
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Cyber-Physical Planning: Deliberation for
Hybrid Systems with a Continuous Numeric State

Arthur Bit-Monnot, Luca Pulina
University of Sassari, Sassari, Italy

{afbit, lpulina}@uniss.it

Armando Tacchella
University of Genoa, Genoa, Italy

armando.tacchella@unige.it

Abstract

Cyber-physical systems pose unique deliberation challenges,
where complex strategies must be autonomously derived
and executed in the physical world, relying on continuous
state representations and subject to safety and security con-
straints. Robots are a typical example of cyber-physical sys-
tems where high-level decisions must be reconciled with
motion-level decisions in order to provide guarantees on the
validity and efficiency of the plan.
In this work we propose techniques to refine a high-level
plan into a continuous state trajectory. The refinement is done
by translating a high-level plan into a nonlinear optimization
problem with constraints that can encode the intrinsic limita-
tions and dynamics of the system as well as the rules for its
continuous control. The refinement process either succeeds
or yields an explanation that we exploit to refine the search
space of a domain-independent task planner. We evaluate our
approach on existing PDDL+ benchmarks and on a more re-
alistic and challenging rover navigation problem.

1 Introduction
The research field of model-based deliberation has given
rise to different strands, depending on whether they target
a general view of intelligence (in AI) or systems with a
physical embodiment (as in Robotics). This separation of
concerns has enabled the development of a wealth of effi-
cient dedicated methods targeting each field’s specific prob-
lems but that have been only loosely integrated. We are to-
day reaching the limits of what can be achieved through
this separation of concerns in terms of efficiency, scalability
and safety of complex autonomous Cyber-Physical Systems
(CPS) (Rajan and Saffiotti 2017).

Indeed, research in AI and more specifically in planning
and scheduling has been mostly concerned with the high-
level discrete decisions that must be taken into account to
build a successful and high-quality plan while abstracting
away most of the lower level details of the system. On the
other hand, decision problems for CPS have to deal with the
physics associated with the state of the system and are often
deeply concerned with the metric and temporal environment
in which the system evolves.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Motivation Consider a planetary exploration rover com-
posed of a mobile base and a robotic arm with an end effec-
tor allowing for object manipulation. A rover can perform
of a variety of tasks including: collecting a soil sample in a
given area of the map, taking a picture of a landmark and
collecting a previously identified rock at given coordinates.
The rover’s batteries are continuously discharging and can
be recharged in some predefined areas. To achieve its objec-
tives, a rover is required to navigate in a mapped environ-
ment while avoiding obstacles and ensuring that its battery
level remains above a safety threshold.

At the most abstract level, the problem requires formulat-
ing a (discrete) plan that allocates and schedules tasks to the
rover so that all high-level goals are fulfilled. Such a high-
level plan must eventually be refined through lower-level de-
cisions, especially regarding the trajectory of the rover. Such
a refined plan must be such that all motions implied by the
high-level actions have a corresponding trajectory that is fea-
sible with respect to the robot’s kinematics and dynamics.
Furthermore, the trajectories chosen should not impact the
validity of the imposed properties of the plan by, e.g., caus-
ing a deadline to be missed or a rover to run out of battery.

Of course, it might be the case that a high-level plan can-
not be refined to a low level trajectory, because of the dis-
crepancies between the high-level model and actual contin-
uous dynamics of the environment.

Outline Our objective in this paper is to tackle the prob-
lem of mixed discrete-continuous planning in which an au-
tonomous agent must reconcile the discrete, task-level, de-
cisions with the need to eventually refine them down to a
continuous trajectory that can be leveraged by a low-level
controller. In particular, we are interested in problems that
require fine-grained control of the continuous state evolution
as it typically occurs in navigation problem.

We first introduce a general method for refining discrete
decisions into continuous trajectories with fine-grained con-
trol. We build for this on nonlinear optimization techniques
as a mean to fulfill a set of constraints on the continuous state
evolution. Second, we detail how this refinement process can
be integrated with domain-independent task planners where
a task level plan is refined into a continuous trajectory and
feedback is provided as a result of failure to do so.

49



2 Running Example
As a concise running example, we adapt the 1-dimensional
car problem by Fox and Long (2006). The continuous state
of a car is a tuple (d, v) ∈ R2 where d is the distance to the
origin and v is the velocity. The car can be in two operating
modes, denoted by a boolean state variable running that is
true iff the engine is turned on. The driver can control the
acceleration, denoted by a control parameter a ∈ [−1, 1],
which has no effect when engine is turned off. The contin-
uous state evolution is given by the following differential
equations:

ḋ = v v̇ =

{
a, if running = true
0, otherwise

(1)

In addition, the velocity should be null whenever the engine
is off (i.e. running ∨ v = 0).

3 Definitions
Definition 1 (Hybrid Domain). A hybrid domain Σ is a tu-
ple (S,Vx,Vu,Flow,A,Trans,Guards, Inv) where:

• S is a finite set of discrete states
• Vx = {x1, . . . , xn} is a set of continuous state variables.

We denote as X = Rn the set of possible assignments.
• Vu = {u1, . . . , um} is a set of control variables. Let us

denotes as U = Rm the set of possible assignments.

• Flow : S×X×U → Ẋ is the flow function that gives the
evolution of continuous state variables in a discrete state
(s ∈ S) under a given control (u ∈ U ).

