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Abstract

This paper analyzes a backward sequence for single-armed
cluster tools with processing time variations. A fundamental
cycle is defined with the backward sequence, and a formula
for the cycle time is derived by considering processing time
variations. Then conditions for which the backward sequence
is optimal are developed. The upper bound on the average cy-
cle time from the backward sequence is also analyzed. We
then show experimentally that the sequence performs well
even with processing time variations.

Introduction
Cluster tools for semiconductor manufacturing processes
such as oxidation, photolithography, or etching, consist of
multiple processing modules (PMs), a transport robot, and
loadlocks for loading and unloading wafer cassettes as illus-
trated in Fig. 1. More than 70 % of semiconductor tools in
one of the largest semiconductor fabs in Korea have simi-
lar configurations to the cluster tools. When a wafer cassette
with 25 wafers is loaded into the loadlock, the robot trans-
ports each wafer to PMs. After a wafer finishes processing,
it is transported to the next PM or loadlock by the robot.
The cluster tool scheduling problem is the same as a flow
shop with identical jobs and a material handling robot, and
its scheduling decision is to determine a robot task sequence.

The robot in a single-armed cluster tool usually follows
a backward sequence in practice due to its simplicity, pre-
dictability, and traceability. The robot in the backward se-
quence, when there are n PMs, first unloads a wafer from
PMn, transports it, and loads it into the loadlock. It then
goes to PMn−1, unloads a wafer, transports it, and loads
it into PMn. The robot repeats the tasks until it unloads
a wafer from the loadlock and loads it into PM1. In this
study, we assume that each wafer is moved from one PM
to the next and one wafer is completed and loaded into the
loadlock in a cycle. Hence, multiple cycles are not consid-
ered. If we assume identical PMs in each step, there can be
multiple cycles, which then requires the modification of the
backward sequence and its optimality conditions. Reactive

∗Corresponding author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 
Figure 1: Single-armed cluster tool

policies for scheduling cluster tools in the presence of uncer-
tainty can also be handled with a Markov decision process
or other heuristic algorithms.

It is proved that the backward sequence provides an opti-
mal cycle time in single-armed cluster tools with determin-
istic processing times under the condition of maxj pj +2u+
2l + 3t ≥ (n + 1)(u + l + 2t) where pj , u, l, t and n in-
dicate the processing time in PMj , unloading, loading, and
transporting times of the robot, and the number of process
steps, respectively. We note that the robot task times, u, l,
and t are applied for not only a PM but also for the loadlock.
In the condition, the left hand side, maxj pj + 2u+ 2l + 3t,
indicates the minimum time required for a PM to process a
wafer in a cycle. After processing as much as pj , the wafer is
unloaded, transported, and loaded to the next PM (u+ l+ t),
and then the robot moves to PMj−1, unloads a wafer, trans-
ports it and loads it into PMj (u + l + 2t). The right hand
side, (n + 1)(u + l + 2t), is the minimum robot task time
required in a cycle from the backward sequence. The robot
should move a wafer from each PM as many as n+1. Hence,
the condition, maxj pj+2u+2l+3t ≥ (n+1)(u+l+2t), in-
dicates the minimum time (or workload) required for a PM
in a cycle is larger than or equal to the robot task time of
the backward sequence. Hence, the cycle time, equal to the
workload of PMs, is obtained.

However, its performance is not guaranteed with process-
ing time variations. In practice, the processing durations of
identical wafers in a PM are often different depending on the
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Figure 2: A schedule with time variations

machine or wafer states or process control parameters. Re-
garding to this issue, tool engineers want to be sure of using
the sequence in fabs, and hence we analyze the performance
of the backward sequence for the first time and provide an-
alytical results on the sequence. This research can be very
helpful for not only tool engineers but also researchers inter-
ested in scheduling automated manufacturing systems. We
develop a formula for the cycle time, optimality conditions,
and the upper bound on the average cycle time of the se-
quence. We then show experimentally that the backward se-
quence performs well even with processing time variations.

