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Abstract

Measuring the impact and success of human performance is
common in various disciplines, including art, science, and
sports. Quantifying impact also plays a key role on social
media, where impact is usually defined as the reach of a user’s
content as captured by metrics such as the number of views,
likes, retweets, or shares. In this paper, we study entire careers
of Twitter users to understand properties of impact. We show
that user impact tends to have certain characteristics: First,
impact is clustered in time, such that the most impactful tweets
of a user appear close to each other. Second, users commonly
have “hot streaks” of impact, i.e., extended periods of high-
impact tweets. Third, impact tends to gradually build up before,
and fall off after, a user’s most impactful tweet. We attempt to
explain these characteristics using various properties measured
on social media, including the user’s network, content, activity,
and experience, and find that changes in impact are associated
with significant changes in these properties. Our findings open
interesting avenues for future research on virality and influence
on social media.

1 Introduction
Evaluating the impact of individual performance is com-
mon practice in many realms of life, including art, science,
and sports. Given the importance that society attaches to
evaluations of impact—resulting in promotions, awards, and
pay raises—, studying how impact evolves over the course
of lives and careers is critical for making sense of human
group behavior. Notably, trends in impact over the course
of careers have previously been studied in order to under-
stand the life cycle of creativity (DeNisi and Stevens 1981;
Barrick and Mount 1991), as well as in the field of “science
of science” (Sinatra et al. 2016).

In this paper, we study the impact of users on social media,
where impact is usually defined in terms of the reach of a
user’s content by metrics such as the number of retweets,
likes, views, shares, or comments. More specifically, we fo-
cus on individual impact—which we define as the reach of
an individual user’s content over the course of their “career”
(the time since they joined the platform). Particularly, we are

*Research done at EPFL.
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

motivated by recent studies on impact by Sinatra et al. (2016),
who show that scientists’ most impactful works are randomly
distributed over their careers, and by Liu et al. (2018), who
show the existence of periods of increased creativity in sci-
entific, artistic, and cultural careers. These works lead us to
ask the question whether there are similar trends in impact
on social media.

Impact is, however, difficult to study, and particularly so in
social media, due to the subtle interplay between individual
and social aspects of impact. On the one hand, impact is
inherently social: the impact created by a person’s content
depends on how others in their network perceive the content.
On the other hand, impact is also individual, via factors such
activity (number of posts written), experience (age on the
platform), and interests (content of posts). Due to the chal-
lenging nature of the problem, research into long-term trends
of individual impact on social media, and the factors that in-
fluence these trends, has been limited to date. Most research
has investigated the impact of isolated pieces of content, e.g.,
by predicting retweet counts on Twitter (Suh et al. 2010;
Martin et al. 2016) or exploring factors that lead to content
being shared (Gao, Ma, and Chen 2015). On the contrary, the
literature is much thinner regarding the nature and role of the
impact of users over the course of their entire careers.

To make progress in this direction, we built four datasets
from Twitter, which span over a decade and contain complete
careers of users with a wide range of followers, experience,
and topical interests. We choose retweet counts as the mea-
sure of impact and reconstruct the careers of users—from
their very first post until today—as a time series of retweet
counts obtained for their tweets. We aim to discover charac-
teristic patterns in user impact over time and to understand
the role played by factors such as the user’s network, the
content they post, and their levels of activity.

We start by looking at the position of the most impactful
tweets during a user’s career and find that, for a large fraction
of users, the most impactful tweets are clustered together in
time (Section 3).

Moreover, this trend is not just limited to a few most suc-
cessful tweets in a user’s career, but generalizes to entire
periods of high impact (“hot streaks”) during which a user’s
posts are retweeted significantly more. We analyze various
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factors behind this phenomenon, including tweet content,
changes in follower counts, retweeting behavior, and activ-
ity of the user. We find that hot streaks are driven by new
retweeters who suddenly start following and retweeting a
user, thus leading to a sudden gain in followers during a
hot streak. Even though these new retweeters retweet highly,
their interest is quite limited in time, and they tend to quickly
decrease their retweeting activity. Users also become more
active during hot streaks, tweeting longer content containing
media and a more diverse range of topics (Section 4).

Finally, we zoom into the activity around the most
retweeted tweets for a user and show that there is a pattern of
build-up before, and drop-off after, the most retweeted tweet
(Section 5).

Our study is one of the first to show the presence of such
patterns of individual impact on social media. These find-
ings could help us in revisiting existing problems in social
network analysis such as understanding virality or influence
maximization from an individual perspective. For instance,
the clustering of high-impact tweets and the presence of hot
streaks shows when a user is the most impactful in her career.
This could be useful in finding influential users who are cur-
rently on a hot streak to maximize the spread of a marketing
campaign. Another example could be to use the presence of
the build-up towards a user’s most retweeted tweet to explain
how tweets become viral for certain users.