• A is a finite set of symbols denoting actions
• Trans : A × S → S denotes the transition function that

gives the discrete state resulting in the applying an action
in a given discrete state.

• Guards : A → 2S×X , the guards, give the set of possi-
ble assignments to continuous variables for a transition to
occur in a given discrete state.

• Inv : S → 2X×U , the invariants, gives the set of allowed
assignments to continuous and control variables in a given
discrete state s ∈ S.

Our running example is translated into a hybrid domain
with (i) S composed of two discrete states corresponding to
(running = true) and (running = false), (ii) two continu-
ous state variables Vx = {d, v}, and (iii) one control vari-
able Vu = {a}. The flow function is given by Eq. (1). A
contains two instantaneous discrete actions that respectively
turn-on and turn-off the engine. The corresponding effects
and conditions are encoded in transitions Trans and guards
Guards.

Definition 2 (Hybrid Problem). A hybrid problem is a tuple
H = (Σ, s0, x0, G) where:

• Σ is a hybrid domain,
• s0 ∈ S is the initial discrete state,
• x0 ∈ X is the initial continuous state,
• G ⊆ 2S×X , the goal, is the set of accepting final states.

Given a sequence of instantaneous events (happenings),
we use a hybrid time domain to refer to the (absolute) occur-
rence time of each happening.
Definition 3 (Hybrid Time Domain). A hybrid time domain
with an horizon T ∈ R≥0 and n happenings is given by
a sequence of times 〈t0, t1, . . . , tn+1〉 such that t0 = 0,
tn+1 = T and ti ≤ ti+1.
Definition 4. A plan Π over a hybrid time domain ΦΠ with
horizon T and n happenings is a tuple (πΠ,ΦΠ, uΠ) where:
• πΠ = 〈a1, . . . , an〉 is a sequence of actions such that ai ∈
A is the discrete action to take at the ith happening.

• ΦΠ = 〈t0, . . . , tn+1〉, the hybrid time domain, acts as a
schedule by associating each action ai to a timestamp ti.

• uΠ(t) : [0,T]→ U is the control to apply at time t.
For a given hybrid problem and plan, the discrete

state immediately after each happening i is given by
si = Trans(ai, si−1). The continuous state at time
t ∈ [tj , tj+1] derives from the activity function: ẋ(t) =
Flow(si, x(t), u(t)). Fixing x(0) = x0 as given in the prob-
lem definition allows a complete simulation of the evolution
of x(t) over [0,T].
Definition 5 (Solution). A plan Π with n happenings is a
solution to a hybrid problem if and only if:
• ∀i ∈ {1..n} : (si−1, x(ti)) ∈ Guards(ai), i.e., the guards

of the ith action are satisfied.
• ∀i ∈ {0..n}, t ∈ [ti, ti+1] : (x(t), u(t)) ∈ Inv(si), i.e.,

the invariants associated to a discrete state si hold.
• (sn, x(T)) ∈ G, where T is the temporal horizon of Π and
G is the goal set, i.e., the last state is an accepting state.

4 Decision Procedure for the Refinement
Problem

Let us first focus on the problem of refining a discrete plan
(i.e., a sequence of instantaneous actions) into a control
strategy and the associated continuous state trajectory.
Definition 6 (Refinement problem). Given a hybrid problem
H and a sequence of actions π = 〈a1, . . . , an〉, the refine-
ment problem is the one of finding:
• a hybrid time domain Φ = 〈t0, . . . , tn+1〉, and
• a control function u(t) defined over [t0, tn+1]

such that the plan (Φ, π, u) is a solution toH.
In this section, we detail a decision procedure for the re-

finement problem. We defer the treatment of the generation
of discrete state sequences to Section 5.

4.1 Plan Refinement as Nonlinear Optimization
Given the computational cost induced by nonlinear con-
straint satisfaction problems (Nocedal and Wright 1999),
we consider the use of unconstrained nonlinear optimization
techniques for the generation of continuous state trajecto-
ries. In this process, we build on the insights of (Rösmann,
Hoffmann, and Bertram 2017) that used a similar, though
more specialized, approach in the context of trajectory opti-
mization for robotic navigation.

50



Least-square optimization problem Let bbb be a real val-
ued vector representing the variables of a system. In an op-
timization problem the objective is to find a vector bbb∗ that
minimizes an objective function O:

bbb∗ = arg min
bbb
O(bbb) (2)

An optimization problem is said to be a least-square op-
timization problem if the objective function is of the form:

O(bbb) =
∑
k

rk(bbb)2 (3)

where each rk(bbb) term is called a residual and typically rep-
resents an individual error that should be minimized in a so-
lution bbb∗. We are further interested in nonlinear least-square
optimization problems each rk can take an arbitrary form.

