, some works
explored distributed features at sentence level. Both Djuric
et al. (2015) and Zhao et al. (2018) applied unsupervised ap-
proach, paragraph2vec (Le and Mikolov 2014), to generate
low-dimensional sentence embedding for abusive comments
classification. Badjatiya et al. (2017) used the simple cal-
culation approach, simply averaging the word embeddings
to produce sentence representations. This improves the F1
measurement by 18% in comparison to the use of n-grams.

Methodology
The overall goal of our work is to evaluate the various dis-
tributed representations for the task of abusive content de-
tection. In this section, we detail the methodology that we
used in our work.

Datasets & Pre-processing
The lack of gold-standard labelled training datasets is a ma-
jor obstacle to the task of classifying abusive user gener-
ated comments. Most research efforts in this domain have
used datasets that are only available for their own studies. In
this paper, we perform our experiments on the 10 publicly
available datasets (Xu et al. 2012; Dadvar, Trieschnigg, and
de Jong 2014; Bayzick, Kontostathis, and Edwards 2011;
Reynolds, Kontostathis, and Edwards 2011; Yin et al. 2009;
Mangaonkar, Hayrapetian, and Raje 2015; Chen, McKeever,
and Delany 2017c; Wulczyn, Thain, and Dixon 2017) de-
rived from a variety of social media platforms including
Twitter, YouTube, MySpace, and Wikipedia. All datasets
were labelled manually as part of their original publication
work as abusive or not abusive. Table 1 gives an overview
of the 10 datasets, including the basic properties such as the
number of total instances, average number of words across
instances, the class distribution of positive instances (abuse)
to negative instances (non-abuse), and the approaches (fea-
tures, classifier, and evaluation metric) that were used in the
original research. We acknowledge that these datasets cover
different types of abuse such as ‘cyberbullying’ or ‘harass-
ment’. In this paper, we categorise them as abusive content.
The 10 datasets will be referred to as D1, D2 through to D10
for the rest of paper.

The original studies associated with these 10 datasets use
traditional feature representations. The most common repre-

sentation used are word/character n-grams. D3 and D4 use
lexical features which are based on whether the text content
contains pre-defined profane terms; Researchers who gen-
erated D2 incorporate information from abuse experts and
design a set of rules to identify target comments. SVM is the
classifier of choice in the 6 out 10 datasets. Other algorithms
such as logistic regression (LR) and multilayer perceptron
(MLP) are used in D8 and D10 respectively.

Most datasets in Table 1 are imbalanced with a small pro-
portion of positive (abusive) instances. In particular, D5, D6
and D7 only contain less than 5% of user comments are la-
belled as abuse. To address this issue, we use resamplling
techniques to re-balance the class distribution before feed-
ing into the classifier algorithms. Resampling is applied to
training data only. We use two resampling techniques, over-
sampling and undersampling. For most of the datasets (D2
to D9) with a small quantity of instances, we randomly over-
sample the minority instances to increase the proportion of
abusive comments. For the large dataset (D10), we carry out
the opposite approach to randomly undersampling majority
(non-abuse) instances. After resampling, each dataset has a
balanced class distribution.

The data is normalised in the following ways: All non-
English characters are removed, and then all characters
changed to lowercase; Mentioned user names, which are
preceded by the symbol ‘@’, are replaced by the anony-
mous term as ‘@username’; All hyperlinks are unified as the
generic term ‘url links’; Considering the social media user
comments are typically short, we do not implement stem-
ming or remove stop-words.

Features & Classifiers
Our aim is to compare the performance of the various feature
representations shown in Fig. 1 when applied to the task of
abusive comment classification. We acknowledge that social
media provides other sources as potentially useful features,
for example, likes, number of followers, number following.
However this information is not consistently available across
different types of social media platforms. As our experi-
ments are carried out on the multiple datasets, we do not
use such dataset-dependent features. We set the baseline fea-
ture representation as traditional n-grams where the text con-
tent is represented by n continuous sequential words. Based
on our previous work (Chen, McKeever, and Delany 2017b;
2017a), we identify that 1 to 4 word grams achieves the

128



Table 2: The Configurations of Different Feature Representations with Classifiers
Feature

Category
Level of

Representation Implementation Feature Classifier Config.