2 Datasets
2.1 Dataset description
We use four large datasets with varying characteristics from
Twitter. For each user in our dataset, we obtain all their tweets
and construct their career as the time series of retweet counts
for original tweets posted by the user (retweets by the user
are not included in the career). Each post is associated with
a timestamp when it was posted and a measure of impact
(retweet count), as measured when the data was crawled
(June 2018). Below, we briefly describe how each dataset
was sampled.
VERIFIED. Starting from a list of all verified users on Twitter
from June 2018,1we filter out users according to various
criteria: they should have between 2,000 and 3,200 tweets,
and between 50,000 and 2 million followers.2

POLITICAL. This dataset contains over 600,000 politically
active users spanning a period of almost 10 years (2009–
2018). The dataset has been used in previous work (Garimella
and Weber 2017).
DESPOINA (RANDOM) and DESPOINA. We randomly sam-
pled two sets of 1 million users with fewer than 3,200 tweets

1297,000 users, from http://redd.it/8s6nqz
2The Twitter API gives access to no more than the 3,200 most

recent tweets for each user. Since we want to make sure that we
capture the complete career of a user, we restrict our analysis to
users with at most 3,200 tweets. We require at least 2,000 tweets per
user because we want to study users with a certain minimum level
of activity. Finally, we remove users with over 2 million followers
due to the strict rate limiting constraints on the Twitter API endpoint
for getting followers.

Table 1: Statistics of our datasets: Number of users, median
number of followers, tweets, median of mean retweets and
total number of tweets.

Dataset #users med.
#foll

median
#tweets

median
#retweets

total
#tweets

VERIFIED 2,710 105,007 2,595.5 37.0 5.3M
POLITICAL 10,563 360 2,353 1.52 22.3M
DESPOINA 76,777 606 2,566 2.06 130M
DESPOINA
(RANDOM) 5,465 515 1,926 0.48 7.9M

from a large sample of 93 million Twitter users collected
by Antonakaki, Ioannidis, and Fragopoulou (2018). For DE-
SPOINA (RANDOM), we sampled completely at random,
whereas for DESPOINA we first constrained on certain criteria
to ensure high-quality data. In particular, we only selected
users who (i) have between 2,000 and 3,200 tweets, (ii) cre-
ated their account at least 6 months before April 2016 (time of
the crawl by Antonakaki, Ioannidis, and Fragopoulou (2018)),
and (iii) have at least 100 followers. This gave us 6 million
users. From this, we randomly sampled 1 million users.

Finally, all datasets were further filtered to retain only
those users whose most retweeted tweet received at least 50
retweets. This was done to ensure that our notion of the most
retweeted tweet is meaningful. For the users who remained
after applying these filters, we obtained all tweets, followers,
and retweeters of all tweets using the Twitter REST API.

Table 1 shows a high-level summary of the datasets, in-
cluding the number of users, median number of followers,
number of tweets, and median of mean retweet count per user
(we first compute mean retweet count per user and then take
the median over all users). The datasets were selected in such
a way that they span a wide range of characteristics in terms
of content (e.g., politics), user behavior (celebrities vs. nor-
mal users), number of followers, and impact. The POLITICAL
dataset contains tweets and users related to a specific topic
(politics) and might have different behavior due to the 2016
U.S. elections and increased political activity; the DESPOINA
and DESPOINA (RANDOM) datasets capture a random sam-
ple of “normal” users on Twitter; and the VERIFIED dataset
captures “celebrity” behavior on Twitter, as evident from the
large median follower count in Table 1.

In the rest of the paper, due to space constraints, whenever
the trends are similar on all the datasets, we only show results
for the VERIFIED and DESPOINA datasets.

Code and datasets used in this paper are publicly available
at https://github.com/gvrkiran/hot-streaks-social-media.

2.2 Historical follower-count estimation
To study the dependence of the follower network on impact,
we need historical information on the number of followers a
user has at any point in history. However, the official Twitter
API does not provide this information. We therefore used the
Internet Archive Wayback Machine,3 which archives web
pages to obtain historical snapshots of Twitter profiles of

3https://archive.org/web/web.php
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Figure 1: Examples of two random userss number of follow-
ers over time, obtained from the Internet Archive Wayback
Machine (blue dots). The orange, green, and red lines are
polynomial fits of degree 4, 5, and 6, respectively.

users.4 We downloaded and parsed the raw HTML from the
Internet Archive to obtain follower counts of users at different
time stamps.

Not all users have snapshots at all points in time. We there-
fore restricted the data to only those users for whom we have
at least 10 snapshots, and we fit polynomial curves to esti-
mate the number of followers for each user at any given point
in time. For each user, we fit polynomials of degrees 4, 5,
and 6 and picked the fit with the best R2. We only consider
users for whom the best fit attained R2 > 0.9. Examples of
such fits for two random users from our dataset are shown in
Figure 1. We see that the fits capture follower curves of dif-
ferent shapes and provide accurate interpolations for follower
counts. Now, for each user, using the best polynomial fit, we
can estimate the follower count at points in time for which
we do not have data from the Internet Archive. For instance,
for user @marcno in Figure 1, we can estimate the number of
followers in 2012 as 420. Using this technique, we obtained
the imputed historical number of followers for each user in
our dataset. All the users included in Table 1 have at least 10
snapshots on the Internet Archive and attain a good fit.

