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Abstract

Principal Component Analysis (PCA) is a central tool for an-
alyzing data and social media data in particular. Typically,
the data is projected on the first two PCs to obtain a two-
dimensional view, and trends and patterns are being exam-
ined. A key to making sense of the projected data is the se-
mantic interpretation of the new axes (the PCs). To label the
PCs, one usually looks at the top k vector entries in absolute
value and assigns meaning according to them. The choice of
k is done by “eyeballing” the vector. In this work we provide
a computational framework to support this process and sug-
gest an interpretability score, which measures how sensitive
the interpretation step could be to the choice of k. Further-
more we give a visual method to choose the optimal k. We
study our methodology in four social media platforms and
discover that in two of them, Twitter and Instagram, inter-
pretation can be done in a carefree manner, but in Steam and
LinkedIn there is no natural labeling of the axes. This separa-
tion is clearly reflected in the interpretability score that each
dataset received.

1 Introduction
Computing Principal Component Analysis (PCA) is one of
the first steps that a researcher performs when studying data,
and especially when the data is high-dimensional. The data
is typically projected on the leading two PCs and a search
for patterns or trends takes place. The crux of PCA is the
labeling of the new axes in order to make sense of the ob-
served patterns. In social media data, the axes may point
in directions that correspond to characteristics of users, e.g.
a measure of popularity, or to modes of behaviour and in-
teraction, e.g. a measure of botness/spam, or a measure
of content activity (Canali, Casolari, and Lancellotti 2012;
Viswanath et al. 2014; Vilenchik 2019).

Unfortunately, there is no golden rule for labeling the
PCs, but rather this step is performed using intuitive and
ad-hoc choices. The most widely used method is probably
the “interpret-by-top-k” rule. The rule says first sort the PC
vector entries in descending order of absolute values, then
assign the PC its label according to the top k features, ignor-
ing entries with smaller values. While this practice is useful
in many cases, the choice of k is subjective and may affect
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the interpretation. In addition, choosing smaller k values
makes interpretation easier, as fewer features are involved,
but possibly at the cost of semantic validity.

To exemplify the trickiness in choosing the right k let us
consider an example using data that we collected from four
social media platforms: Twitter, Instagram, LinkedIn and
Steam. Applying the top-k rule to the leading PC in Steam
gives the following result. Up to k = 3 the label is “measure
of gaming proficiency” (top three features are: number of
games owned by a user, Steam experience, and number of
badges owned by the user). At k ≥ 4 this semantic meaning
blurs as features that have nothing to do with proficiency are
added (e.g. the number of friends, the number of groups the
user belongs to). In fact we could not find a natural simple
label for the leading PC according to the top k ≥ 4 features.
We checked whether the heavy hitters in the direction of the
leading PC can give a clue as to its label. This set turned
out to be a mix of very popular yet not very active users
and vice versa, and the spectrum in between. Therefore one
could confirm different labels (or none) depending on the
users that were sampled. A similar phenomenon occurred
in our LinkedIn dataset. The interpret-by-top-k = 4 rule
would label the leading PC as a certain measure of “profes-
sional activity” (number of jobs, degrees, certifications, vol-
unteering projects) , however at k = 5, 6 two features that
measure feedback from others join in (the number of skills
- as endorsed by others, and the number of groups that the
user was authorized to join).

1.1 Our contribution.
We develop a toolbox to assist the interpret-by-top-k rule
by defining an interpretability score for every PC. The in-
terpretability score is a number between 0 and 1 which
measures how sensitive the interpret-by-top-k rule is to the
choice of k. A low interpretability score will indicate that it
is not advisable to use this rule to interpret that PC. To com-
pute this score we draw on the following intuition: suppose
that the PC has only one non-zero entry, then interpret-by-
top-k would work perfectly for any k. More generally, the
sparser the PC the less probable it is that subsets of non-zero
features will have a different meaning than the full set of
non-zero features. In reality, if only for numeric issues, all
PC entries will typically be non-zero. The interpretability
score may be viewed as a certain normalized sparsity level
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of the vector.
The way we suggest to compute the interpretability score,

explained in Section 3, produces an interpretability curve
which is similar in spirit to a scree plot, see Figure 1. One
can use Cattell’s popular cut-at-the-knee rule to chose the
optimal value of k for the interpret-by-top-k rule. By opti-
mal we mean the smallest semantically-consistent k.