Literature Review
There have been numerous papers on cyclic scheduling of
cluster tools. (Rostami, Hamidzadeh, and Camporese 2001)
developed an optimal periodic scheduler for cluster tools
with time window constraints. (Wu et al. 2008) and (Qiao
et al. 2015) further analyzed the cluster tools with wafer res-
idency time constraints by developing feasibility conditions
and optimal robot task sequences. (Lee, Kim, and Lee 2015)
examined concurrent processing of two different types of
wafer lots by developing efficient robot task sequences. (Li
and Fung 2016) considered two-cluster tools with residency
time constraints and derived a mathematical programming
model for optimal K-unit cyclic schedules. (Kim, Lee, and
Lee 2016) examined the schedulability of given schedules
with time window constraints and bounded time variations
by modeling the problem with Petri nets. (Lee and Kim
2017) and (Kim and Lee 2019) analyzed the completion
time of wafer lots in single-armed and dual-armed cluster
tools, respectively. Most of the previous studies on single-
armed cluster tools have assumed the backward sequence of
the robot and then analyzed the given schedules. Some stud-
ies have addressed cyclic scheduling of robotic cells or hoist
systems that have similar configurations to cluster tools (Che
and Chu 2005), (Zarandi and Fattahi 2013). A survey on
scheduling problems of semiconductor manufacturing tools
can be found in (Mönch et al. 2011) and (Pan et al. 2018).

Even though there have been many papers on cyclic
scheduling of cluster tools, the performance of the backward
sequence in single-armed cluster tools with time variations
is still an open question.

Problem Description
A cluster tool conducts n process steps, each of which is per-
formed by PMj where 1 ≤ j ≤ n. A wafer visits each PM

in a fixed order sequentially, and each PM performs different
operations. The realized processing time for step j, pj , is ob-
tained between P a

j and P b
j ; i.e., pj ∈ [P a

j , P
b
j ], 1 ≤ j ≤ n.

The symbol pij is used for the processing time of the ith
wafer in PMj .

Fig. 2 shows a process schedule in a single-armed clus-
ter tool with four PMs. The number in each bar is used for
wafer identification, and the black bars indicate the wafer
delays in PMs due to the late arrival of the robot. The sym-
bols, U, L, and T, represent the robot unloading, loading, and
transportation tasks, respectively. The backward sequence is
used in the schedule. The processing times in Fig. 2 have
variations. The red lines indicate the time when a new wafer
is loaded into PM1, and the length between two adjacent
lines becomes a cycle time. We can observe that the cycle
time is different from one another in Fig. 2.

We define a fundamental cycle k, FCk, as the cycle that
starts when the kth wafer is loaded into PM1 and ends when
the k + 1th wafer is loaded into the same PM. The analytic
methods and results of this paper can still be used even if the
fundamental cycle is defined with different PMs. We use Ck

as the cycle time of FCk. We now analyze the cycle time for
each fundamental cycle with the backward sequence. We do
not consider revisiting or time window constraints.

Cycle Time Analysis of Fundamental Cycle
From the definition of the fundamental cycle, FCk starts
when the kth wafer is loaded into PM1. At this point in time,
the k − 1th, k − 2th, · · · , k − n + 1th wafers are in PM2,
PM3, · · · , and PMn, respectively. With the backward se-
quence, the n − 1 wafers are transported to the next PM in
order, and FCk ends when the k + 1th wafer is loaded into
PM1. We denote p

′i
j as the remaining processing time of the

ith wafer in PMj at the loading timing of the i + j − 1th
wafer into PM1.

Theorem 1 The cycle time for FCk, Ck, from the backward
sequence is obtained as follows:

Ck = max



pk1 + 2u + 2l + 3t,

max{· · ·max{max{max{max(p
′k−n+1
n , t)

+u + l + 2t, p
′k−n+2
n−1 }+ u + l + 2t,

p
′k−n+3
n−2 }+ u + l + 2t, p

′k−n+4
n−3 } · · · ,

p
′k−1
2 }+ u + l + 2t + 2u + 2l + 3t


(1)
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We first provide a simple example for computing a cycle
time.
Example 1 We compute the cycle time for FCk in Fig. 2. In
the schedule, p

′k−3
4 , p

′k−2
3 , and p

′k−1
2 are 9 s, 13 s, and 16

s, respectively. pk1 is 20 s. If all the robot tasks are assumed
to take 1 s, Ck is 28(= max(27, 20, 28) = max(pk1 + 2u +

2l + 3t, 5(u + l + 2t), p
′k−3
4 + 5u + 5l + 9t)).