Traditional N-grams SVM 1

Distributed

Word Level
(Word Embedding)

Glove CNN 2
Glove Bi-LSTM 3

Sentence Level
(Sentence Embedding)

Simple Calculation Avg. WV SVM 4
Pre-trained Supervised InferSent SVM 5
Pre-trained Unsupervised Sent2Vec SVM 6
Pre-trained Multi-task SentEncoder SVM 7
Pre-trained Multi-task GenSen SVM 8

best performance. We then apply document frequency re-
duction to remove the features that occur the most and the
least frequently in the dataset. To assess the word level
distributed representations shown in Fig. 1, we apply pre-
trained word embeddings. We input the vectors of words to
a deep learning-based classifier. For the sentence level rep-
resentations in Fig. 1, we use two approaches. To assess the
first ‘simple calculation’ approach, we average the vectors
of the words in the user comment, producing a single vector
to represent the text in the comment. We use this approach
for comment representation to fed to the SVM classifier. In
the second approach, we use multiple existing models that
generate sentence embeddings. In such cases, the user com-
ment is mapped to a vector which then is treated as an input
for the SVM classifier.

We use SVM as the abuse detection classifier for the tradi-
tional n-grams feature set as it is a widely used classification
algorithm with high quality performance in text classifica-
tion. However, using SVM with word embeddings as input
is not practical as the individual comment is represented by
a set of word vectors (matrix) instead of a vector. We there-
fore use two common deep learning neural networks, con-
volutional neural network (CNN) and recurrent neural net-
work (Bi-LSTM). In detail, we use a sequence of word vec-
tors as the input for both models and softmax as the output
layer. We acknowledge that choosing hyper-parameters is an
important element for the deep learning classifier, and op-
timisation of these parameters requires a validation dataset.
Since our experiments are ran on the multiple datasets which
are not large enough to provide a separate validation set, we
use the same hyper-parameters for all datasets. We use the
optimal settings from the guidelines provided by Zhang et
al. (2015) for CNN, and Reimers et al. (2017) for RNN. The
hyper parameters used are shown in Table 3.

Evaluation Metric
As shown in Table 1, we note that previous studies associ-
ated with our datasets for abusive text classification use a
variety of evaluation metrics. For example, the studies of D3
and D4 use accuracy which is one of the common perfor-
mance measures for text classification. A majority evaluate
the classifier using recall (D1, D8, D9). In particular positive
recall (recall of the abusive class) has been seen as important
by researchers using D5, D6 and D7. Area Under the ROC

Curve (AUC) is also used in some cases (D2 and D10).
In our work, we standardise the evaluation metric as class

accuracy (recall) as it indicates the ability of the model to
identify all instances of a specific class. We assume that in a
real-life scenario, the cost of false negatives (abusive content
identified as non-abusive) is higher than false positives (non-
abusive content identified as abuse). Therefore, we focus on
positive (abusive) recall. We also report average recall to ex-
amine the performance across both classes. The methodol-
ogy used is stratified 10-fold cross validation.

Table 3: The Details of Hyper-parameters for Deep Learning
Classifiers (Reg. is a short for Regularization)

Activation

Function

Filter

Size

Feature

Maps

Dropout

Rate
Reg.

Recurrent

Units

Mini

Batch
Epoch

CNN
ReLu

3,4,5 100
0.5 l2

NA
50 50

RNN NA NA 100

Experiments & Results
We compare the performance of the distributed feature rep-
resentations presented in our Figure 1 categorisation, using
abusive text detection as our associated classification chal-
lenge. Our experiments are performed on the 10 labelled
datasets (Table 1). For our baseline approach, we use tradi-
tional n-grams for feature representation and an SVM classi-
fier (Config. 1). We then apply seven other feature represen-
tation/classifier configurations, as shown in Table 2 (Con-
figs 2 to 8). For representation at word level, we use Glove
pre-trained word embeddings rather than Word2vec as the
former slightly outperforms the latter based on our previous
finding (Chen, McKeever, and Delany 2018). The text con-
tent is mapped to a sequence of word vectors, and used as
input to the classifier. We evaluate the performance of word
embeddings on the two popular deep learning architectures,
CNN (Config. 2) and Bi-LSTM (Config. 3). For representa-
tion at sentence level, we use two types of embedding tech-
niques, simple calculation and pre-trained. Both techniques
convert an individual user comment to a dense vector which
is fed into the SVM classifier. The simple calculation vector
is obtained by averaging the vectors of the words in the text
content (Config. 4). For the pre-trained model, we use four
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sentence embeddings covering three classes in our categori-
sation, supervised, unsupervised and multi-task. The four
proposed sentence embedding methods are InferSent (Con-
fig. 5), Sent2Vec (Config. 6), SentEncoder (Config. 7), and
GenSen (Config. 8). They are recently released by Conneau
et al. (2017), Pagliardini et al. (2017), Cer et al. (2018), and
Subramanian et al. (2018) respectively.