We applied our toolbox to data that we collected from
Twitter, Instagram, LinkedIn and Steam. Our full findings
are given in Section 4, here we review the highlights. We
found that the interpretability score of the leading two PCs in
Twitter (0.89,0.81) and Instagram (0.85,0.85) was consider-
ably higher than Steam (0.77, 0.7) and LinkedIn (0.76,0.76).
As a baseline, the interpretability scores of the leading two
PCs of Gaussian white noise were (0.7, 0.65). This matched
nicely with the fact that it was straightforward to interpret
the leading two PCs in Twitter (a measure of popularity and
a measure of botness) and Instagram (a measure of popular-
ity,and a certain measure of posting activity). On the other
hand, in Steam and LinkedIn, we could not assign a natu-
ral simple label to the leading PCs. Furthermore, the inter-
pretability curve, Figure 1, pointed clearly to k = 3 as the
right choice for Twitter and k = 4 for Instagram. For Steam
and LinkedIn there was no knee in the curve to cut.

We compared our results against the top-k rule by using
it to compute an interpretability score. For Twitter we ob-
tained very similar results (0.89,0.83) but for Steam we ob-
tained (0.77,0.78), which is similar for the first PC but much
higher for the second. Results obtained in (Vilenchik 2019)
confirm that the lower score, 0.7, is a better estimation of in-
terpretability for the second PC in Steam, than 0.78. Details
in Section 4.3.

2 Related Work
The problem of user characterization in online social me-
dia platforms is typically approached as a supervised learn-
ing classification problem. For example (Pennacchiotti and
Popescu 2011) try to predict the user’s ethnicity and political
affiliation, (Rao et al. 2010) deal with gender, age, regional
origin and (Preotiuc-Pietro, Lampos, and Aletras 2015) with
occupational class.

Far less was done using unsupervised learning ap-
proaches. (Eirinaki, Monga, and Sundaram 2012) suggested
a PageRank-like measure which they call ProfileRank. Pro-
fileRank is computed as some learned linear combination of
various user statistics. They tested their score on Facebook
and MySpace and showed how the rank can be used to iden-
tify influential users. A PCA-based approach was suggested
by (Canali, Casolari, and Lancellotti 2012) to characterize
users in YouTube and Flickr. Their main result is that the
top PCs encode labels that correspond to measures of pop-
ularity and activity in the network. In fact the PCA-based
approach may be viewed as a ProfileRank measure in which
the weights of the linear combination of features are set ac-
cording to the PCs.

PCA was also used successfully in a closely related task –
anomaly detection. Viswanath et al. (Viswanath et al. 2014)
used PCA in order to classify Facebook users as either “nor-

mal” or “anomalous” (user is considered anomalous if its
behaviour was tagged as such by Facebook).

The validity of the PC labeling in (Canali, Casolari, and
Lancellotti 2012) was done against the results of other algo-
rithms and in (Viswanath et al. 2014) against a given ground
truth (labeled data). We are not aware of any work that in-
cluded a self-contained mechanism to quantify the validity
of the interpretation step.

3 Methodology
Our working hypothesis is that the sparser the PC the easier
it is to interpret it, and the less sensitive the interpretation
will be to the number of features that take part in the pro-
cess. The interpretability score, which is a number in [0, 1],
may be viewed as a normalized sparsity level of the vector,
where values closer to 1 represent the fact that the vector
may be safely regarded as a sparse vector for the sake of in-
terpenetration, hence using the top-k rule is less sensitive to
the exact choice of k.

In reality all the entries of the PC will be non-zero, if only
for numeric reasons, but perhaps some entries will be much
smaller than others, and it is safe to treat them as zeros. It is
desirable that zeroing out entries will be done in a rigorous
manner rather than a threshold decided ad-hoc and subjec-
tively. It is also informative to measure how much informa-
tion was lost when zeroing out entries.

At the basis of our approach lies a variant of PCA called
sparse PCA. In the sparse PCA problem, rather than find-
ing the leading eigenvector of the covariance matrix, one
looks for the unit vector v with at most k non-zero entries,
k is fixed in advance, such that the variance in the direction
of v is maximal; v is called the leading k-sparse eigenvec-
tor (although it is not necessarily an eigenvector of the co-
variance matrix). The remaining k-sparse eigenvectors are
computed in a similar way to the standard PCA.We used R’s
nsprcomp library to compute sparse PCA.

Given a PCA solution P of a p-dimensional dataset, the
first task is to decide which PCs will be considered for inter-
pretation. If a 2D plot is desired then the answer is usually
the leading two PCs. More generally, the Guttman-Kaiser
(GK) criterion is typically used to discard PCs that explain
less than 1/p-fraction of the variance. Let r be the number
of candidate PCs.