From the formula for the cycle time, the optimality con-
dition of the backward sequence with processing time varia-
tions can be obtained as follows:

Theorem 2 The backward sequence provides an optimal
cycle time for FCk if pk1 ≥ max{(n − 1)(u + l + 2t) +

t,max1<j≤n{pk−j+1
j }}.

The optimality of the backward sequence should be ver-
ified with the condition in Theorem 2. To do that, we pro-
vide an example of computing the probability that pk1 is the
largest one among processing times in PMs.

Example 2 Assume that n is 3 and X1 ∼ U(30, 50),
X2 ∼ U(20, 40), and X3 ∼ U(20, 50); the three ran-
dom variables follow the uniform distribution with (P a

j , P
b
j ).

We compute the probability of x1 to be the maximum
value so that the backward sequence for FCk provides
an optimal cycle time. P (max(x1, x2, x3) = x1) =∫ +∞
−∞ fX1(t)FX2(t)FX3(t)dt =

∫ 40

30
1
20

t−20
20

t−20
30 dt +∫ 50

40
1
201 t−20

30 dt = 1
12000 [ 13 t

3 − 20t2 + 400t]4030 + 1
600 [ 12 t

2 −
20t]5040 = 0.611. In this example, the backward sequence
provides an optimal cycle time for FCk with the probability
of 0.611 when the processing times are larger than the robot
workload.

From Theorem 2, we can see that the backward sequence
can be always optimal if the minimum processing time of
PM1 is larger than or equal to the maximum processing
times of other PMs and the robot task times, (n − 1)(u +
l + 2t) + t.

Average Cycle Time Analysis
We now analyze the average cycle time when the number
of wafers processed becomes large. We first derive a lower
bound on the average cycle time.

Lemma 1 When m identical wafers are processed consec-
utively, a lower bound on the average cycle time in a single-
armed cluster tool is maxj p̄j + 2u + 2l + 3t where p̄j =

limm→∞

∑m
k=1 pk

j

m .

We now analyze the maximum average cycle time of the
backward sequence with the processing time variations.

Theorem 3 The upper bound on the average cycle time of
the backward sequence with processing time variations is

limm→∞

∑m
k=1 max1≤j≤n pk−j+1

j

m + 2u+ 2l + 3t with the as-
sumption of P a

j ≥ (n− 1)(u + l + 2t) ∀j.

Example 3 Assume that n is 3 and X1 ∼ U(30, 50),
X2 ∼ U(20, 40), and X3 ∼ U(20, 50). We first

compute limm→∞

∑m
k=1 max1≤j≤n pk−j+1

j

m as follows:

E(Z) =
∫ +∞
−∞ tfZ(t)dt =

∫ +∞
−∞ t(fX1(t)FX2(t)FX3(t) +

FX1
(t)fX2

(t)FX3
(t) + FX1

(t)FX2
(t)fX3

(t))dt =∫ 30

20
t(0 + 0 + 0)dt +

∫ 40

30
t( 1

20
t−20
20

t−20
30 + t−30

20
1
20

t−20
30 +

t−30
20

t−20
20

1
30 )dt +

∫ 50

40
t( 1

201 t−20
30 + 0 + t−30

20 1 1
30 )dt =

1
12000 [ 34 t

4− 140
3 t3+800t2]4030+ 1

600 [ 23 t
3−25t2]5040 = 42.431.

The upper bound on the average cycle time of the backward
sequence is then 63.431 with the assumption of robot task
times of 3 s. In this case, a lower bound from Lemma 1 is 61
(= 40 + 6 + 6 + 9). Hence, the largest difference of cycle
times is 2.431.

With the above theorem, we can obtain the upper bound
on the average cycle time from the backward sequence even
when there are processing time variations. Then the dif-
ference between the upper and lower bounds becomes the
worst-case bound of the backward sequence. We now show
that the backward sequence provides a good performance in
practice with experiments.

