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Abstract

Social networks have community structure, in which the net-
work is composed of highly clustered subnetworks (com-
munities) with sparse links between them. Such community
structure is expected to affect information diffusion among
individuals. This paper empirically investigates how the com-
munity structure of a social network among Twitter users af-
fects cascading diffusion of retweets among them. The results
show that the frequency of retweets between users who are in
the same community is approximately two times that between
users who are in different communities. In contrast, the re-
sults also show that tweets disseminated via inter-community
retweets have future popularity about 1.5-fold that of tweets
disseminated via intra-community retweets. By using this
fact, we construct classifiers to predict the future popular-
ity of tweets from community-based features as well as fea-
tures related to influence of users and tweet contents. Our
experimental results show that contrary to our expectations,
community-based features have little contributions for pre-
dicting the future popularity of tweets. This paper discusses
the implications of the counterintuitive result.

Introduction
Studying the dynamics of information diffusion by the cas-
cades of reposting of messages on social media is im-
portant for several application domains, such as political
campaigns (Stieglitz and Dang-Xuan 2013), viral market-
ing (Kempe, Kleinberg, and Tardos 2003), information dif-
fusion in crisis events (Olteanu, Vieweg, and Castillo 2015),
and preventing the spread of rumors (Friggeri et al. 2014).
On the popular social media platform, Twitter, users can
disseminate tweets posted by other users to their followers
via a functionality called retweeting. The retweeted tweets
can be further disseminated by followers. Such cascades
of retweets cause some tweets to be disseminated to many
users. Information widely disseminated in a social network
has the potential to affect public opinion, brand aware-
ness, and product market share (Bakshy et al. 2011). How-
ever, it has been shown that only a small fraction of in-
formation reaches many people (Dow, Adamic, and Frig-
geri 2013). Thus, many studies have investigated factors af-
fecting information diffusion, particularly focusing on tweet
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diffusion on the Twitter social media platform (Naveed
et al. 2011; Suh et al. 2010; Tsugawa and Ohsaki 2017;
Ferrara and Yang 2015; Stieglitz and Dang-Xuan 2013;
Recuero, Araujo, and Zago 2011). These studies have found
major factors affecting tweet diffusion that include the in-
fluence of the tweet publisher (Suh et al. 2010; Martin et al.
2016), URLs (Suh et al. 2010), hashtags (Suh et al. 2010;
Naveed et al. 2011), and emotional intensity (Stieglitz and
Dang-Xuan 2013; Ferrara and Yang 2015; Tsugawa and
Ohsaki 2017) in tweets.

Existing studies suggest that having a community struc-
ture affects information diffusion in a social network (On-
nela et al. 2007; Weng, Menczer, and Ahn 2013; Ne-
matzadeh et al. 2014; Li, Lin, and Yeh 2015; Galstyan
and Cohen 2007; De Meo et al. 2014). Many social net-
works have a community structure, in which the network
is composed of highly clustered subnetworks (communities)
with sparse links between them (Newman and Girvan 2004;
Ferrara 2012). There is no universal definition of communi-
ties, and several definitions of communities can be found
in the literature (Fortunato 2010). However, there is one
widely accepted basic concept of a community: there must
be more links within the community than links connecting
to nodes outside the community (Fortunato 2010). This pa-
per follows this basic concept, and communities in a social
network are defined as highly clustered subnetworks in the
network that have sparse links between them. In the con-
text of information diffusion on social media, community
structure is expected to have the following two effects. First,
information diffusion tends to be trapped within a commu-
nity; this will be called the trapping effect (Weng, Menczer,
and Ahn 2013; Nematzadeh et al. 2014; Onnela et al. 2007;
De Meo et al. 2014) (Fig. 1(a)). Information diffusion across
different communities is suggested to be a rare event, and
most information is diffused within a community (Weng,
Menczer, and Ahn 2013; 2013; Nematzadeh et al. 2014;
Onnela et al. 2007; De Meo et al. 2014). The other effect
is that if information is spread across different communi-
ties, the information will be widely spread (Weng, Menczer,
and Ahn 2013; Granovetter 1973; De Meo et al. 2014;
Bakshy et al. 2012) (Fig. 1(b)). This is suggested by the
well known theory of Granovetter called the strength of
weak ties (Granovetter 1973). The strength of weak ties
suggests that information disseminated through weak inter-
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Figure 1: Effects of community structure on information dif-
fusion: (a) Most information is spread within a community
and inter-community diffusion is a rare event. (b) If informa-
tion is spread across different communities, the information
will be widely spread.

community ties is expected to be popular in the future (Gra-
novetter 1973).

However, empirical studies that analyze the effects of
community structure of a social network on information dif-
fusion on social media are still limited. One major approach
for studying the effects of community structure on infor-
mation diffusion is using stochastic information diffusion
models (Nematzadeh et al. 2014; Galstyan and Cohen 2007;
De Meo et al. 2014; Onnela et al. 2007). Existing studies
have investigated the effects of community structure on in-
formation diffusion under several models, such as indepen-
dent cascade and linear threshold models (De Meo et al.
2014; Nematzadeh et al. 2014). In contrast, how commu-
nity structure affects real information diffusion has not been
fully explored. In particular, how community structure af-
fects the cascading diffusion of retweets has not yet been in-
vestigated. The work of (Weng, Menczer, and Ahn 2013) is
the most related to this paper. They extensively investigated
the causes and effects of trapping on information diffusion.
They also showed that the future popularity of a hashtag on
Twitter can be predicted using community structure. As we
will discuss in more detail in the next section, this paper ex-
tends the work of (Weng, Menczer, and Ahn 2013) in several
directions.

This paper aims to provide empirical evidence for the ef-
fects of community structure on information diffusion. In
particular, we focus on the cascading diffusion of retweets
on Twitter, and address the following three research ques-
tions.

(RQ1) How does the community structure trap tweet
diffusion?

(RQ2) How does inter-community diffusion of a tweet
affect its future popularity?

(RQ3) How is the size of influence of the inter-
community diffusion on future popularity of tweets
compared with other factors?