3 Clustered impact
We start with some notation. All our analysis will be at a
user level, and we aggregate over all users. Assume a user
u has N tweets, t1, . . . , tN . We call the life time of a social
media user, from their first tweet to their last tweet (at data
collection time, June 2018), the career of that user. The
position of a tweet ti in a user’s career is measured in terms
of (i) time in weeks since the first tweet by the user, w(ti) and
(ii) tweet index i, given by i = P(ti). Though time and tweet
index might be correlated, there are users with long periods
of inactivity, for whom using absolute weeks to measure
position would be misleading. Hence, we perform all our
experiments using both measures. Unless explicitly specified,
we use tweet index to denote the position of a tweet. The
k most retweeted tweets in a user’s career are denoted by

4e.g., Barack Obama’s Twitter profile has over 7,000 snapshots
spanning over 10 years. A snapshot of Barack Obama’s Twitter
page in 2014 (https://bit.ly/2ssJrkP) shows that Obama had 46.6M
followers at that time.

T1,T2,T3, . . . , Tk.
We begin by investigating the timing of the five most

retweeted tweets in a user’s career, Ti for i ∈ [1,5]. Scat-
ter plots of P(T1) vs. P(Ti) for i ∈ [2,5] are shown in Fig-
ure 2. We observe that the positions of T1 and Ti are highly
correlated. We also computed all pairwise correlations be-
tween P(Ti) and P(Ti+1), and between w(Ti) and w(Ti+1) (for
i ∈ [1,4]), and obtained similar results. To check the robust-
ness of these results, we shuffled the order of the tweets in
each career, and the correlation drops from around 0.6 to
below 0.10 for all datasets, indicating that this phenomenon
holds strongly for real careers.

A user’s retweet counts grow over their career, in part
due to the growing number of followers a user attracts over
her career (Suh et al. 2010; Jenders, Kasneci, and Naumann
2013). Hence, the likelihood of a user having their most
retweeted tweets later in their career is higher a priori. To
mitigate such effects, we normalize retweet counts at a point
in time by the number of estimated followers at that time
(cf. Section 2.2), computing retweets per follower for every
tweet in a user’s career. We denote the k tweets with the
most retweets per follower by T ∗1 ,T

∗
2 ,T

∗
3 , . . . , T ∗k . In order to

check how well the clustering in Figure 2 goes beyond the
the top 5 most retweeted tweets, we computed the correlation
between the position of the tweet with the most retweets per
follower, P(T ∗1 ), with P(T ∗2 ), . . . , P(T ∗200). The results for
the VERIFIED and DESPOINA datasets are shown in Figure 3,
where each point represents the Pearson correlation between
T ∗1 and T ∗i for i∈ [2,200]. We see that the correlation remains
above 0.5 for up to 25 tweets. In Figure 3, we also show the
correlation for shuffled careers (green and black lines) and
we can see that real careers have a much higher correlation
than shuffled careers.

Next, we look at the difference in the position of the top
two most retweeted tweets and compute the normalized dif-
ference (P(T1)−P(T2))/N for each user. Figure 4 shows the
distribution of the difference. We see that the distribution
peaks and is centered at zero, providing further evidence that
T1 and T2 are close to each other. The fact that the distribu-
tion is symmetric around zero indicates that P(T1) can be
before or after P(T2). We compared this with a distribution of
the difference for shuffled careers (orange bars in Figure 4)
and observe that the strong peak close to zero disappears,
as expected. Similar patterns hold for the other datasets and
when using (P(Ti)−P(Ti+1))/N, for i ∈ [2,4], instead of the
above-defined difference.

4 Existence of hot streaks
In this section, we try to generalize the finding from the
previous section to see if such highly retweeted tweets occur
within extended periods of higher-than-usual-impact tweets.
We call such periods “hot streaks” following its usage in
recent work (Liu et al. 2018).

4.1 Identifying hot streaks
We propose a simple method to identify hot streaks. We rep-
resent the retweets a user gets throughout her career as a time
series and identify periods of consistently high activity in
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Figure 2: Scatter plots showing the correlation of the tweet
position of the five most retweeted tweets in a user’s ca-
reer. Each row shows the correlation between the position
of the most retweeted tweet (P(T1)) and that of the i-th most
retweeted tweet (P(Ti)), for i ∈ [2,5] (left to right). Each dot
represents a user. We see that most users lie close to the
diagonal, indicating that the most retweeted tweets occur
closely in time. “Corr.” denotes Pearson’s correlation coeffi-
cient. Note that in VERIFIED and DESPOINA, all users have
between 2,000 and 3,200 tweets.

this time series. We identify such periods in a user’s career
by solving an optimization problem. The objective is to min-
imize the least-squares fit of a piecewise-constant function
to the retweet counts time series and observe if there are ex-
tended periods with a high constant. To avoid overfitting, we
add a regularization term on the number of constant functions
used.