3.1 The interpretability curve
The interpretability score is derived from the interpretability
curve. So we first describe how to compute this curve for a
fixed PC, call it v.

• Compute a series of k-sparse PCA solutions for k =
1, . . . , p, denote them by P1,P2, . . . ,Pp = P .

• For every solution Pk find the vector in Pk that is closest
to v, in cosine measure, among the top r k-sparse PCs
in Pk. Let sk be their cosine similarity. (We look for
the closest vector rather than use the same index since
the original order of the PCs may change when adding
sparsity constraints). Doing so for k = 1, . . . , p we obtain
a vector of similarities s = (s1, . . . , sp = 1).
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• Define the curve ` by the p points ` = {(kp , sk) : k =

1, . . . , p}.
The x-axis of ` is normalized by p to enable comparison
between data sets with different dimensions. Also note that
the curve is expected to be monotonically increasing. See
Figure 1 for example.

3.2 The interpretability score
The interpretability score is the area under ` given by the
trapezoid area estimation:

p−1∑
k=1

sk+1 + sk
2p

. (1)

For intuition consider two extreme cases: very concen-
trated signal and white noise. If the PCA solutionP happens
to be 1-sparse then the curve ` is y = 1. Its corresponding
score will be 1 − 1

p , which is also its maximum value. On
the other hand, simulations that we did with white noise,
a p-dimensional standard Gaussian with an identity covari-
ance matrix, and n� p (as in our case), show that the curve
never plateaus but rather is a straight line. More generally,
the sooner the curve plateaus at y ≈ 1, the larger the score
will be. Figure 1 demonstrates this nicely: Twitter and Insta-
gram plateau fast, while LinkedIn and Steam never plateau.

3.3 Choosing k

The interpretability curve gives a visual way to choose the
right k for the top-k rule: cut right above the “knee”, simi-
larly to Cattell’s method for choosing the number of relevant
factors in a scree plot. In our example, this yields k = 3 for
Twitter and k = 4 for Instagram (Figure 1).

Finally, let us note that the interpertability score could
have been computed with the top-k rule rather than sparse
PCA, by zeroing out the smallest p−k entries and normaliz-
ing. In Section 4.3 we show that using sparse PCA produces
more reliable scores. One intuitive reason for this is that if
the top k entries are not significant, even if their total weight
is relatively large, then sparse PCA may find a k-sparse vec-
tor farther from the PC, resulting in a lower interpertability
score, as should be the case.

4 Evaluation
We now demonstrate how the framework described in Sec-
tion 3 supports PCA interpretation in various social media
platforms.

4.1 Data collection
We crawled the network in a snowball approach, which
is commonly used in the literature (Mislove et al. 2007).
Crawling starts from a list of randomly selected users and
proceeds in a BFS manner. At each step the crawler pops a
user v from the queue, explores its outgoing links and adds
them to the queue. In Twitter there is a link from v to w
if v follows w. In Instagram the set of friends is private in
most cases. We say that w is an outgoing link from v if w

commented on v’s pictures. In Steam the list of friends is
public. In LinkedIn the list of friends (called connections) is
private. As a proxy for v’s friends we used the “People Also
Viewed” box which tells what recent profiles w were viewed
by people who viewed v.

We collected between 11 to 15 features per network that
describe the user’s activity in the network and feedback that
a user receives from other users. Feedback features included
for example the number of users following me, the number
of retweets of my tweets by others, the number of likes I
received or comments left on my pictures. The activity fea-
tures included the volume of activity (e.g. posts per day,
total number of posts), activity types (e.g. percentage of
video vs pictures, urls vs. pure text), social activity (num-
ber of friends, number of likes I gave, number of tweets I
retweeted). The complete set of features can be found in (Vi-
lenchik 2019). Similar features were used to find influential
users in MySpace and Facebook (Eirinaki, Monga, and Sun-
daram 2012) or in YouTube and Flickr (Canali, Casolari, and
Lancellotti 2012) for user classification. We collected a total
of 284,758 Twitter accounts, 52,574 in Instagram, 127,830
in Steam and 12,000 in LinkedIn. Different numbers stem
from varying levels of technical difficulty in crawling each
network and from time constraints.

To check whether bot profiles tilted our distribution,
which is relevant for Twitter and Instagram, we removed
heavy hitters (users whose projection on either of the top two
PCs was in the fourth quartile) and recomputed the leading
PC for the new dataset. The cosine similarity between the
new PC and the original PC was around 0.95 both in Twitter
and Instagram. Therefore we may safely contain the exis-
tence of bots in our data, at least for the sake of computing
the interpretability scores.