4.2 Refinement as Nonlinear Least Squares
Let us define Q = X × U × R+ such that a vector q ∈ Q
is composed of an assignment x(q) ∈ X to continuous state
variables Vx, an assignment u(q) ∈ U to control variables
Vu and a temporal delay δt(q) ∈ R+.
Definition 7 (Refinement). The refinement of a given dis-
crete state trajectory with n happening is a trajectory T :

T = 〈qqq0
0, q

0
1 , . . . , q

0
m0
, qqq1

0, q
1
1 , . . . , q

n
mn
, qqqn+1

0 〉
such that:
• each happening i is associated to a state qqqi0 ∈ Q,
• between two happenings i, i + 1 the state evolution is

given by a sequence ofmi continuous states 〈qi1, . . . , qimi
〉

• for each q ∈ T , δt(q) ∈ R+ denotes the time elapsed
until the next state in T .
In a preliminary step, let us assume that the “shape” of the

solution trajectory T is known, that is, for each happening i
we are given the number mi of intermediate states until the
next happening.

Decision variables Determining an actual trajectory for T
boils down to giving, for each q ∈ T a value f(q) ∈ R
to each variable f ∈ Q. We can thus define the set of real
valued decision variables VT as:

VT =
⋃
q∈T
{f(q) : f ∈ Q}

The input vector of the optimization problem can be ob-
tained by laying out variables of VT into a vector bbb. E.g.
bbb = [d(q0), v(q0), a(q0), δt(q0), d(q1), v(q1), . . . ] for our
running example.

From constraints to errors The set of constraintsCT that
must hold for a trajectory T to be valid is obtained by tak-
ing the conjunction of the following constraints that respec-
tively enforce (1) invariants, (2) guards, (3) flow constraints,
(4) start conditions, and (5) goal conditions:

1 (x(qij), u(qij)) ∈ Inv(si) ∀i, j
2 (si−1, x(qi0)) ∈ Guards(ai) ∀i ∈ {1..n}
3

x(qij+1)−x(qij)

δt(qij)
= Flow(si, x(qij), u(qij)) ∀i, j < mi

4 x(q0
0) = x0 –

5 (sn, x(qn+1
0 )) ∈ G –

At this point, let us note that each constraint in CT can be
expressed solely as a function of the decision variables VT
and thus of bbb. Indeed, the ai and si terms of the original con-
straints are fixed and known from the definition of the refine-
ment problem. By systematically substituting them, one can
express each constraint in CT as a boolean function ck(bbb).

To complete our mapping to least-square optimization,
we must now express each constraint ck(bbb) as a real valued
residual term rk(bbb) such that rk(bbb) = 0 implies ck(bbb) = true

We do this with a recursive transformation e(·) that maps
a boolean expression into a real valued one. e(·) is defined
recursively by the following transformations rules, where a,
b and c are boolean expressions, x and y are real valued
expressions and ite(a, b, c) is a conditional expression that
evaluates to b if a = true and to c otherwise.

Original term Rewritten term
e(true) 0
e(false) ∞
e(a ∨ b) min{|e(a)|, |e(b)|}
e(a ∧ b) |e(a)|+ |e(b)|
e(x = y) y − x
e(x ≤ y) max{x− y, 0}
e(x < y) max{x− y − ε, 0}

e(ite(a, b, c)) ite(a, e(b), e(c))

It is easy to verify that e(a) = 0 iff a = true and we can
define rk(bbb)

def
= e(ck(bbb)). The objective function is defined

as the squared sum of all residuals, thus defining a least-
square minimization problem:

bbb∗ = arg min
bbb
OT (bbb)

OT (bbb) =
∑
k

rk(bbb)2

4.3 Solution of the Optimization Problem
Recall that our optimization problem is defined for a particu-
lar solution shape T . The solution we are looking for is thus
a pair (T ∗, bbb∗) such that OT ∗(bbb∗) = 0.

Solution Approximation Finding such a solution is typ-
ically computationally very expensive and we instead pro-
pose to look for an approximate solution (T̂ , b̂bb) where each
residual is bounded above by a finite small quantity emax,
the maximal error tolerated on a constraint violation.

Also important for defining an approximate solution is the
choice of the time discretization, i.e., the time elapsed be-
tween two consecutive states in T̂ (for which we use the
notation δt(·)). A bound δtmax on this temporal gap can be
expressed directly as a constraint ∀q ∈ T : δt(q) ≤ δtmax.

Provided emax and δtmax, an approximate solution is a
pair (T̂ , b̂bb) such that:

∀k, rk(b̂bb) ≤ emax

∀q ∈ T̂ , δt(q) ≤ δtmax

(4)

51



Resolution Scheme Before diving into the resolution pro-
cess let us first give an intuition of how numeric solvers
based on some form of gradient descent would proceed in
minimizing a single first-order constraint between two states
in our model.
Example 1. Consider two states q1 and q2 related by the
following constraint that imposes a velocity of 1:

ḋ(q1) =
d(q2)− d(q1)

δt(q1)
= 1

and an incumbent solution bbb corresponding to the assign-
ment:

d(q1)← 0 d(q2)← 1 δt(q1)← 0.1

The residual at bbb would be 1− 1−0
0.1 = −9.

A solver relying on the gradient to decide how to up-
date the solution would analyze the first order partial deriva-
tives and conclude that the residual can be decreased by
(i) decreasing d(q2), (ii) increasing d(q1) or (iii) increas-
ing δt(q1). The solver would then compute an update to the
incumbent solution that follows the descent direction indi-
cated by the gradient. Here, the updated incumbent could,
e.g., correspond to the following assignment:

d(q1)← 0.2 d(q2)← 0.8 δt(q1)← 0.5

corresponding to a velocity of 1.2 and a residual of −0.2.