Experimental Results
In this section, we numerically examine the performance of
the backward sequence with processing time variations by
comparing cycle times from simulation to lower bounds pre-
sented in Lemma 1. The processing time in PMj is assumed
to follow U [P a

j , P
b
j ] where P a

j and P b
j are lower and upper

bounds, respectively. The experiments were conducted on
a personal computer with an Intel Core i7-4790 CPU with
4.00 GB RAM. For simulation, 1,000, 10,000, and 100,000,
cycles are considered, and for each case first 30 % of cycles
are considered to be warm-up periods, and the next 70% of
cycles are examined to compute the average cycle time. In
addition, the simulation was run repetitively for 30 times to
evaluate the cycle time. The robot task times are assumed to
be 3 s.

Table 1 shows experimental results with the cycle time
(CT) and the gap from the lower bound (GAP). The
gap is obtained by ‘(cycle time from simulation - lower
bound)×100/lower bound’. Note that cases in which the
backward sequence provides an optimal cycle time as indi-
cated in Theorem 2 were intentionally excluded in our exper-
iments. Each of instances (1)-(4) in Table 1 has the same pro-
cessing time ranges for four PMs, but the gap between P a

j

and P b
j becomes larger as the instance number increases. For

example, in instance (4), the variance of processing times is
about 33.3 which cannot be observed in practice, but it is
also tested to see the worst-case performance. In instances
(5)-(8), two PMs out of four PMs have large lower and up-
per bounds. We note that the numbers of PMs and wafers,
processing times, and robot task times were obtained from
real data in one of the largest semiconductor manufacturing
fabs in Korea. Wafers are usually processed on two to four
PMs in a cluster tool for quality risk reductions through ear-
lier inspection or restrictions in gas supply piping to the tool
PMs. The processing steps take from 60 to 500 s in most
cases, and the robot tasks usually take 3 to 5 s.

As shown in Table 1, the gaps between the cycle time from
simulation and the lower bound from Lemma 1 are very
small when the variance of processing times is less than 10;
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Table 1: Experimental results on various processing times that are uniformly distributed.

Instance Processing Time Ranges Number of Cycles
LB1,000 10,000 100,000

No. [P a
1 , P

b
1 ], [P

a
2 , P

b
2 ], [P

a
3 , P

b
3 ], [P

a
4 , P

b
4 ] CT (s) GAP(%) CT (s) GAP(%) CT (s) GAP(%)

(1) [60,61], [60,61], [60,61], [60,61] 81.76 0.32 81.77 0.33 81.77 0.33 81.5
(2) [60,65], [60,65], [60,65], [60,65] 84.82 1.58 84.82 1.58 84.82 1.58 83.5
(3) [60,70], [60,70], [60,70], [60,70] 88.65 3.08 88.65 3.08 88.65 3.08 86
(4) [60,80], [60,80], [60,80], [60,80] 96.29 5.82 96.30 5.82 96.30 5.82 91
(5) [70,71], [70,71], [60,61], [60,61] 91.67 0.18 91.67 0.18 91.67 0.18 91.5
(6) [70,75], [70,75], [60,65], [60,65] 94.32 0.88 94.33 0.89 94.33 0.89 93.5
(7) [70,80], [70,80], [60,70], [60,70] 97.69 1.76 97.66 1.73 97.67 1.73 96
(8) [70,90], [70,90], [60,80], [60,80] 104.41 3.38 104.40 3.36 104.40 3.36 101

Overall Results Avg. 2.13 Avg. 2.12 Avg. 2.12

any instances except for (4), and (8). Even for extreme cases,
for example, instance (4), the gap is less than 6 %. We be-
lieve this result is highly acceptable by considering the fact
that the cycle time from simulation is compared to the lower
bound not to an optimal one. Furthermore, the average gap
of 8 instances is about 2.1 % even though extreme cases are
included. Therefore, from the results, we can conclude that
the backward sequence provides near optimal cycle times
when processing times are uniformly distributed.

Conclusion
We analyzed the performance of the backward sequence in
single-armed cluster tools with processing time variations.
The backward sequence is widely used in practice due to its
simplicity, traceability, and high throughput rate under deter-
ministic processing times. However, its performance has not
been guaranteed with processing time variations. This work
is the first one that provided analytical results of the back-
ward sequence. We derived a formula for the cycle time of a
fundamental cycle and optimality conditions for a certain cy-
cle. We then developed the upper bound on the average cycle
time of the sequence. We finally tested the sequence exper-
imentally and showed that the gap from the lower bound is
not large. Further research might include analyzing a swap
sequence for dual-armed cluster tools with processing time
variations.
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