Related Work and Contributions of This Paper
The roles of the strength of social ties in human interac-
tions have been actively studied. In the seminal work by
Granovetter (1973), the strength of a social tie is defined
as “a (probably linear) combination of the amount of time,
the emotional intensity, the intimacy (mutual confiding) and
reciprocal services which characterize the tie”. Based on
this definition, Granovetter’s theory of the strength of weak
ties (Granovetter 1973) suggests that weak ties play impor-
tant roles in several contexts such as the diffusion of ideas
and job seeking. In the context of social media, information
about social tie strength between users is expected to be use-
ful for various applications such as privacy control and vi-
ral marketing (Gilbert and Karahalios 2009). However, the
strength of social ties, defined in (Granovetter 1973), be-
tween social media users cannot be directly observed in most
social media. Therefore, Gilbert and Karahalios (2009) ex-
amined the problem of predicting the social tie strength be-
tween social media users from observable log data of user
activities on social media. Another study investigated the
factors affecting the changes of social tie strength on Face-
book (Burke and Kraut 2014). Bakshy et al. (2012) mea-
sured the strength of social ties between Facebook users
from online and offline interactions, and showed that weak
ties play an important role for large-scale diffusion of news
on Facebook. Although this finding is closely related to our
work, they focused on social tie strength defined as the fre-
quency of communication between users, which is different
to the community structure focus of this study.

Social tie strength and community structure of social net-
works are closely related to each other. It has been shown
that people in the same community communicate with each
other more frequently than with people in different com-
munities (Palla, Barabási, and Vicsek 2007; Tsugawa and
Ohsaki 2015). This characteristic is observed in several
modes of communication, such as mobile phone (Palla,
Barabási, and Vicsek 2007; Tsugawa and Ohsaki 2015),
email (Tsugawa and Ohsaki 2015), and messaging on so-
cial networking services (Tsugawa and Ohsaki 2015). These
studies suggest that social ties within a community (i.e.,
intra-community links) are so-called strong ties that carry
many communications whereas social ties across different
communities (i.e., inter-community links) are weak ties that
carry few communications.

Using the observations that community structure and so-
cial tie strength are closely related to each other, De Meo
et al. (2014) introduced alternative definitions of strong
and weak ties. They proposed classifying links connecting
nodes belonging to different communities as weak ties, and
those connecting nodes in the same community as strong
ties (De Meo et al. 2014). Using this definition, they in-
vestigated the roles of strong and weak ties. They showed
through simulations of information diffusion on the Face-
book social network that diffusion through inter-community
links, which are considered as weak ties, plays an important
role for wide information diffusion (De Meo et al. 2014).
Our study follows this definition of the strong and weak ties,
and investigates how inter-community diffusion of a tweet
affects its future popularity.
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The effects of community structure on diffusion phenom-
ena have been investigated also in other studies. Major ap-
proach is using model-based simulation experiments. On-
nela et al. (2007) showed through simulation experiments
on a phone call social network that strong ties trap informa-
tion within a community. Galstyan and Cohen (2007) and
Nematzadeh et al. (2014) showed through simulations on
synthetic networks that the modularity (Newman and Girvan
2004) of a network, a measure of the strength of commu-
nity structure, affects information diffusion on the network.
There also exist empirical results supporting the strength of
weak ties. Centola (2010) investigated the spread of health
behavior under controlled experiments in artificial online so-
cial networks. It was found that the behavior spread farther
and faster across networks with a community structure than
across random networks. Li et al. (2015) showed that nodes
that act as bridges between communities play an important
role for large-scale information diffusion on Twitter. While
Li et al. (2015) focused on the roles of nodes, we focus on
the roles of ties and communities.

Our study follows above mentioned studies, and empiri-
cally investigates the effects of community structure on in-
formation diffusion, particularly focuses on the cascading
retweet diffusion on Twitter. To the best of our knowledge,
the effects of inter-community diffusion of a tweet on its
cascading retweet diffusion have not been empirically in-
vestigated, but Weng et al. (2013) conducted a closely re-
lated study. They empirically investigated the effects of com-
munity structure on hashtag diffusion on Twitter and found
that most of the hashtags spread within a highly clustered
community (trapping effects) whereas a small fraction of vi-
ral ones spread across many communities. Moreover, they
showed that viral hashtags can be predicted using spreading
patterns in an early stage of diffusion. Namely, they show
that hashtags used in many communities in an early stage
of their diffusion will be viral (the strength of weak ties).
This study follows the approach in (Weng, Menczer, and
Ahn 2013), and extends it in the following directions. First,
we examine the generalizability of the existing findings in
different contexts, which should be important for empirical
studies. In particular, we examine the applicability of the
findings to different types of diffusion and different types
of users from Weng et al. (2013). Retweets and hashtags
have different roles on Twitter. Yang et al. (2012) discuss
that the primary role of a hashtag is a bookmark of con-
tents, and it is also used for expressing a membership of a
particular group. In contrast, retweets are primarily used for
spreading other users’ tweets, and also often used for con-
versations (Boyd, Golder, and Lotan 2010). Moreover, while
Weng et al. (2013) studied English-speaking Twitter users,
we study both of English-speaking and Japanese-speaking
users. English-speaking users and Japanese-speaking users
may have different behavioral characteristics (Hong, Con-
vertino, and Chi 2011). Using such different data, we exam-
ine how the findings in (Weng, Menczer, and Ahn 2013) can
be applicable to different types of diffusion among differ-
ent types of users. Second, this paper quantifies the effects
of inter-community diffusion and intra-community diffusion
of a tweet on its future popularity, which was not directly

addressed by Weng et al. (2013). Quantifying the influence
of inter-community diffusion is important for understanding
the dynamics of information diffusion, and constructing a
predictive model of information diffusion. We compare the
effects of inter-community diffusion of a tweet on future
popularity with those of other factors affecting popularity
of tweets such as URL and hashtag inclusions in tweets, and
influence of the tweet publisher.