From example 1, it should be obvious that our formulation
allows the solver to act both on the values of state variables
as well as on the temporal gap between states. We exploit
this property in our resolution procedure as follows. Start-
ing with the smallest possible T containing one state for
each happening and a randomly generated incumbent solu-
tion bbb, we use a nonlinear least-square solver to minimize
constraint violations, resulting a new incumbent bbb′. bbb′ can
be though as a first, very rough, approximation of the final
solution. Except in trivial cases, it will likely be the case
that the δt(·) ≤ δtmax constraints cannot by satisfied with-
out also violating the other constraints. In such a case, the
solver would look for an intermediate solution with δt(·)
terms above the threshold wherever this helps in minimiz-
ing the residuals of other constraints. We treat the presence
of δt(·) > δtmax in bbb′ as evidence that the current solution
shape T is too tight and needs to be extended to obtain a
valid solution.

Scaling solution shapes
Definition 8 (Band). For a given solution shape with n hap-
penings:

T = 〈qqq0
0, q

0
1 , . . . , q

0
m0
, qqq1

0, q
1
1 , . . . , q

n
mn
, qqqn+1

0 〉,

we define the band of the ith happening as the sequence of
mi + 1 states between the ith happening and the next one:

Bi = 〈qqqi0, . . . , qimi
〉

Given an incumbent bbb, let δti be the average value of δt(q)
for each q ∈ Bi. Having δti > δtmax, indicates that the band

is too tight while δti < δtmax indicates that the band is too
large. We define a new solution shape T ′ where the number
of states in each band is given by m′i:

m′i = mi ×min { δti
δtmax

, 2 }

The new incumbent solution bbb′ extrapolates its values
from bbb. Namely, for all states q′ ∈ B′i, δt(q′) is given a value
of δtmax × m′i

mi
. For each variable f ∈ Q, the value of f(q′)

is linearly interpolated from the two enclosing states in Bi.
We later refer to this as the SCALE(T , bbb) procedure that

returns the new solution shape and associated incumbent so-
lution (T ′, bbb′)
Minimization A wealth of algorithmic approaches have
been devised for solving nonlinear least-square optimiza-
tion problems such as the Gauss-Newton and Levenberg-
Marquardt (LM) algorithms (Nocedal and Wright 1999). We
use the LM approach that has previously shown to be robust
and efficient on similar problems in robotics (Rösmann et
al. 2012). We here give short presentation of the LM method
and refer to the reader to Nocedal and Wright (1999) for
further information.

Defining as r(bbb) the vector of individual residuals
[r0(bbb), r1(bbb), . . . ]>, LM iteratively refine the incumbent so-
lution as bbb ← bbb + ∆bbb where the update ∆bbb is obtained by
solving the linear system:

(JJJ>JJJ + λIII)×∆bbb = −JJJ> × r(bbb) (5)
where JJJ denotes the jacobian of the objective function at bbb,
III is the identity matrix and λ is a damping factor. In the case
of least squares minimization problems, JJJ can be computed
by combining the individual partial derivatives of residuals
rk(bbb). The damping factor λ is defined such that higher λ
results in smaller ∆bbb. It is used by the LM algorithm to dy-
namically control the step size in the case of nonlinear sur-
faces. Provided with an initial estimate bbb, the LM method
will iteratively refine it with a ∆bbb update until a stopping
condition is met (e.g., no progress is made or the objective
is below a target threshold).

The greatest cost of LM lies in solving the linear system
of Eq. (5) that has a complexity of O(n3). Let us observe
that our model is defined such that a given incumbent rk
only refers to a small subset of the variables of the system.
For an invariant constraint (e.g. d(q) = 0), those are limited
to the variables of a single state q, while constraints involv-
ing derivatives might only refer to the variables of two adja-
cent states. The direct consequence is that the jacobian JJJ is
a sparse, banded matrix. This enables the use of sparse ma-
trix algorithms for the resolution of Eq. (5), and notably of
sparse Cholesky factorization (Davis 2006) that can provide
orders of magnitude improvements for such problems and
has notably be exploited in graph optimization frameworks
(Rainer, Grisetti, and Konolige 2011).

We define the procedure MINIMIZE(bbb, C) as repeatedly
refining bbb by means of an LM iteration, where the residuals
corresponds to the errors associated to a set of constraints
of C : {e(c) | c ∈ C}. The procedure stops once a local
minimum or a maximum number of iterations is reached,
yielding a new incumbent solution bbb′.

52



Resolution Procedure The complete resolution process is
given in Alg. 1. The SOLVE(C, T , bbb, k) procedure first at-
tempt to minimize constraint violation within the current
solution shape T , resulting in a new incumbent solution
bbb′. If bbb′ can be shown to be a solution (Eq. (4)), then the
solver returns the solution (T , bbb′). Otherwise, if the maxi-
mum number of iterations has been reached, the solver stops.
When more iterations are allowed, the current solution will
be scaled before repeating the process. We start from the
smallest solution shape T0 containing a single state in each
band and a randomly drawn initial incumbent bbb0.