Specifically, the problem can be defined as such: given a
user u whose career consists of N tweets with retweet counts
r1, . . . , rN , find N constants c1, . . . , cN that

minimize
N∑

i=1

(ci− ri)
2 +α

N−1∑
i=1

δ(ci,ci+1), (1)

where δ(a,b) = 0 if a = b, and δ(a,b) = 1 otherwise.
The objective function in Equation 1 tries to balance be-

tween too many constants (first term) and too few (second
term). The penalty parameter α controls the number of con-
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Figure 3: Pearson correlation for T ∗1 and T ∗i for i ∈ [2,200].
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Figure 4: Normalized difference between the position of the
first and second most retweeted tweets.

stants. There are exponentially many functions (sets of con-
stants) that would need to be evaluated when solving Equa-
tion 1 by brute force. We can, however, also solve it efficiently
using a dynamic programming solution with time complex-
ity O(n2) (Wang and Song 2011). Examples of two users’
careers with fits obtained using Equation 1 are shown in Fig-
ure 5. The blue line shows the raw retweet-count time series;
the black lines show the piecewise-constant fit.

Given these piecewise-constant fits, we define a period as
a hot streak if its constants lie consistently above a certain
threshold, say, the k-th percentile of retweets in a users career.
We also experimented with other methods,5 but found that
these algorithms were not robust enough to handle the spiky
nature of retweets. For instance, we see in Figure 5 (right)
that there are many tweets during the hot streak (marked in
red) below the threshold (dashed green line). Using these
simple methods fails to identify such cases. Note that the
exact method used to identify hot streaks is orthogonal to the
analysis in the rest of the paper. Hence, any other method can
also be used.
Parameters. We have two parameters in the optimization

5We tried (i) identifying contiguous portions of a career above a
certain threshold, (ii) using time-series change-point detection (Liu
et al. 2013; Ross 2015), and (3) Fourier analysis (Moskvina and
Zhigljavsky 2003).
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Figure 5: Example careers of two users. The blue line shows
the retweet counts over the career of a user. The black line
shows the piecewise-constant fit obtained using Equation 1.
The dashed green horizontal line shows the 90th percentile.
The periods of increased activity indicating hot streaks can
be seen in red. Periods before and after the hot streak are
labeled in yellow and cyan, respectively.

problem for identifying hot streaks: (i) α in Equation 1: we
tested for multiple values of α, from 1 to 10 and fixed the
value of 1 because it gave the best fits (observed via manual
inspection); (ii) the percentile threshold k to identify a hot
streak: we tested a range of values from 70 to 95 in increments
of 5 and fixed the value of k = 90 (i.e., 90th percentile);
higher/lower values lead to fewer/more hot streaks.

4.2 Characteristics of hot streaks
The real value of identifying hot streaks is in revealing several
fundamental patterns that govern individual careers. In this
section, we look at various characteristics of hot streaks.
Similar to the previous section, for every analysis we perform,
we compared the results with shuffled careers, thus ensuring
the robustness of our results.
Number of hot streaks. We first look at the fraction of users
for whom a hot streak greater in length than 10 tweets exists.
We find that 86% of users in VERIFIED, 59% in POLITICAL,
63% in DESPOINA, and 65% in DESPOINA (RANDOM) have
at least one such hot streak. We compared these with the
fraction of users having at least one hot streak for randomly
shuffled careers, and the fractions drop to less than 30%.
Given that each of these datasets was sampled in a different
way and that a nontrivial fraction of users have hot streaks,
we can conclude that hot streaks are a prevalent phenomenon.
Figure 6, shows the distribution of the number of hot streaks
per use. We see that a majority of users have fewer than 4 hot
streaks, with some users having more than 10.
Length of hot streaks. Next, we compute the distribution
of the length of the longest hot streak for all users. We can
see from Figure 7 that for a majority of users, hot streaks
are mostly short in length—up to 20 tweets—, but some
users have much longer hot streaks of over 100 tweets. We
compare the lengths of hot streaks to shuffled careers and
see in Figure 7 that real careers are characterized by a longer
tail indicating that real users have longer streaks of high
retweet activity. We tested the robustness of these results by
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Figure 6: Distribution of number of hot streaks.
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Figure 7: Distribution of length of hot streaks compared to
shuffled careers.

controlling for individual career length and arrived at the
same conclusions.
Position of hot streaks. What is the position of hot streaks
in a user’s career? Are they randomly distributed, as found
by Liu et al. (2018) in the context of art, science, and movies?
Defining the position of a hot streak as the position of its first
tweet (within the respective user’s career), we find that the
position of hot streaks in a user’s career differs depending
on how long the user has been on Twitter (which we refer to
as the “age on Twitter”). We divided users into 4 categories
based on their age on Twitter: 100–200, 200–300, 300–400,
and 400–500 weeks.6 Figure 8 shows the distribution of the
position of hot streaks in careers. We see that it is positioned
at different places depending on the user’s age on Twitter.
For older users, it is more likely to be at the end of their
career. As users spend more time on the platform, they learn
more, gain more followers, and hence their chance of having
a hot streak increases. For younger users, the position is more
evenly distributed, indicating other factors at play (content,
activity, etc.).
User properties. Who are the users who have hot streaks?
How are they different from the others who do not have hot
streaks? To check if users who have hot streaks differ in any