Contributions Our main contributions and findings are
summarized as follows. (1) We provide empirical evidence
for the effects of community structure on tweet diffusion.
Most tweets are disseminated within a community, whereas
tweets spread across different communities will be pop-
ular in the future. (2) We examine the effects of inter-
community diffusion of a tweet on its future popularity com-
paring other factors affecting tweet popularity. Our results
suggest that inter-community diffusion of a tweet has a sta-
tistically significant effect on its future popularity, yet, con-
trary to our expectations, the effect is quite weak. We show
that community-based features have little contributions for
predicting future popularity of tweets, and discuss the im-
plications of this counterintuitive result. (3) We examine the
effects of community structure on retweet diffusion for dif-
ferent types of users (i.e., Japanese-speaking and English-
speaking users). We show that our main findings can be ap-
plicable to both types of users.

Dataset and Preliminaries
Dataset
For analyzing cascading retweet diffusion, we collected
Japanese retweets. We started data collection from July,
2013, and have been collecting Japanese retweets every-
day using the Twitter application programming interface
(API)1. The collection process successfully gave a large-
number of retweets, and our retweet dataset contains more
than 50M retweets per a week. This dataset has been also
used in our other projects (Tsugawa and Kimura 2018;
Tsugawa and Kito 2017).

We also obtained the social network of a sample of Twitter
users. Due to the restrictions of the Twitter API, it was im-
possible to obtain the social network of all Twitter users who
involved in our retweet dataset. We therefore determined tar-
get Twitter users whose social relationships would be exam-
ined. For the purposes of the analyses, we extracted active
users who frequently post retweets. The procedures are as
follows. We first extracted Japanese retweets posted during
December 11-17, 2013 from the retweet dataset explained
above, which gave 52,129,804 retweets of 14,220,864 orig-
inal tweets. We next counted the number of retweets of the
original tweets posted during the period, and extracted orig-
inal tweets having between 10 and 100 retweets. We then
extracted users who retweeted 10 or more of these tweets,
which gave 356,453 users. The lower threshold of retweet
cascade size (10) is intended to exclude users who post

1We used the Search API in the Twitter REST API v1.1, and
collected Japanese tweets using the query q=RT, lang=ja.
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retweets only for conversational purposes, and the upper
threshold (100) is intended to exclude users who only post
retweets to very popular tweets. We next obtained the so-
cial network of the 356,453 users by finding the followers
and followees of the 356,453 users. The data collection us-
ing the Twitter API started January 1, 2014, and it finished
January 11, 2014. We then constructed a network represent-
ing the follower and followee relationships, and extracted
the largest weakly connected component of the network for
the following analyses. The number of nodes belonging to
the largest component is 351,870. We denote the network as
G = (V,E), where V is the set of nodes representing the
351,870 users, and E is the set of links representing their
“following” relationships. A link (u, v) ∈ E represents the
relationship that user u follows user v.

We next detected communities in the obtained network
G. There are various definitions of communities and vari-
ous algorithms for detecting them (Fortunato 2010). Among
the various algorithms, we primarily used the Louvain algo-
rithm (Blondel et al. 2008) since it can be applied to large-
scale networks and has been widely used (e.g., (De Meo
et al. 2014)). The Louvain algorithm detects communities
by maximizing the modularity (Newman and Girvan 2004),
which is a measure for quantifying the quality of commu-
nity detection based on both of the intra-community link
density and inter-community link sparsity. In the commu-
nity detection, we ignored link direction following (Weng,
Menczer, and Ahn 2013). Note that, for each node u, the
Louvain algorithm gives a single community c(u) to which
node u belongs. However, we checked the robustness of the
results obtained by comparing the results obtained with an
overlapping-community detection algorithm, which will be
shown in later section.

Finally, we extracted retweets to be analyzed from the
retweet dataset. Since the social network of the target
users was obtained early January, 2014, we decided to use
retweets posted in the period from January 1–31, 2014. In
our dataset, the number of original tweets posted by the tar-
get users during the period was 13,996,348, and the number
of retweets to the original tweets were 63,449,098. Note that
the 63,449,098 retweets include retweets posted by users not
in the target user set V . Among the 63,449,098 retweets,
29,270,742 retweets were posted by the target users. In what
follows, we mainly use the 29,270,742 retweets posted by
the target users since the communities of users posting these
retweets are known. All retweet data are used for obtain-
ing the number of retweets of the original tweets in order
to accurately know the popularity of the original tweets. In
the following section, these tweets and retweets, together
with the obtained network and communities, are used for
the analyses. Several statistics of the dataset are shown in
Tab. 1.

We also use a dataset of English retweets for validating
the results obtained from the Japanese dataset. The expla-
nation about the English dataset will be given in the later
section.

Table 1: Statistics of the Japanese dataset

Num. of nodes 351,870
Num. of links 29,535,522
Num. of detected communities 27
Num. of original tweets 13,996,348
Num. of all retweets 63,449,098
Num. of retweets posted by the target users 29,270,742

Table 2: Symbols used in this paper

Symbol Definition
G The network
V Set of nodes in G
E Set of links in G
Eintra Set of intra-community links
Einter Set of inter-community links
u User, i.e., node in V
c Community
t Original tweet
rk(t) The k-th retweet of original tweet t
u(t) User that posts original tweet t
u(rk(t)) User that posts retweet rt(k)
c(u) Community to which user u belongs

Preliminaries
Here, we define the terminology and symbols used in the
following analyses. An original tweet is denoted by t, and
its k-th retweet is denoted by rt(k). Note that for deter-
mining k, we use all the 63,449,098 retweets in the dataset.
The users u(t) and u(rt(k)) are those who posted the origi-
nal tweet t and retweet rt(k), respectively. Community c(u)
is the community to which user u belongs. Retweet rt(k)
is called an intra-community retweet if user u(t) and user
u(rt(k)) belong to the same community (i.e., c(u(t)) =
c(u(rt(k)))), otherwise rt(k) is called an inter-community
retweet. Eintra and Einter are the sets of intra-community
links and inter-community links, respectively. Specifically,
Eintra = {(u, v)|(u, v) ∈ E ∧ c(u) = c(v)}, and Einter =
{(u, v)|(u, v) ∈ E ∧ c(u) 6= c(v)}. These symbols are sum-
marized in Tab. 2 for convenience.