Algorithm 1 Decision procedure for a set of constraintsC, a
solution shape T , a current solution estimate bbb and a current
step k.

procedure SOLVE(C, T , bbb, k)
bbb′ ← MINIMIZE(bbb, C)
if is-solution(bbb′, C) then

return (T , bbb′)
else if k = kmax then

return Failure
else

(Tnext, bbbnext)← SCALE(T , b′)
return SOLVE(C, Tnext, bbbnext, k + 1)

end if
end procedure

Exploiting Constraint Orders We now detail how one
can exploit structural differences in constraints to consider a
small set of the simplest constraints in the first iterations and
iteratively extend this set towards more complex constraints
until the solution is valid with respect to all constraints of
the problem.

Let us define a hierarchy between variables corresponding
to the order of their associated derivatives. The order `(x)
of a state or control variable x ∈ Vx ∪ Vu is defined as
`(x) = 1+maxy l(y), where y ∈ Vx is a continuous variable
such that the variable x appears in the right hand side of a
flow constraint ẏ = e. Applying this definition to the car
domain would result in, `(d) = 1, `(v) = 2 and `(a) = 3.
Definition 9 (Constraint Order). We define the order `(c)
of a constraint c as `(x) if c is a flow constraint of the form
ẋ = e and 0 otherwise.

This notion of order directly relates to the order of a
derivative. A state invariant d(q) ≥ 0 would have the order
0 while a constraint involving a first derivative (e.g. ḋ = v)
would have an order of 1.

Let C` be the subset of constraints in CT whose order is
lesser than or equal to `. In Algorithm 2, we redefine the
resolution procedure as DEEPENINGSOLVE(`, T , bbb). For a
given order `, it invokes our previous SOLVE procedure but
limit its scope to constraints in C`. Once a solution is found
for `, the solver continues at order `+ 1 until an order `max

is reached such that C`max
= CT .

This scheme as the advantage of restricting its fo-
cus on the simplest constraints when searching for a
solution. This is for instance beneficial when invoking

DEEPENINGSOLVE(0, T0, bbb0) in which the first action of the
solver would be to transform the randomly drawn incumbent
solution bbb0 into one where all state invariants hold before
proceeding to satisfy first or second derivative constraints.

Algorithm 2 Alternative decision procedure that considers
subsets of constraints of increasing order.

procedure DEEPENINGSOLVE(`, T , bbb)
res← SOLVE(C`, T , bbb, 0)
if res = Failure then

return Failure
else

(T̂ , b̂bb)← res
if C` = CT then

return (T̂ , b̂bb)
else

return DEEPENINGSOLVE(`+ 1, T̂ , b̂bb)
end if

end if
end procedure

5 Mixed Discrete and Continuous Planning
In section 4, we focused on refining a sequence of discrete
actions into a continuous state trajectory and the associated
control function. In this section, we outline how such a dis-
crete plan can be computed by domain-independent plan-
ners and how we exploit failures of the refinement process
to guide the search for alternative discrete plans.

5.1 Discrete State Trajectories from
Domain-Independent Planners

Definition 10 (Classical planning problem). A classsical
planning problem is a tuple (S,A,Trans,P, s0,SG) where
S is a finite set of discrete states; A is a set of symbols de-
noting actions; Trans : A × S → S, is the state-transition
function; P : A → 2S , the preconditions, associates each
action to the set of states in which it is applicable; s0 ∈ S is
the initial state; and SG ⊆ S is the set of goal states.

From this definition, let us first note that S, A, Trans and
s0 map one-to-one with the eponimous terms in hybrid prob-
lems (Def. 1 and 2). To extract a classical planning problem
as a discrete abstraction of a hybrid problem, we must only
define how preconditions and goals relate to guards and ac-
cepting states, their counterparts in hybrid problems.

From G ∈ 2S×X , the accepting states of a hybrid prob-
lem, we can define SG as the projection of G on 2S . Sim-
ilarly, given Guards(a) ∈ 2S×X the guards of an action a,
we can define P(a) as the projection of Guards(a) on 2S .

For practical purposes, it is sound to overapproximate P
and SG since the original guards and accepting states will be
checked in the refinement process. For instance, if the guards
of the hybrid domain are defined as conjunctions of boolean
formulas over discrete and continuous state variables, it is
sound to keep only these conjuncts that exclusively refer to
discrete state variables when building the precondition for-
mulas of P .

53



This simple definition allows us to derive a discrete ab-
straction of a hybrid problem H in the form of a classi-
cal planning problem. The solution to a classical planning
problem being a sequence of actions, one can (i) leverage
domain-independent task planners to produce a discrete plan
π, and (ii) use the decision procedure of the previous section
to refine π into a solution to the original hybrid problem.

5.2 No-good Extraction
The naı̈ve scheme for solving hybrid problems would be to
have a discrete planner generate causally valid plans until
one can be refined to a valid continuous trajectory. This in-
deed constitutes the basis of our resolution strategy and we
now detail an extension to exploit the refinement failures to
prune the search space of the discrete planner.

After a refinement failure, let us denote as Z the set of
violated constraints in the last incumbent solution. We say
that two constraints c1 and c2 are adjacent if they share a
common variable. Let {Z1, . . . , Zk} be the connected com-
ponents of Z under the adjacency relation. Each Zj denotes
a set of constraints that contribute to making the refinement
problem unsatisfiable.

For the purpose of no-good extraction, we limit our anal-
ysis to Zj such that all constraints in it are part of a single
band Bi. Zj constitutes an invariant: it must be the case that
these constraints are not all active in the same band.