As shown in Table 4, these sentence embeddings are
trained by various types of neural network architectures
using a variety of training corpora. Both InferSent and
Sent2Vec use a single training corpus while multiple training
corpora are used in SentEncoder and GenSen. For the selec-
tion of training models, Conneau et al. (2017) compare 6
different neural network architectures and indicate the com-
plex BiLSTM with max pooling obtains the best sentence
embedding. However, Cer et al. (2018) who proposed Sen-
tEncoder use the simple averaging neural network as it uses
less resource consumption than other deep neural networks.
Sent2vec is based on a modification of Word2vec (Mikolov
et al. 2013b) while GenSen (Subramanian et al. 2018) uses
Bi-directional Gated Recurrent Unit (GRU) as the encoder to
generate the sentence distributed representations. These four
pre-trained sentence embeddings have different sentence di-
mensions. Conneau et al. (2017) investigate the 4 scales of
dimensions ranging from 512 to 4096, noting that higher
dimensions are generally better than the lower dimensions.
Nevertheless, the higher dimensions need larger computa-
tional resources, so the decision of dimension is trade-off
and scenario-dependent.

Table 4: Details of Each Sentence Embedding Model

Config.
Sentence

Embedding
Dimension Category

Training

Corpora

Training

Model

5 InferSent 4096 Supervised SNLI BiLSTM-Max

6 Sent2Vec 600 Unsupervised Wiki Paragraph2vec

7 SentEncoder 512 Multi-task
Wiki, Web News,

Q&A, SNLI etc.

Deep Averaging

Network

8 GenSen 2048 Multi-task
BookCorpus,

SNLI, NMT etc.
BiGRU

Our experiments compare the 8 explained configurations
applied to the 10 datasets. We present the results in Table 5.
We mainly focus on positive (i.e. abusive text) recall (%) as
it allows us to see the accuracy of identifying abusive com-
ments. Average recall (%) are also provided to make sure
the non-abusive comments are also correctly classified. We
highlight the best results in each category. In addition, false
positive (%) is given (Table 6) to indicate the error rate of
non-abusive examples incorrectly identified as abusive. In
order to statistically validate the results, we use the Friedman
test for multiple comparisons, followed by Dunn-Bonferroni
as the post hoc statistical test for pairwise comparisons. The
significance level is set to 0.05 (5%).

Overall, the SentEncoder (Config. 7) achieves the high-
est positive recall amongst both the 5 sentence embedding
configurations and across all 8 feature representations. It
achieves the best results on 9 out of the 10 datasets even
though this embedding is generated by the simplest neural

network architecture, a deep averaging network, compared
to the other embeddings that use complex neural networks
such as RNN (Configs. 5 & 8). We suggest that the strong
results obtained using SentEncoder is linked to the use of
multiple training corpora. Unlike the other sentence embed-
dings, SentEncoder uses the largest language corpora that
covers a variety of language styles from different sources,
including both formal style language (e.g. Wikipedia, News
articles) and conversational style language (e.g. Q&A fo-
rum). The diversity of training language corpora appears to
be a promising way to achieve high quality sentence repre-
sentations. Notably, SentEncoder has the lowest dimension
(512) amongst all the pre-trained sentence embedding mod-
els. Given that user comments are typically short in length,
high-dimension vectors may contain noise information and
adversely impact the results. For example, the exception
where SentEncoder does not achieve the best result is for
D3. D3 is the dataset with the highest average length com-
ments (337 words) amongst the 10 datasets.

For sentence embeddings generated via the simple calcu-
lation model, we observe that averaged word vectors (Con-
fig. 4) perform competitively when compared to the other
three sentence embeddings (Configs. 5, 6 & 8). The pair-
wise statistical test for positive recall results shows no sig-
nificant difference amongst them. However, it is interesting
to note that the averaged word embedding model (Config.
4) outperforms the two word embedding with deep learning
neural networks configurations (Configs. 2,3). For example,
the positive recall of using CNN model in D7 (Config. 2)
is 14%, which is worse than the result of Config. 4 at ap-
proximately 35%. We acknowledge that the comparison of
Config. 4 with Configs. 2 & 3 is difficult given the use of dif-
ferent classifiers. As all of them use Glove word embedding
as the input, we can assume the SVM classifier performs bet-
ter than the two deep neural networks. In our previous work
(Chen, McKeever, and Delany 2018), we found that the use
of resampling provides a greater boost to performance for
SVM classifiers than deep learning neural networks. How-
ever, for the comparison between the two deep learning neu-
ral networks (CNN and BiLSTM), we note that there is no
significant difference.