Analysis
(RQ1): How does the community structure trap
tweet diffusion?
Following (Weng, Menczer, and Ahn 2013), we define the
link weight w(u, v) on link (u, v) as the number of retweets
by user u to original tweets by user v for investigating the
trapping effect. We then compare the average link weights
of intra-community and inter-community links, defined as

〈wintra(u)〉 =
1

kintra(u)

∑
(u,v)∈Eintra

w(u, v), (1)

〈winter(u)〉 =
1

kinter(u)

∑
(u,v)∈Einter

w(u, v), (2)
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Figure 2: Box plots for comparing average link weights
of intra-community and inter-community links: Users more
frequently retweet the tweets posted by members of their
own community.

where kintra(u) and kinter(u) are the numbers of intra-
community and inter-community links originating from
user u, respectively. Normalizing the frequency of inter-
community retweets and intra-community retweets by the
number of inter-community links and intra-community
links, we aim to eliminate the effects of the difference
in the exposure rate between tweets from the same com-
munity and tweets from different communities. If users’
retweeting is independent of the community of origin of
a tweet, there would be no difference between 〈wintra(u)〉
and 〈winter(u)〉. Our expectation is that users prefer to
retweet tweets from their own community, and as a result,
〈wintra(u)〉 will be higher than 〈winter(u)〉 due to the effects
of homophily (McPherson, Smith-Lovin, and Cook 2001).
Figure 2 shows box plots of 〈wintra(u)〉 and 〈winter(u)〉 for
the 309,470 users who posted retweets (users who did not
post any retweets are excluded).

Figure 2 shows that average link weights on intra-
community links are generally higher than average
link weights on inter-community links. The median of
〈wintra(u)〉 and 〈winter(u)〉 is 0.36 and 0.056, respectively.
The mean of 〈wintra(u)〉 and 〈winter(u)〉 is 1.32 and 0.71,
respectively. A Mann–Whitney U test shows that there is a
significant difference between 〈wintra(u)〉 and 〈winter(u)〉
(n = 309, 470, U = 66, 756, 864, 850, p < 0.01). This
result suggests that a intra-community link carries more
retweets than a inter-community link. This result is consis-
tent with the results in (Weng, Menczer, and Ahn 2013),
which suggests that the relation between community struc-
ture and social tie strength in terms of retweet frequency is
a universal characteristic of social media.

Summary of findings Community structure traps the cas-
cading diffusion of retweets: intra-community link carries
more retweets than an inter-community link.

(RQ2) How does inter-community diffusion of a
tweet affect its future popularity?
Results in the previous section show that inter-community
links carry much fewer retweets than intra-community links,
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Figure 3: Comparison of average numbers of future retweets
for intra-community and inter-community diffusions. Future
popularity is higher when the tweets are disseminated via
inter-community retweet than when the tweets are dissemi-
nated via intra-community retweet.

which implies that inter-community links are weak ties
in terms of retweet frequency. Granovetter’s theory of the
strength of weak ties suggests that weak ties convey infor-
mation that have potential to be disseminated to many peo-
ple (Granovetter 1973). Therefore, a tweet spread across dif-
ferent communities should be more popular in the future
than a tweet spread within a community.

We compare the future popularity of tweets spread across
different communities and that of tweets spread within a
community. For each retweet rk(t) posted by the target
users, we investigate the number of future retweets af-
ter rk(t) is posted, which is defined as N(t) − k, where
N(t) is the total number of retweets to the original tweet
t. We then calculate the average of future retweets when
rk(t) is an intra-community retweet and when rk(t) is
an inter-community retweet. Figure 3(a) shows a compar-
ison of future popularity of tweets after their first retweet
(k = 1) for intra-community and inter-community retweets.
We calculated the average and standard error of the num-
ber of future retweets. Since the standard errors are suffi-
ciently small (0.04 for inter-community retweet and 0.01
for intra-community retweet), error bars are not shown in
Fig. 3(a). The future popularity of tweets disseminated via
inter-community retweet is approximately 1.5-fold the fu-
ture popularity of tweets disseminated via intra-community
retweet. The Welch’s t-test shows that the difference is sta-
tistically significant (p < 0.01). We also investigated the fu-
ture popularity of tweets disseminated via intra-community
retweet and those disseminated via inter-community retweet
for k ≥ 1 (see Fig. 3(b)). This result also suggests that inter-
community diffusion is correlated with the increases in fu-
ture popularity of tweets.

These results support the idea that inter-community dif-
fusion of a tweet is significantly correlated with increase in
its future popularity. On average, a tweet spread across dif-
ferent communities has a future popularity 1.5-fold that of a
tweet spread within the same community.

Summary of findings Inter-community diffusion of a
tweet is significantly correlated with increase in its future
popularity. A tweet spread across different communities has

497



a future popularity approximately 1.5-fold that of a tweet
spread within the same community.

(RQ3): How is the size of influence of the
inter-community diffusion on future popularity of
tweets compared with other factors?
The previous subsection shows that inter-community diffu-
sion affects future popularity. However, several factors have
been reported as affecting tweet popularity, such as the pres-
ence of a URL and the number of followers of the tweet’s
publisher (Suh et al. 2010). We, therefore, examine the sig-
nificance of the effects of inter-community diffusion on fu-
ture popularity by taking into account of the effects of other
factors. For instance, influential nodes may have many inter-
community links, and therefore, tweets posted by influen-
tial nodes are expected to receive many inter-community
retweets. Moreover, tweets posted by influential nodes are
expected to be popular. Therefore, there is a concern that
the tweets spread via inter-community retweet have higher
future popularity only because such tweets are posted by
highly influential nodes. This subsection aims to address
such concerns regarding other factors that may related to
community structure and tweet popularity. Moreover, we in-
vestigate the size of the influence of inter-community diffu-
sion on the future popularity of tweets compared with that
of other factors.