Recall that each band Bi is associated to a unique dis-
crete state si. Let us define the enabling assignment of a
constraint c as the partial assignment ea(c) to state vari-
ables in S that led to impose the constraint c. We find
this enabling assignment by intersecting the full discrete
state assignment si with the state variables of S present in
in the original constraint formulation. E.g. if a constraint
running ∨ (v = 0) is violated in a state corresponding to
the assigment {running ← false, crashed← false}, its en-
abling assignment would be ¬running.

Avoiding the conflict to be repeated requires that at least
one of the constraints in Zj is not enabled, which corre-
sponds to the proposition pj =

∨
c∈Zj

¬ea(c). Upon failure
of the refinement procedure, we return each such proposition
pj . The discrete solver can use it to discard from its search
space any state in which a pj does not hold.

6 Experimental Evaluation
We here present an experimental evaluation of our planner
(HYDRA), first with a comparison to PDDL+ planners and
then on a more involved domain representing the navigation
of a planetary exploration rover.

HYDRA uses LCP (Bit-Monnot 2018), an SMT-based
domain-independent task planner, as our discrete solver. We
exploit the incremental solving capability of the underlying
SMT solver to encode no-goods.

The refinement solver is configured to allow a maximum
of 30 scaling steps each leading to at most 30 iterations of
the LM method. δtmax is set to 0.1 on all attempted problems
while the maximum residual error, emax, is set to 10−4.

Domains are modeled in a specific language that closely

mirrors the definition of the hybrid domain and whose pre-
sentation is beyond the scope of this paper.

6.1 Comparison with PDDL+ Solvers
Our planning model differs from PDDL+ in its support of
continuous control. For instance, PDDL+ models of the car
domain encodes the control of the acceleration through two
discrete actions accelerate and decelerate that respectively
increase and decreases the acceleration by a fixed amount of
one. Distance, velocity and acceleration are all part of the
state of the system. This model has the consequence that the
flow of the system between two discrete actions is fixed as
control change is only allowed in discrete actions.

We compare our performance with DiNo (Piotrowski et
al. 2016) and ENHSP (Scala et al. 2016a) on the car and de-
scent domains from DiNo’s benchmarks. The car domain is
the one used as our running example with an additional con-
straint to model the drag when reaching high velocities. It
is provided with 10 instances in wich the maximum allowed
acceleration is increased.

Powered descent models a powered spacecraft landing on
a celestial body. The vehicle gains velocity due to the force
of gravity. The available action is to fire the thrusters of the
spacecraft to decrease its velocity by burning fuel which in
turn reduces its total mass. The thrust duration is limited by
the amount of propellant available. We use the 20 original
instances that differ by the distance that must be covered
before landing.

Results are given in Table 1. It can be seen that HYDRA
generally outperforms DiNo with overall shorter runtimes.
On the solution quality (makespan), both solver provided
similar results with none strictly dominating the other. Inter-
esting to note is that on the car problem, HYDRA is not af-
fected by the increase in allowed velocity. This in fact makes
sense: for DiNo allowing larger accelerations increases its
state space while for HYDRA it only relaxes some con-
straints on the state trajectory.

ENHSP scales better than DiNo on the car problem with
runtimes within a factor 2 of HYDRA’s. It however fails
to solve any of the descent problem with δtmax = 0.1.
ENHSP’s performance appeared to be very dependent on the
choice of the temporal delta: with δtmax = 1 it would solve
all problems within a handful of seconds.

SMTPlan+ (Cashmore et al. 2016) is not included in the
comparison as it timed out on all instances. Note that the do-
mains include non-polynomials functions that are not fully
supported by SMTPlan+.

We could not evaluate the efficiency of no-good learning
on these benchmarks since for both domains, the second dis-
crete solution was always refinable.

6.2 Rover Navigation
PDDL+ domains from DiNo’ set of benchmarks are limited
to a single dimension with limited control capabilities. To
further assess our planner, we introduce a more challenging
problem of planning rover activities where the rover has to
move in 2D space subject to placement and orientation con-
straints (for manipulation and obstacle avoidance) as well as
kinodynamic constraints on velocity and acceleration. The

54



Car Descent (1–10) Descent (11–20)
DiNo ENHSP HYDRA DiNo ENHSP HYDRA DiNo ENHSP HYDRA

1 3.18 5.93 3.75 1.49 – 3.43 12.62 – 5.47
2 13.81 6.64 3.0 2.30 – 3.7 69.60 – 6.78
3 30.70 6.12 3.11 4.43 – 3.3 18.54 – 7.5
4 51.49 6.39 2.9 11.44 – 4.11 62.36 – 7.45
5 84.77 5.31 3.14 9.17 – 4.51 63.64 – 9.69
6 96.27 7.67 2.87 6.94 – 4.48 78.91 – 10.43
7 128.17 7.11 2.98 9.96 – 4.52 3.67 – 6.39
8 162.02 6.79 3.18 9.93 – 4.55 – – 34.93
9 206.03 6.77 2.76 65.09 – 4.56 – – 8.2
10 216.75 7.33 2.92 3.80 – 4.62 – – 7.75

Table 1: Runtimes in seconds for DiNo, ENHSP and HYDRA for the 10 car domains and the 20 planetary descent domains. –
indicates a timeout after 30 minutes. All runtimes were obtained on an Intel Core i5-7200U @ 2.50GHz. Best result is given in
bold font.

problem requires to decide the course of action of a plan-
etary rover that must take pictures of particular landmarks,
collect rocks and sample soil in predefined areas.