4.2 Computing the interpretability score
For each of the four datasets we computed the covariance
matrix and performed PCA. For each PC we recorded its
vector entry values, and the percentage of variance it ex-
plains. In all networks the top three to five PCs passed the
GK criterion. In what follows we focus on the leading two
PCs which were the most significant in terms of explained
variance.
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Figure 1: The interpretability curve for various datasets.
Twitter’s and Instagram’s curve (top two lines) plateaus fast
at y ≈ 1, Steam and LinkedIn (next two lines) follow a
rather straight line, closer to white noise (lowest line).
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Interp. score PC1 PC1 avg PC2 PC2 avg
Twitter 0.89 0.86± 0.02 0.8 0.78± 0.02

Instagram 0.85 0.85± 0.009 0.85 0.85± 0.01
LinkedIn 0.76 0.76

Steam 0.77 0.76± 0.02 0.7 0.7± 0.03
Noise 0.7 0.7± 0.04 0.65 0.65± 0.05

Table 1: Interpretability score for different datasets. The av-
erage score and std are taken over 20 random subsamples of
size 3000. White noise is a 12-variate Gaussian with identity
population covariance matrix and n = 3, 000 samples. No
average for LinkedIn due to small size of dataset

Figure 1 shows the interpretability curves of the leading
PC in different networks. Clearly Twitter and Instagram
have a very different curve type than LinkedIn and Steam.
This is reflected in the interpretability score given in Table
1, which also presents average and standard deviation over
20 random subsamples of size 3,000 users. The series of
20 scores were verified to follow a normal distribution using
Shapiro-Wilk with confidence level ≤ 5%. A t-test verified
that Steam’s and LinkedIn’s score is significantly lower than
Twitter’s and Instagram’s (p-value for the null hypothesis
was practically zero).

4.3 Comparing against the top-k-rule
We repeated the computation of the interpretablity score,
this time using the top-k rule rather than sparse PCA.
Namely, given a PC v, we zeroed out its p − k smallest
entries, normalized to obtain a unit vector, and used v-
truncated to compute the interpretability curve and score.
For Twitter, very similar results were obtained (0.89,0.83).
This is expected as the score is high, which we take as evi-
dence that the leading two PCs of Twitter are indeed sparse,
or in other words, the largest entries are significant. In
Steam, the top-k rule yielded (0.77,0.78), compared with
(0.77,0.7) using sparse PCA. The results in (Vilenchik 2019)
suggest that the top PCs in Steam behave like random vec-
tors with respect to the properties of activity and popularity
(which are measured by the 11 Steam features). Therefore,
the closer the score to the Noise benchmark (0.65) the more
reliable the result, which is given by sparse PCA (0.7 vs 0.78
for the second PC).

In addition, we checked the cosine similarity between the
solution of k-sparse PCA and truncation by the top-k rule.
Averaged over all k’s, the similarity was 0.85 for the lead-
ing two PCs in LinkedIn, and 0.99,0.67 respectively for the
leading two PCs in Steam. In Twitter and Instagram the sim-
ilarity was 0.99 for the leading PC.

5 Conclusion
We developed a framework to assist in PCA interpretation.
Examining how the framework applies to Twitter, where the
highest scores were obtained, we see that the “knee” in Fig-
ure 1 occurs between k = 2 and k = 3. This suggests that
sparsity level k = 3 is enough to derive the PC label of the
leading PC. The three support features of the leading PC all

measure popularity: the likes given to the user, the num-
ber of retweets of his tweets, and the number of followers.
Looking at our sample, indeed the top users in the direction
of PC1 are teen pop-idols like Justin Bieber, Zayn Malik, the
Kardashians and other celebrities.

LinkedIn and Steam received lower scores, which sug-
gests cautious (if not avoiding) interpretation. This picture
is consistent with the results obtained in (Vilenchik 2019),
where the semantics of the PCs in these social media plat-
forms was studied. The conclusion in (Vilenchik 2019) was
that while in Twitter and Instagram, the top PCs have a clear
semantic direction (either popularity or activity), the leading
PCs in Steam have a random semantic direction with respect
to these properties, and in LinkedIn the picture is mixed (the
leading PC having random direction as well).

Finally, turning to the question posed in the title of the pa-
per, the emerging suggestion is: Twitter and Instagram – in-
terpret, Steam - do not interpret, LinkedIn – tread cautiously
and perhaps be assisted with other exploratory means.
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