Regression analysis For examining the significance of
the effects of inter-community diffusion on future popular-
ity by taking into account of the effects of other factors,
a regression model is constructed. For each retweet rt(k)
posted by the target users, the dependent variable is the
number of retweets of tweet t after rt(k) is posted (RT-
num). The candidates of the independent variables are sum-
marized in Tab. 3. The main concern here is the influence
of the variable inter-com, which is a categorical variable
representing whether rt(k) is inter-community retweet or
not. Other variables include factors that are shown to affect
popularity of tweets (Suh et al. 2010; Naveed et al. 2011;
Bakshy et al. 2012; Martin et al. 2016) such as the num-
ber of followers of u(t) and the presence of a URL in tweet
t. Variable influence is defined as the number of retweets
to the tweets posted by user u(t) in the previous month
(i.e., during December, 2013). This variable is shown to
strongly affect the popularity of tweets (Martin et al. 2016;
Bakshy et al. 2012). Since analyzing all tweets and retweets
in our dataset is computationally expensive, we randomly se-
lected two million original tweets from all 13,996,348 origi-
nal tweets in the dataset and we used their all retweets posted
by the target users for the regression analysis. Since the
popularity of tweets has a long-tailed distribution, we log-
transformed the dependent variable, and the Ordinary Least
Squares (OLS) linear regression model is used. We checked
the normality assumption with the Kolmogorov-Smirnov
test. The results of the test applied to the dependent variable
and residuals suggest the null hypothesis of normal distri-
bution cannot be rejected. The results of regression analy-
sis are shown in Tab. 4. Note that to avoid multicollinearity,
degorig, degrt, and intra-com-rate are not included in the

model. degorig, degrt, and intra-com-rate have strong cor-
relation (i.e., correlation coefficient more than 0.7) with in-
fluence, avedeg, and inter-com, respectively, and therefore
the constructed model was not interpretable when including
these variables.

Table 4 shows that considering other factors, inter-
community diffusion of a tweet has a significant influence
on its future popularity. The size of the influence of each
variable is estimated from eβ , where β is the regression co-
efficient in the model. From the value of eβ for inter-com, we
can see that inter-community diffusion of a tweet has the ef-
fect of increasing its future popularity by a factor of approx-
imately 1.3, which is consistent with the results in the previ-
ous subsection. From this result, we can confirm that elimi-
nating the effects of other factors such as node influence and
degree of users who retweet the tweets, inter-community dif-
fusion has a significant positive effect on future popularity.
Note that the regression coefficients of different variables
cannot be directly compared with each other since some of
them are quantitative and some of them are binary variables.
We should also note that the value of R2 is not high in our
model, but it is comparable to those in existing studies (e.g.,
(Martin et al. 2016)). As discussed in (Martin et al. 2016),
the cascade size prediction is a difficult task, which results
in relatively low R2 value.

Prediction To further investigate the effects of inter-
community diffusion on the future popularity of tweets,
we conducted an experiment to predict future popularity of
tweets using features obtained from community structure.
The task is predicting whether the number of retweets of
tweet twill be over θ or not at the time when retweet rt(k) is
posted (k < θ). θ and k will be called as the virality thresh-
old, and the training period, respectively. The aim here is to
find viral tweets at an early stage of their diffusion. As the
virality threshold θ, we used 1%-tile, and 0.5%-tile values of
the cascade size of the tweets in the dataset. As the training
period k, we used k = b0.05θc, b0.1θc, b0.2θc, b0.4θc.

To construct classifiers predicting the popularity of
tweets, we used random forests (Breiman 2001). The train-
ing data are the retweets used in the regression analysis. As
the features of the classifiers, we used the variables shown in
Tab. 3. For each of k, we constructed models using several
combinations of features: a model only using features re-
lated to tweet contents (contents), that using features related
to tweet contents and community (w/ community), that using
features related to tweet contents and node degree (w/ de-
gree), that using features related to tweet contents and node
influence (w/ influence), that using all features (full), and
that without using features related to community (w/o com-
munity). The number of decision trees was 500, and each
decision tree was trained with randomly selected b

√
fc fea-

tures, where f is the number of features used in the model.
We investigated the prediction accuracy of the constructed

models. One million original tweets randomly extracted
from the dataset and all their retweets posted by the target
users were used as the test data. Note that the test data did
not include any tweets in training data. Using the test data,
we calculated the precision, recall, and F1-measure (Rijsber-
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Table 3: Candidates of independent variables used in the regression analysis

Variables related to community
inter-com Categorical variable indicating whether rt(k) is inter-community retweet or not
intra-com-rate Fraction of intra-community retweets among the first k retweets
comsizeorig Size of community c(u(t))
comsizert Size of community c(rt(k))

Variables related to node degree
degorig Number of followers of u(t)
degrt Number of followers of u(rt(k))
avedeg Average of number of followers of users in Uk,t

Variable related to node influence
influence Average number of retweets of u(t)’s tweets in the previous month (i.e., Dec., 2013)

Variables related to tweet contents
k Retweet count k
URL Categorical variable indicating whether tweet t contains a URL or not
hash Categorical variable indicating whether tweet t contains any hashtag or not
word Number of words in tweet t

Table 4: Results of regression analysis for investigating the
effect of inter-community retweets on the future popular-
ity of a tweet. Inter-community diffusion of a tweet signifi-
cantly affects its future popularity. (**: p < 0.01)

Dependent variable: log(RTnum)

Independent variables Coeff. β eβ

k** 1.488e-03 1.002
inter-com** 2.870e-01 1.332
comsizeorig** -1.408e-06 1.000
comsizert** 4.818e-06 1.000
log(avedeg)** 8.858e-02 1.093
log(influence)** 5.674e-01 1.764
URL** 8.852e-01 2.423
hash** 3.485e-01 1.417
word** 1.496e-02 1.015
Num. of observations 3,585,062
R2 0.3676

gen 1979) of the constructed models as the measures of pre-
diction accuracy (Tab. 5). Prediction accuracies of random
guess (dented as random) are also included in the table. The
random guess selects np random tweets as viral, where np
is the actual number of tweets exceeding the virality thresh-
old (Weng, Menczer, and Ahn 2013).