The continuous state of a rover is a tuple (x, y, θ, v) where
(x, y) ∈ R2 denotes its coordinates in a 2D euclidian space,
θ ∈ S is its orientation and v ∈ R is its forward velocity.
The car is controlled by two parameters: a ∈ R being its ac-
celeration and s ∈ S the steering angle of the front wheels.
Using the models for nonholonomic wheeled vehicles (Lau-
mond, Sekhavat, and Lamiraux 2006), the state evolution of
the rover is given by the following differential equations:

ẋ = v × cos(θ)
ẏ = v × sin(θ)

θ̇ = v × tan(s)/L

v̇ = a

where L is the distance between the front and rear wheels.
The rover is further subject to velocity, acceleration and

kinematic constraints. Constraints for obstacle avoidance
and presence in an area are encoded as inequalities on the
distance to an implicit surface (Gomes et al. 2009). Formu-
lation of these constraints are omitted for the sake of space
but can be easily adapted from existing formulations in
the robotics literature on trajectory optimization (Rösmann,
Hoffmann, and Bertram 2017).

The discrete part of the domain contains actions pick,
take-picture, and sample-soil. The first two actions impose
distance and orientation requirements to the rover’s pose
with respect to a landmark in the map while sample-soil re-
quires the rover to be in a given, rather large, area. All ac-
tions thus restrict the position of the rover but leave some
freedom that can be leveraged to optimize the global trajec-
tory in the map.

We experimented on 10 variations of the problem with up
to six tasks. It was relatively easy for LCP to find an initial
discrete plan which it always provided in less than a second.

We hand tuned four of the problems so that the most ob-
vious solution at the discrete level had no valid refinement.
On these four domains, no-good acquisition proved useful,
reducing the total number of failures from 12 to 5 as a result

Figure 1: A kinematically feasible sequence of trajectories
for a rover with car-like dynamics. The task level plan has
the rover starting in a given position (top), drive to take a
picture of the red object and drive to a position from which it
can pick the blue object (bottom left). Red arrows denote the
position of the rover at happenings of the plan while green
arrows represent intermediate states.

of forbidding different ordering of the same plan. In all prob-
lems of this domain that emphasizes trajectory planning, the
bottleneck appeared to be in the plan refinement part.

During refinement of these problems, the average num-
ber of states in the incumbent trajectory was 837 and corre-
sponds to an average runtime of 4 millisecond per LM iter-
ations. Total time for a refinement tentative is in the order
of the second, with more time spent to failed attempts as the
solver exhausts its budget before abandoning.

An example trajectory in given in Figure 1. It should be
noted that intermediate poses are not fixed but only subject
to distance and orientation constraints with respect to land-
marks of the map. This is illustrated by the choice of the
position to take a picture that is automatically chosen to be
close to the origin and destination and such that the maneu-
ver to go to the next waypoint is kept efficient (note that
the rover moves backward while turning before advancing
toward the last target pose).

55



Most existing PDDL+ planners were unable to even ap-
proach the problem: the absence of support for trigonomet-
ric functions in planners prevented a realistic encoding of
even the simplest robot motion models (e.g. the Dubins car
(LaValle 2006)) in PDDL+. While ENHSP supports trigono-
metric functions, it failed to solve the simplest point-to-point
navigation problem with no obstacles for the Dubins car. Our
understanding is that the heuristic used by ENHSP fails to
capture the complex relationship between the orientation θ
of the rover and its (x, y) coordinates when evaluating the
distance to the goal.

7 Related Work
Our definition of a hybrid domain closely relates to hybrid
automata (Kowalewski et al. 2009) but differs by explicitly
considering the control variables Vu. In hybrid automata, the
control variables are embedded in the discrete states which
fully define the control mode (making the number of pos-
sible controls finite). Here the set of possible controls is
potentially infinite (but is subject to invariants) and can be
changed without a discrete state transition. Our definition
also places some restrictions with respect to the usual defi-
nition of a hybrid automaton, namely by only allowing for
deterministic state transitions and forbidding jumps on con-
tinuous variables.

Support for continuous numeric change in AI planning
has primarily been done by integrating numeric decision
procedures in a forward search setting. COLIN (Coles et
al. 2012) support linear continuous change by integrating
forward search with a linear programming solver. Similarly,
ScottyActivity (Fernández-González, Williams, and Karpas
2018) is still limited to linear continuous change but ad-
ditionally supports convex quadratic constraints by relying
on a Second Order Cone Program (SCOP). An important
limitation of ScottyActivity is the convexity requirement on
constraints that prevents, e.g., the encoding of obstacles in
robotic navigation problems. ENHSP (Scala et al. 2016a)
relies on an eager time-discretization combined with elab-
orated heuristics to explore its search space in a forward
manner. This schemes allows ENHSP to support a richer set
of mathematical functions (and notably transcendental func-
tions).