In addition, we observe that the baseline configuration
(Config. 1) achieves strong results. Our statistical signifi-
cance test shows there are no differences between Config.
1 and most of distributed representations with the exception
of the SentEncoder sentence embedding (Config. 7). The tra-
ditional n-grams feature representation can provide a solid
baseline for abusive content detection.

While identification of abusive text is our focus, we are
cognisant of the risk of blocking valid user posts via clas-
sification errors with the negative class. To explore this, we
examine the false positive rates for each configuration across
the datasets, as shown in Table 6. The InferSent (Config. 5)
has the lowest false positive rate amongst 5 sentence em-
bedding approaches, with the lowest incidence of categoris-
ing safe comments as abusive. However, testing statistical
significance across the 5 sentence embedding configurations
(Config. 4 - Config. 8), we note that the only significant dif-
ferences in the false positive results are the better perfor-
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Table 5: The Positive Recall % (Average Recall %) of 8 Configurations on 10 Datasets. The best result is bold font.
Config. Features D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 Traditional 70(75) 35(62) 91(93) 62(77) 58(78) 12(56) 18(58) 65(78) 33(60) 80(86)
2 Word

Embedding
73(73) 4(51) 93(95) 34(66) 57(78) 11(55) 14(57) 59(78) 29(61) 75(85)

3 68(73) 6(51) 81(89) 45(71) 50(75) 14(57) 18(58) 60(77) 32(60) 76(81)
4

Sentence
Embedding

65(71) 30(59) 66(76) 59(74) 58(76) 51(71) 48(68) 77(85) 48(66) 73(81)
5 77(77) 21(56) 93(95) 59(77) 60(80) 28(64) 23(61) 66(82) 41(65) 82(86)
6 65(70) 38(60) 92(94) 61(74) 52(75) 18(58) 26(60) 61(76) 45(62) 74(82)
7 77(78) 42(63) 85(89) 77(84) 69(84) 55(76) 58(76) 89(93) 58(72) 82(86)
8 74(71) 29(58) 90(93) 59(75) 48(74) 22(61) 19(59) 75(86) 42(63) 82(86)

Table 6: The False Positive % (Error Rate) of 8 Configurations on 10 Datasets. The best result is bold font.
Config. Features D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 Traditional 20 11 5 8 2 0 2 9 13 8
2 Word

Embedding
27 2 3 2 1 1 1 3 7 5

3 22 4 3 3 0 0 2 6 12 14
4

Sentence
Embedding

23 12 14 11 6 9 12 7 16 11
5 23 9 3 5 0 1 1 2 11 10
6 25 18 4 13 2 2 6 9 21 10
7 21 16 7 9 1 3 6 3 14 10
8 32 13 4 9 1 1 1 3 16 10

mance of InferSent (Config. 5) over the Simple Calculation
(Config. 4) and Sent2Vec (Config. 6). From earlier results
discussion, SentEncoder(Config. 7) was the best perform-
ing configuration on abusive text detection. Since the differ-
ence between SentEncoder (Config. 7) and InferSent is neg-
ligible, we determine that the SentEncoder is still the best
sentence embedding model for abusive language detection,
considering both abusive detection and misclassification of
valid non-abusive posts.

We also note that the false positive rates of Config. 4 are
significantly higher than both deep learning models (Config.
2 & 3). Our earlier finding of the Simple Calculation Config.
4 as a better detector of abusive content than the deep learn-
ing model configurations is now caveated by an awareness
of the higher error rate incurred by Config. 4 on classifying
safe comments as abusive.

Conclusion & Future Work
The focus of this work was to investigate the performance of
distributed representations for text when applied to a specific
text classification task - abusive user comment detection.
Firstly, we summarised and provided a categorisation of the
various distributed representation approaches, incorporating
word and sentence (sentence, document, paragraph) embed-
ding models. Secondly, we conducted an empirical compar-
ison of the effectiveness of the various distributed represen-
tation when used for classification of abusive text. Based on
our results across 10 social media datasets, we conclude:
(1) The multi-task sentence embedding significantly outper-
forms the other pre-trained sentence embeddings; (2) Us-
ing simple averaging word embedding with an SVM clas-
sifier achieves good results, and out performs the approach

of word embedding with deep learning neural networks. We
attribute this, based on our previous work (Chen, McKeever,
and Delany 2018), to resampling the imbalanced training
datasets. (3) Traditional n-grams show strong performance
in comparison to the several of the distributed representation
approaches. Future work could focus on combining both tra-
ditional features and distributed features to model a classifier
for the task of abusive detection. Furthermore, we would like
to produce a new sentence embedding model that uses a rel-
evant abusive language training corpus, which may improve
the state-of-the-art results.
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