Contrary to our expectations, Tab. 5 indicates that the
community-based features have little contributions to im-
prove the accuracy for predicting the future popularity of
tweets. The differences of accuracies between the full model
and the w/o community model are small. Moreover, compar-
ing the accuracies of the w/ community model and those of
the w/ degree and the w/ influence models, it is also sug-
gested that the contribution of community related features is
smaller than features related to node degree and influence.

From these observations, we conclude that community-
related features have little contributions for improving the
prediction accuracy, but other features such as node influ-
ence and node degree have more predictive power. More-
over, although the task here is difficult (see accuracies of
random), it also should be noted that the prediction accura-
cies of constructed model is not very high in this experiment.
To achieve higher prediction accuracy, the use of additional
features and other prediction models should be considered.

Summary of findings Although the effect of inter-
community diffusion of a tweet is suggested to be statisti-
cally significant, the effect is quite weak. Other features such
as node influence and node degree have larger influence on
future popularity than inter-community diffusion.

Robustness of results
Validation with overlapping community detection
Methodology To check the robustness of the results and
findings in the previous section we used a different com-
munity detection algorithm. The Louvain algorithm used in
the previous section is a disjoint community detection algo-
rithm that assumes each node belongs to a single commu-
nity. However, overlapping community detection algorithms
that assume each node belongs to multiple communities also
exist (Fortunato 2010). In this section we show that similar
results can be obtained when using overlapping community
detection.

We used the popular overlapping community detection
algorithm, called the link clustering algorithm, proposed
in (Ahn, Bagrow, and Lehmann 2010) with a similarity
threshold value of t = 0.2. Table 6 shows several statistics of
the obtained communities. Some nodes do not belong to any
communities. We excluded such nodes from the following
analyses. We also excluded two-nodes communities.
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Table 5: Comparison of prediction accuracies for each model when predicting the future popularity of tweets. Each model
predicts whether a tweet will be retweeted θ times or more when its k-th retweet is posted.

Predicting top 1% tweets (θ = 58)
Precision Recall F1-measure

training period 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ

random 0.05 0.10 0.19 0.37 0.05 0.10 0.19 0.37 0.05 0.10 0.19 0.37
contents 0.00 0.00 0.78 0.60 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.38
w/ community 0.00 0.67 0.65 0.63 0.00 0.00 0.01 0.05 0.00 0.00 0.03 0.09
w/ degree 0.68 0.71 0.71 0.66 0.05 0.07 0.10 0.20 0.10 0.13 0.18 0.31
w/ influence 0.63 0.67 0.69 0.56 0.07 0.08 0.11 0.28 0.13 0.15 0.19 0.38
w/o community 0.64 0.67 0.68 0.65 0.11 0.11 0.15 0.27 0.18 0.19 0.24 0.38
full 0.62 0.66 0.67 0.61 0.11 0.12 0.17 0.33 0.19 0.20 0.27 0.43

Predicting top 0.5% tweets (θ = 98)
Precision Recall F1-measure

training period 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ

random 0.04 0.08 0.16 0.33 0.04 0.08 0.16 0.33 0.04 0.08 0.16 0.33
contents 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.05
w/ community 0.00 0.50 0.70 0.60 0.00 0.00 0.01 0.04 0.00 0.01 0.02 0.08
w/ degree 0.68 0.72 0.67 0.62 0.04 0.05 0.08 0.15 0.08 0.10 0.14 0.25
w/ influence 0.66 0.64 0.69 0.65 0.04 0.06 0.09 0.18 0.08 0.11 0.16 0.28
w/o community 0.64 0.63 0.68 0.63 0.09 0.11 0.14 0.23 0.16 0.19 0.23 0.34
full 0.64 0.64 0.66 0.61 0.09 0.11 0.13 0.26 0.16 0.18 0.22 0.37

Table 6: Statistics of overlapping communities obtained with
link clustering (t = 0.2)

Num. of communities 588,929
Ave. size of communities 6.57
Ave. num. of communities to which users belong 13.98
Num. of users belonging to at least one community 276,769

We defined the overlap of communities for users u and v
as

O(u, v) =
|C(u) ∩ C(v)|
|C(u) ∪ C(v)|

, (3)

where C(u) is the set of communities to which node u be-
longs. We use this measure in the following analyses. Ex-
tending the concept of weak and strong ties in disjoint com-
munities (De Meo et al. 2014) to overlapping communities,
we consider links with low community overlap as weak ties
and links with high community overlap as strong ties.

Results We first check how overlapping community struc-
ture affects the retweet frequency between users. Figure 4
shows the relation between the community overlap between
two nodes and average number of retweets occurring be-
tween those nodes. As the community overlap between two
nodes increases the number of retweets occurring between
those nodes also increases. Thus, a high community overlap
between two nodes indicates a strong relationship between
them. This suggests that strong ties with high community
overlap convey more information than weak ties with low
community overlap.
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Figure 4: Relation between community overlap between two
nodes and the average number of retweets occurring be-
tween those nodes: As the community overlap between two
nodes increases the number of retweets occurring between
those nodes also increases.