6(i) Since Twitter introduced the retweet button only in 2009,
we only consider users after that. Users with a career over 500
weeks would have their first tweet prior to 2009 and hence were not
considered. (ii) The results remain similar for different groupings,
e.g., when bucketing into groups spanning 50, rather than 100,
weeks.
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Figure 8: Distribution of the position of hot streaks in user
careers (VERIFIED dataset), for various user ages on Twitter
(one plot per age). Only the first hot streak of each user is
considered.

way from those who do not, we compared the two user groups
in terms of profile features such as the number of followers,
friends, tweets, and age on Twitter. We find that users with
hot streaks have a significantly higher number of followers,
but that there is no difference in the other feature values.
Influence. How influential are hot streaks in defining success
in a user’s career? To answer this question, we compute the
fraction of total retweets obtained during all hot streaks in a
user’s career. Figure 9 shows the distribution of the retweet
count fraction for two datasets. We see that for a majority of
users (above 80%), only 10–20% of retweets are obtained
during a hot streak, indicating that hot streaks are not the
main driver of retweet activity in a user’s career.
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Figure 9: CDF of the fraction of retweets obtained during a
hot streak.

Finally, we investigate whether hot streaks are connected
to a recently introduced feature on Twitter— threads7—by
looking at hot streaks for a random sample of 50 users manu-
ally. In only one of the 50 cases did the hot streak occur in a
thread, indicating that hot streaks are typically not threaded
tweets.

4.3 What happens during a hot streak?
In the analysis below, for each user, we only consider the
longest hot streak and obtain tweets from periods of equal
length (in terms of number of tweets) before and after the hot
streak. That is, if a user has a hot streak of length k tweets,
we consider a period of k tweets before and after the hot
streak (examples are shown in Figure 5, colored in yellow
and cyan). All the results reported are statistically significant

7https://www.wired.com/story/twitter-multi-tweet-threads/

(p< 0.01) after applying Bonferroni correction for multiple
tests, wherever applicable. All the results presented below
are consistent across datasets, but we focus on the VERIFIED
dataset due to space constraints.
Retweet count. In Figure 10(a), we see that the mean retweet
count increases significantly8 during a hot streak when com-
pared to the period before and after. This is expected by the
definition of hot streaks. However, we also observe that the
retweet counts after the hot streak are significantly higher
than before, indicating some spillover effects.
Follower gain. We measure the growth in number of fol-
lowers before, during, and after a hot streak. Figure 10(b)
shows the follower gain. We observe that the follower gain
during a hot streak is significantly higher than before or after
the hot streak. This might be because more retweets lead to
more followers (Myers and Leskovec 2014). Similar to above,
we also observe that the follower gain after a hot streak is
significantly higher than the follower gain before.
Retweets per follower. To understand if the increased
retweet count after the hot streak is due to the increased
number of followers, we look at the retweets per follower by
dividing the average number of retweets before, during and
after by the average number of followers during the same pe-
riod. We can see from Figure 10(c) that the increase after the
hot streak vanishes in this case. Retweets per follower before
and after the hot streak are significantly less frequent than
during the hot streak, but there is no significant difference
between before and after.
Activity. We look at the activity (all the tweets by the user)
before, during, and after a hot streak. Note that this also
includes retweets (unlike in Section 4.1), because we want
to know how a user’s overall tweeting behavior is associated
with the impact created by their own tweets. To measure this,
we compute the number of tweets per hour during, before
and after a hot streak. We find that, during hot streaks, the
activity is higher (Figure 10(d)).

4.4 Factors affecting hot streaks
In the previous section, we saw that hot streaks are char-
acterized by a higher retweet count, an increased follower
gain, and an increase in activity. In this section, we try to dig
deeper into each of those factors and try to understand the
role they play in the hot streak phenomenon. We particularly
look at three factors: network (behavior of followers and
retweeters), content (tweets posted during a hot streak), and
activity (number and type of tweets). We want to measure
how much of the hot streak characteristics we observed in
the previous section are accounted for by these three factors.
Network. In the previous section, we found that during a hot
streak, users gain many followers, indicating changes to the
network. To further analyze the role of the network during a
hot streak, we look at individual retweeters who retweeted a
user before, during, and after the hot streak.

We fix the set of retweeters who retweeted the user before
a hot streak and tracked their activity during and after the
hot streak. Surprisingly, we find that these retweeters retweet

8Significance computed using Welch’s t-test.
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Figure 10: Notched box plots showing the distributions before, during, and after a hot streak. The orange line shows the
median, green triangle the mean. The notches indicate 95% confidence intervals around the median obtained via bootstrapping.
(a) Retweet count, (b) follower gain, (c) retweet count per follower, (d) number of tweets per hour.

the user significantly less during a hot streak, compared to
before. Figure 11 shows a box plot of retweeter behavior.
We also analyze the retweet count by only retweeters who
started retweeting during the hot streak and compared that
to retweeters who started before or after the hot streak. We
find that retweeters who start during the hot streak have a
significantly higher retweet count (Figure 12). We can also
see from Figure 12 that the retweeters who started retweeting
during a hot streak lose interest more quickly than those who
started retweeting before or after. These findings indicate that
hot streaks are driven mostly by new retweeters who start
retweeting the user suddenly, but lose interest quickly.
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Figure 11: Retweet counts when only considering retweeters
who retweeted before a hot streak.