We next investigated how tweet diffusion through a low-
community-overlap link, which we regard as a weak tie,
affects its future popularity. A regression model was con-
structed with the same dependent variable used for the
analysis in the previous section. For the independent vari-
ables, we used community overlap O(u, v) (overlap) be-
tween two nodes instead of inter-com, while comsizeorig
and comsizert were replaced with the average sizes of
the communities to which user u(t) (ave-comsizeorig) and
user u(rt(k)) belong (ave-comsizert). Linear regression was
used. Table 7 shows the results. It can be seen that overlap
significantly affects the popularity of tweets. This suggests
that a tweet spread through a low-community-overlap link
will be spread widely.
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Table 7: Results of a regression analysis for investigating the
effect of community overlap on future popularity of a tweet.
Diffusion of a tweet between low-community-overlap users
significantly affects its future popularity. (**: p < 0.01)

Dependent variable: log(RTnum)

Independent variables Coeff. β eβ

k** 1.514e-03 1.002
overlap** -2.307e+00 0.100
ave-comsizeorig** -4.985e-04 1.000
ave-comsizert** -1.907e-04 1.000
log(avedeg)** 8.998e-02 1.094
log(influence)** 5.850e-01 1.795
URL** 8.170e-01 2.264
hash** 2.956e-01 1.344
word** 1.378e-02 1.014
Num. of observations 2,955,521
R2 0.3719

We also revisited the experiment of future popularity pre-
diction (Tab. 8). The settings are same with those in the pre-
vious section, but community related features are replaced
with overlapping-community-based ones. We used over-
lap, ave-comsizeorig, and ave-comsizert instead of inter-
com, comsizeorig, and comsizert, respectively. We also used∑

u∈Uk,t
O(u,u(t))

|Uk,t| instead of intra-com-rate. Due to space
limitations, we only show the results for θ = 98. Table 8
indicates that overlapping-community-based features have
little influence on future popularity prediction, which is con-
sistent with the results in the previous section.

Overall, the results discussed in this section suggest that
findings in the previous section can be replicated with over-
lapping communities. Since similar results are obtained
from such different definitions of community, we expect that
the effects of community structure on information diffusion
shown in this paper will observed for several definitions of
community.

Validation with different user set
Methodology For further checking the robustness of the
results and findings, we used a dataset of a different user
set. We collected English tweets, their retweets, and the so-
cial network of a sample of users who involved in those
tweets and retweets. We collected English retweets during
November 19–25, 2018, which gave 208,673,006 retweets
of 25,813,058 original tweets. From the original tweets, we
randomly extracted 10,000 tweets. We collected followers
and followees of the users who posted the 10,000 original
tweets, and users who posted retweets to the 10,000 original
tweets in early December 2018. We then constructed a so-
cial network of these users, and extracted the largest weakly
connected component of the network. The number of nodes
belonging to the largest component is 110,566, and these
users are the target users used in the following analyses.
The communities of the target users were determined using

0
.5

1
1
.5

2
U

s
e
r’
s
 a

v
e
ra

g
e
 l
in

k
 w

e
ig

h
t

Intra−community Inter−community

Figure 5: Box plots for comparing average link weights of
intra-community and inter-community links of users in the
English dataset: This confirms the results in Fig. 2.

the Louvain algorithm (Blondel et al. 2008). From the col-
lected tweets, we extracted original tweets posted by the tar-
get users. Several statistics of the English dataset are shown
in Tab. 9.

Results We first check the effects of community structure
on the retweet frequency between users. Figure 5 shows box
plots of 〈wintra(u)〉 and 〈winter(u)〉 for the users in the En-
glish dataset. This result confirms that an intra-community
link carries more retweets than an inter-community link.

We next check the effects of inter-community diffusion
of a tweet on its future popularity. A regression model was
constructed with the same dependent and independent vari-
ables used for the analysis in the previous section (Tab. 10).
The variable influence was calculated using retweets posted
during the period from October 20, 2018 to November 18,
2018. This result shows that the variable inter-com has a
statistically significant positive effect on future popularity.
Although the regression coefficient of each variable and
R2 value of the model are different from the result of the
Japanese dataset, this result supports the finding that inter-
community diffusion of a tweet is significantly correlated
with increase in its future popularity.

We finally revisited the experiment of future popularity
prediction using the English dataset. We used randomly se-
lected 80% original tweets and their retweets in the dataset
as the training data, and the rest of the data were used as the
test data. Table 11 shows the prediction accuracies for each
model. These results show that also for the English dataset,
community-related features have little contributions for im-
proving the prediction accuracy. Other features such as influ-
ence and degree have larger impact on prediction accuracy
than community-related features. These are consistent with
the results for the Japanese dataset, suggesting that our re-
sults are robust for different types of users.

Discussion
Implications
Our key finding in this paper is that the community-related
features only have very weak influence on future popularity
of tweets, which is contrary to our expectations and the re-
sults in the existing studies (Weng, Menczer, and Ahn 2013;
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Table 8: Comparison of prediction accuracies for each model when predicting the future popularity of tweets using features
related to overlapping communities. Each model predicts whether a tweet will be retweeted θ times or more when its k-th
retweet is posted.

Predicting top 0.5% tweets (θ = 98)
Precision Recall F1-measure

training period 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ

random 0.04 0.08 0.16 0.33 0.04 0.08 0.16 0.33 0.04 0.08 0.16 0.33
contents 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04
w/ community 0.62 0.65 0.68 0.58 0.01 0.03 0.03 0.10 0.03 0.05 0.06 0.17
w/ degree 0.67 0.68 0.65 0.61 0.04 0.06 0.08 0.15 0.08 0.11 0.14 0.25
w/ influence 0.65 0.63 0.70 0.66 0.04 0.06 0.09 0.16 0.08 0.12 0.16 0.26
w/o community 0.65 0.62 0.68 0.62 0.09 0.11 0.14 0.22 0.15 0.19 0.23 0.33
full 0.60 0.62 0.66 0.62 0.09 0.11 0.13 0.25 0.15 0.19 0.22 0.35

Table 9: Statistics of the English dataset

Num. of nodes 110,566
Num. of links 3,129,091
Num. of detected communities 39
Num. of original tweets 1,014,480
Num. of all retweets 14,143,862
Num. of retweets posted by the target users 1,991,484

Nematzadeh et al. 2014; Li, Lin, and Yeh 2015; Galstyan
and Cohen 2007; De Meo et al. 2014). This finding is sup-
ported by the results from different types of definitions of
communities (i.e., overlapping community and disjoint com-
munity) and from different types of users (i.e., Japanese-
speaking and English-speaking users). This suggests that
for the cascade size prediction problem (Cheng et al. 2014;
Martin et al. 2016), community-related features are not ef-
fective, and other features such as node influence and degree
should be used.