Content and activity. Above, we looked at who is driving
the increase in retweet count during a hot streak. Next, we
dig deeper into content-related factors, looking at what drives
such increase in impact. To understand this, we looked at var-
ious aspects in terms of content posted and types of activities
by users during a hot streak and compared it with periods
before and after the hot streak. Specifically, we looked at at-
tributes from tweet patterns to measure activity features such
as these: fraction of tweets that are retweets/replies/mentions;
fraction of tweets containing media/URLs/hashtags; tweet
length; and content related features such as entropy of the
tweet in terms of the word distribution, entropy of the topic
distribution, and average sentiment of tweets. Topics were
extracted using latent Dirchlet allocation (LDA) as imple-
mented in Python’s scikit-learn package. Sentiment was ex-
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Figure 12: Retweet counts by retweeters starting before, dur-
ing, and after hot streaks. The x-axis shows the number of
weeks since the beginning of the period before, during, or
after the respective hot streak. Retweeters starting during a
hot streak have a higher retweet count early on, but it drops
off quickly.

tracted using SentiStrength (Thelwall 2017).
Table 2 shows the results comparing the period during the

hot streak to periods of the same number of tweets before
and after the hot streak. Each column compares two values:
before vs. during, during vs. after, and before vs. after. A
cross (7) indicates no statistically significant differences (p<
0.01). A “>” (“<”) indicates that the element on the left
(right) in a column is significantly greater than the element
on the right (left) for all the datasets. For instance, the “>”
in Table 2, the first row, second column (“retweet, during vs.
after”) indicates that the fraction of tweets that are retweets
is significantly higher during the hot streak when compared
to the period after the hot streak. Significance is tested using
a t-test of means, and a Bonferroni correction is applied to
the p-values. A value is marked “>” or “<” only if it holds
across all four datasets. We can observe the following results
from Table 2. During a hot streak, users have (i) a higher
fraction of tweets that are retweets or contain media, (ii) a
lower fraction of tweets that are replies/mentions, (iii) longer
tweets, with higher entropy both in terms of words and topics,
and (iv) no change in sentiment.

Content and activity vs. network. We saw that content, ac-
tivity, and network features become significantly different
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Table 2: Content and activity features before, during, and af-
ter a hot streak. Rows: fraction of tweets that were retweets/
replies/mentions; fraction of containing hashtags/URLs/
media; tweet length; entropy of word distribution, entropy of
topic distribution; average sentiment. Each column compares
pairs of values before/during/after a hot streak. A cross (7)
indicates no statistically significant differences (p< 0.01). A
“>” (“<”) indicates that the element on the left (right) in a
column is significantly greater than the element on the right
(left) for all the datasets.

before vs. during during vs. after before vs. after
retweet < > 7
reply > < 7

mention > < 7
hashtag 7 7 7
URLs 7 < <
media < > 7

tweet length < > 7
entropy tweets < > 7
entropy topics < > 7

sentiment 7 7 7

during a hot streak. To understand the role of each of these
factors, we look for users for whom there was no significant
change in the network, i.e., users for whom there was no
significant increase in follower count during a hot streak, and
investigate their content and activity. The following trends
from Table 2 still persist for this subset of users: (i) lower
fraction of replies/mentions, (ii) higher fraction of media, and
(iii) higher entropy of topics. The effects we find here show
that irrespective of changes in the network, users exhibit a
strong change in how they act and how they produce content
during a hot streak.

Predicting hot streaks. We now build a simple binary clas-
sifier to predict for a user whether a week belongs to a hot
streak or not, based on the three sets of features described
above: content, activity, and network. Concretely, we use
the following features: (a) content and activity features: frac-
tion of tweets that are retweets/replies/mentions, fraction of
tweets containing hashtags/URLs/media, tweet length, en-
tropy of the word distribution, entropy of the topic distribu-
tion (obtained using LDA), sentiment of the tweets; (b) net-
work features: number of followers gained, average activity
of the retweeters, number of retweeters tweeting for the first
time, number of existing retweeters active during that week.

Table 3 shows the accuracy of a random forest classifier
for different sets of features on a class-balanced dataset. The
numbers in brackets show standard deviation over a 10-fold
cross-validation. We also evaluate the classifier using just
content/activity and just network features. We see that both
network and content/activity features individually do better
than a random prediction (accuracy of 50%). However, their
combination improves the accuracy significantly. We com-
puted the features that play a role in the prediction using the
decrease in impurity in the random forest classifier. Entropy
of topics, number of followers, and number of tweets come
up as the most important features in all the datasets. It is in-
teresting to see that the most important features span all three
categories of features—content, network, and activity. Our

Table 3: Accuracy predicting whether a particular week is
in a hot streak or not. “Content” and “Network” refer to just
content/activity- and network-related features in isolation.
“Combined” indicates all features combined.

Content Network Combined
VERIFIED 0.67 (0.03) 0.62 (0.02) 0.72 (0.04)
POLITICAL 0.72 (0.01) 0.63 (0.01) 0.78 (0.01)
DESPOINA 0.72 (0.0) 0.63 (0.0) 0.77 (0.0)
DESPOINA
(RANDOM) 0.70 (0.02) 0.63 (0.01) 0.75 (0.01)

main goal with the prediction task was to determine which
factors are most associated with hot streaks, by looking at
the features that would best predict hot streaks. However,
the answer is not clear. A mix of all the three feature sets is
involved, along with some external noise which we cannot
account for (constituting the remaining 30% in accuracy in
our model), pointing to the limits of predicting real-world
phenomena (Martin et al. 2016).

5 Impact around the most retweeted tweet
In the previous section, we looked at trends in impact over the
entire career of a user. In this section, we zoom into the career
and understand the dynamics of retweet activity surrounding
the most impactful tweets of a user.

Looking at the period of 10 tweets before and after the most
retweeted tweet of a user, we found that the most retweeted
tweet does not occur in isolation, but that there is a build-
up to it. The top row in Figure 13 shows the mean retweet
count across all users for the five most retweeted tweets
(T1, . . . ,T5) and the 10 tweets preceding/succeeding them.
The bottom row just shows the 10 tweets before and after
the most retweeted tweet (T1), excluding T1. We can clearly
see that there is a build-up towards, and drop-off after, the
most retweeted tweet. This pattern holds for various stratifi-
cations of the users, along experience, retweet counts, and
datasets. Comparing this pattern with 10 tweets before and af-
ter the most retweeted tweet in a shuffled career, we see from
Figure 13 (bottom row, black line) that the trend disappears.

To understand if this is a prevalent phenomenon across
users, we perform linear fits for the retweet counts of 10
tweets before and after the most retweeted tweet T1 (exclud-
ing T1 itself) and plot the average slope of these lines. Fig-
ure 14 shows the average slope of the increase (in red) and
decrease (in black). We also show the individual fits for all
users (in light shades). We can see from Figure 14 that for
most users (over 60%) there is an average positive (negative)
trend before (after) T1.

We further look at the role of content in this phenomenon,
by computing the entropy of the topic distribution of the 10
tweets before/after T1. Figure 15 shows that the entropy of the
topic distribution decreases specifically at T1. To understand
if this is just an artifact of tweets being shorter, we also
plotted the average length of the tweets before and after T1.
We find that even though the tweets are longer at T1, the
entropy of topics is lower. We looked at whether these tweets
(10 before/after) are part of a thread on Twitter, but could not
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Figure 13: Top row: Mean retweet counts of 10 tweets be-
fore (T −10, . . . ,T −1) and after (T +1, . . . ,T +10) each of
the top 5 most retweeted tweets (T ) per user. Bottom row:
The 10 tweets before and after, without the focal tweet (T )
itself, compared to a shuffled timeline (in black), with 95%
confidence intervals.

find any evidence for that. Future research should analyze
the content of most retweeted tweets more closely in order to
explain the marked decrease in entropy.

6 Related work
Hot hand. The “hot hand” hypothesis originates from basket-
ball, where a shooter is allegedly more likely to score if their
previous attempts were successful, while having “hot hands”.
Gilovich, Vallone, and Tversky (1985) were the first to show
that there is no evidence of hot hands in basketball, arguing
that short random sequences occur by chance and are not rep-
resentative of their generating process. However, these claims
have been refuted in numerous studies later, pointing to flaws
in the statistical analysis in the original study and showing
the existence of hot hands on different datasets (Miller and
Sanjurjo 2018). Similar phenomena exist in other domains,
too, such as gambling (Ayton and Fischer 2004). See the
supplementary material of Liu et al. (2018) for a thorough
review of studies on hot hands and the proposed potential
reasons for this phenomenon. Perhaps most relevant to our
work is recent research by Liu et al. (2018), who show that
in many disciplines such as science, art, and movies, careers
exhibit hot streaks of increased creative and impactful output.

Our work is different from the above studies in many ways.
Firstly, we study entire careers of social media users looking
at impact, rather than activity. Our contribution is a combi-
nation of identifying trends in impact of a user in her career
and showing for the first time the presence of the hot hand
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Figure 14: Linear fits for retweet counts before and after T1
(the user’s most retweeted tweet), for two datasets. We see
that the average slope (dark) is positive (negative) before
(after) T1, indicating a clear build-up (drop-off) around T1.
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Figure 15: Entropy of the topic distributions before, during,
and after T1 (the user’s most retweeted tweet) along with 95%
confidence intervals (black line). The green line shows the
average length of the tweet (on the y-axis on the right).

phenomenon on social media. Secondly, an important aspect
that is missing from all the above analysis is social influence,
where the performance/impact of a person depends not only
on her personal abilities, but also on who is judging them.
Our analysis on social media impact takes that into account.
We try to untangle the relationship between content, activity,
and network and show that each of these factors plays their
own role in hot streaks. Thirdly, social media is inherently
different than domains such as art and science. For instance,
activity on social media, unlike in science, sports, arts, or
any other skill-based occupation, has a much lower barrier.
Being productive in terms of the number of tweets produced
is easier than producing scientific papers or art work. This
might explain why some of our results are different from Liu
et al. (2018).