Our findings are expected to be useful for realistic sim-
ulations of information diffusion on social networks. Infor-
mation diffusion models have been used, for instance, for
finding influential nodes in social networks (Lü et al. 2016).
The cascade sizes of information diffusion triggered by iden-
tified nodes are considered as representing their influence,
and the effectiveness of the algorithms for finding influential
nodes is also based on cascade size. Typically, in the simu-
lation of information diffusion, probabilities of information
diffusion between nodes are determined without consider-
ing the community structure, and a fixed information diffu-
sion probability is assumed for every pair of nodes (Lü et
al. 2016). In contrast, our results show that the probabilities
of inter-community diffusion and intra-community diffusion
are different. If information diffusion probabilities between
nodes are determined based on this finding (i.e., the prob-
ability of intra-community diffusion is higher than that of
inter-community diffusion), more realistic information dif-
fusion can be generated in a simulation, which may change
the understanding of the effectiveness of algorithms for find-
ing influential nodes.

Table 10: Results of regression analysis for investigating the
effect of inter-community retweets on the future popularity
of a tweet in the English dataset. This confirms the result in
Tab. 4. (**: p < 0.01)

Dependent variable: log(RTnum)

Independent variables Coeff. β eβ

k** 2.531e-04 1.000
inter-com** 3.206e-01 1.378
comsizeorig** -3.539e-06 1.000
comsizert** 2.359e-05 1.000
log(avedeg)** 5.276e-02 1.054
log(influence)** 9.041e-01 2.470
URL** 1.439e-01 1.155
hash** -2.321e-01 0.793
word** 3.342e-02 1.034
Num. of observations 1,991,484
R2 0.5496

Limitations

Although this paper investigates the effects of community
structure on information diffusion, the opposite effects are
still not understood. Information spreading has been shown
to affect network structure (Weng et al. 2013; Hutto, Yardi,
and Gilbert 2013), which may change the community struc-
ture. To study the mutual interactions between community
structure and information diffusion is an interesting direc-
tion of future research.

Further investigation on the differences between the re-
sults of the Japanese dataset and those of English dataset will
be necessary. Although we obtained similar results from the
both datasets, there are some differences in the results. For
instance, R2 in the English dataset is larger than that in the
Japanese dataset. The cause of such differences is still un-
clear in this study. Moreover, we should note that there are
5-years difference between the data collection periods of the
two datasets. The difference of the data collection periods
might affect our results.
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Table 11: Comparison of prediction accuracies for each model when predicting the future popularity of tweets in the English
dataset. Each model predicts whether a tweet will be retweeted θ times or more when its k-th retweet is posted.

Predicting top 0.5% tweets (θ = 336)
Precision Recall F1-measure

training period 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ 0.05θ 0.1θ 0.2θ 0.4θ

random 0.04 0.08 0.20 0.35 0.04 0.08 0.20 0.35 0.04 0.08 0.20 0.35
contents 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
w/ community 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.39
w/ degree 0.00 0.40 0.58 0.49 0.00 0.02 0.08 0.36 0.00 0.03 0.14 0.41
w/ influence 0.44 0.41 0.55 0.55 0.06 0.11 0.18 0.47 0.11 0.18 0.27 0.51
w/o community 0.65 0.53 0.59 0.59 0.11 0.15 0.20 0.45 0.19 0.24 0.30 0.51
full 0.64 0.48 0.58 0.58 0.14 0.19 0.19 0.52 0.23 0.27 0.29 0.55

For clarifying the reason of the difference in the effects of
community structure on retweet diffusion and hashtag diffu-
sion, more efforts are still needed. For the hashtag diffusion,
it is shown that community-related features have large in-
fluence on future hashtag popularity (Weng, Menczer, and
Ahn 2013). In contrast, our results only show the weak ef-
fects of community-related features on the cascade sizes of
retweets. To investigate the cause of such difference is an
important future work.

Moreover, how the characteristics of each community af-
fect information diffusion is also still an open issue. Al-
though this paper shows the size of community has little
effect on information diffusion, the density of the commu-
nity or the strength of community structure may affect both
intra and inter community diffusion. Measures for quanti-
fying the characteristics of an individual community have
been proposed (Leskovec, Lang, and Mahoney 2010) and
these should be useful for future analyses of the relation be-
tween community characteristics and information diffusion
within the community. Moreover, using other types of com-
munity detection such as hierarchical community detection
and community detection considering link directions (Fortu-
nato 2010) is also interesting.

Finally, there still exist other factors that may related
to community structure and information diffusion. For in-
stance, a node with high betweenness centrality (Freeman
1979) tends to have high influence that can spared tweets
to many other users (Lü et al. 2016). Moreover, such node
is expected to posts many inter-community retweets since
a high-betweenness node tends to be a bridge of multiple
communities (Newman and Girvan 2004). To distinguish the
effects of community structure on retweet diffusion and the
effects of node role on the retweet diffusion, there remains a
room for improvement in the design of analyses.

Conclusion
In this paper we have investigated how the community struc-
ture of a social network of Twitter users affects the cascad-
ing diffusion of retweets. The results have shown that the
frequency of intra-community retweets by a user is approx-
imately double the frequency of inter-community retweets.
This suggests that cascading diffusions of retweets are typi-
cally trapped within a community, and inter-community dif-

fusion is a rare event. In contrast, the results have also shown
that tweets disseminated via inter-community retweets have
higher future popularity approximately 1.5-fold that of
tweets disseminated via intra-community retweets. By us-
ing this fact, we constructed classifiers to predict the future
popularity of tweets from community-based features as well
as other features affecting future popularity of tweets. Our
results have shown that, contrary to our expectations and re-
sults in the existing studies (Weng, Menczer, and Ahn 2013;
Nematzadeh et al. 2014; Li, Lin, and Yeh 2015; Galstyan
and Cohen 2007; De Meo et al. 2014), community-based
features have little contributions for predicting the future
popularity of tweets. Moreover, these findings are obtained
from both of the English and Japanese datasets and are ro-
bust against changes in the definition of community. Overall,
this paper provides empirical evidence for effects of commu-
nity structure on information diffusion that have long been
believed but rarely empirically validated.
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