Bursts of activity on social media. Sudden bursts of ac-
tivity on Twitter have been studied previously. A sudden
surge in the number of tweets/retweets were used to identify
events (Chierichetti et al. 2014). Zhao et al. (2015) looked
at the distribution of such bursts for retweets from a tweet.
They conclude that the interest in the tweet follows a power-
law decay. Myers and Leskovec (2014) show the impact of
a burst of retweets on follower growth. They study how the
follower network changes following a burst of retweet activ-
ity. Barabasi (2005) proposes that human activity in general
is characterized by burstiness, with periods of high activ-
ity followed by rest periods. However, the grounds for such
phenomena are not yet clearly understood. Gandica et al.
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(2016) show the existence of such burstiness in the behavior
of editors on Wikipedia. Goel et al. (2015) study virality on
social media and show that modeling what goes viral and
how is hard to predict due to the lack of proper structure in
the nature of cascades. Our work adds to all these fields. First,
we show that there are bursty periods of impact in a user’s
career on social media, where, unlike Wikipedia (Gandica
et al. 2016), the network factor plays an important role. We
also try to untangle content and network in this bursty behav-
ior (Myers and Leskovec 2014). Second, most of the above
work analyzes single pieces of content (tweets) and the fac-
tors that influence their impact. In this paper, we go beyond
a single tweet and look at the entire career of a user. The
difference is that individual content can have different prop-
erties, like becoming viral or having a higher quality, but on
average these effects might cancel out when looking at a lot
of posts for a single user, hence giving rise to new patterns.
Finally, our results show that there is a pattern in the way
individual impact is created. These findings could be useful
in understanding collective behavior such as event detection,
measuring influence, or virality.

7 Discussion
In this work, we analyze individual impact on Twitter using
datasets consisting of careers of a large set of users sampled to
represent a wide range of properties. We present new insights
on the prevalence of structure and patterns in the impact in
a user’s career. By showing that the results hold on multiple
datasets and are robust to shuffling careers, we establish that
these results are inherent properties of social media and not
artifacts of sampling.

Clustering of impact. We first show that the most impactful
tweets of a user occur close together temporally for a large
set of users. This result does not hold when user’s careers
are shuffled, indicating that real careers are characterized by
such effects.

Hot streaks. Next, we generalize the above finding and show
that there is not just clustering of individual popular tweets,
but extended periods of consistently high impact, which we
call hot streaks. Our analysis of the length of hot streaks
shows that most users have hot streaks of around 10–20
tweets, and some users, of over 100 tweets. We also show
that retweets obtained during hot streaks do not constitute a
major chunk of the total retweets accrued by a user. Looking
at how various factors affect a hot streak, we find significant
differences in the network, content, and activity of a user. A
classifier to predict whether a week belongs to a hot streak
or not performs reasonably well, with an accuracy close to
75%.

Impact around the most retweeted tweet. Finally, we show
that there is a build-up and drop-off surrounding a user’s most
retweeted tweets. We tried to quantify if this is a prevalent
phenomenon by looking at the slopes of linear fits for the
10 tweets before and after the most retweeted tweet, finding
that this is a common trend among a majority of users. Even
though individual tweets may become viral at random (Mar-
tin et al. 2016), such underlying structure around the most

retweeted of an individual gives hope for predicting which
tweets might become viral.
Limitations. This work has several limitations. First, our
datasets are not completely randomly sampled, and hence
we cannot be sure about the generalizability of the results.
Our datasets are picked in such a way to ensure at least some
activity on the users’ behalf. So the trends reported here may
not hold for a random Twitter user. However, our findings are
novel and point towards structural properties in impact for an
important subset of users.

Second, our study cannot fully explain the mechanisms by
which these effects occur. The underlying process could be a
complex mix of the features we considered along with other
external, dataset/domain/time-specific factors. It may well
be that some of this phenomena cannot be explained with
observable features (Martin et al. 2016), and trying to find
explanations could be futile (Langer 1975).
Future work. The results presented in this paper are just one
step towards understanding how user behavior evolves on
social media. The large, rich, long-term dataset we created
provides immense opportunities to explore many other as-
pects further, including downstream activities such as using
these findings to study virality, influence, etc. We looked at
individual characteristics of impact. It would be interesting
to see if such individual patterns propagate in the network.
For instance, if a user is in a hot streak, do users in her net-
work also experience hot streaks? In preliminary work, we
observed similar phenomena on other social network plat-
forms, such as YouTube and Instagram, though the effects
were less pronounced and did not hold for a majority of the
users. Hence, future work should investigate how such trends
generalize across platforms.
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