PDDL+ (Fox and Long 2006) allows the definition of pro-
cesses that describe the continuous evolution of a numeric
state and is now supported by several planners (Cashmore
et al. 2016; Bryce et al. 2015; Piotrowski et al. 2016). One
limitation with respect to our objective is that processes con-
veniently model the dynamics of the system but fails short
when trying to specify the operating limits of a controller.
Again fined-grained control could in theory be obtained by
multiplying the number of actions, but one would quickly
hit the scalability limits of current planners. The work of
Scala et al. (2016b) is a notable exception in its capabil-
ity to handle the long actions sequence that are necessary
for trajectory planning, but imposes important limitation on
the feasible trajectories and has no support for time which
prevents its use for constraining the state evolution beside
simple invariants.

Work in motion planning has seen steady progress with
now well established methods and tools (LaValle 2006) with
the last ten years seeing important interest in the problem of
joint ask and Motion Planning (TAMP). However, most of
the work in TAMP has focused on geometrically demand-
ing manipulation problems with a single agent, no support
for time and minimal interactions regarding task-level re-
quirements as reviewed by Lagriffoul (2016). An interesting
approach is taken by Lagriffoul and Andres (2016) on iden-
tifying the cause of an infeasible plan refinement. Dantam
et al. (2016) exploit similar insights to feed an SMT solver
with additional clauses when solving joint task and motion
planning problems. Mansouri and Pecora (2014) take the
different approach of directly encoding geometric require-
ments into a constraint-based planner with dedicated prop-
agation techniques. While relevant, work on refining a task
level plan into kinematically feasible trajectories, typically
decouples the task and trajectory planing parts and assumes
a priori known target poses (Pecora et al. 2018). For our
purpose, an inherent limitation is that these techniques are
highly specialized to find collision free trajectories which is
only a subpart of the problem.

8 Discussion and Conclusion

We explored the refinement of task-level plans into con-
tinuous state trajectories through nonlinear optimization
techniques and provided an integration with domain-
independant task planners through no-good acquisition.

The refinement technique is very general and makes no
assumption on the structure of the numeric state, with con-
straints allowing to encode, e.g., invariants, flow, object
placement or kinematics. The refinement of a task-level plan
allows continuous control over the state trajectory which we
demonstrated on trajectory planning for a rover with differ-
ential constraints.

An important area for future work is to support the explo-
ration of distinctive topologies in the continuous state space.
In the current resolution process, the refinement process
could stop in a local optimum in which avoidable constraint
violations remains. While this limitation did not manifest it-
self in the attempted problems, it could force the domain
modeler to explicitly drive the search of the discrete plan to-
ward distinct continuous trajectories. Even though very spe-
cialized to their particular problems, we believe the work in
robotics and motion planning would constitute a good en-
try point for tackling this problem, notably with the notion
of homotopic paths that captures most of our requirements
(Schmitzberger et al. 2002; Jaillet and Simeon 2008).

Acknowledgements

The research of Arthur Bit-Monnot and Luca Pulina has
been funded by the EU Commission’s H2020 Program un-
der grant agreement N.732105 (CERBERO project). The
research of Luca Pulina has been also partially funded by
the Sardinian Regional Project PROSSIMO (POR FESR
2014/20-ASSE I) and the FitOptiVis (ID: 783162) project.

56



References
Bit-Monnot, A. 2018. A Constraint-based Encoding for
Domain-Independent Temporal Planning. In International
Conference on Principles and Practice of Constraint Pro-
gramming (CP).
Bryce, D.; Gao, S.; Musliner, D.; and Goldman, R. 2015.
SMT-based Nonlinear PDDL+ Planning. In AAAI Confer-
ence on Artificial Intelligence.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT.
In International Conference on Automated Planning and
Scheduling (ICAPS).
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with Continuous Linear Numeric Change. Journal
of Artificial Intelligence Research (JAIR) 44.
Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2016. Incremental Task and Motion Planning: A
Constraint-Based Approach. In Robotics: Science and Sys-
tems Conference.
Davis, T. A. 2006. Direct Methods for Sparse Linear Sys-
tems. SIAM, Philadelphia.
Fernández-González, E.; Williams, B. C.; and Karpas, E.
2018. ScottyActivity: Mixed Discrete-Continuous Planning
with Convex Optimization. Journal of Artificial Intelligence
Research (JAIR) 62.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial In-
telligence Research (JAIR) 27.
Gomes, A.; Voiculescu, I.; Jorge, J.; Wyvill, B.; and Gal-
braith, C. 2009. Implicit Curves and Surfaces: Mathematics,
Data Structures and Algorithms. Springer-Verlag London.
Jaillet, L., and Simeon, T. 2008. Path deformation
roadmaps: Compact graphs with useful cycles for motion
planning. International Journal of Robotics Research (IJRR)
27(11-12).
Kowalewski, S.; Garavello, M.; Guéguen, H.; Herberich, G.;
Langerak, R.; Piccoli, B.; Polderman, J. W.; and Weise, C.
2009. Handbook of Hybrid Systems Control: Theory, Tools,
Applications. Cambridge University Press.
Lagriffoul, F., and Andres, B. 2016. Combining task and
motion planning: A culprit detection problem. International
Journal of Robotics Research (IJRR).
Lagriffoul, F. 2016. On Benchmarks for Combined Task
and Motion Planning. In RSS Workshop on Task and Motion
Planning.
Laumond, J. P.; Sekhavat, S.; and Lamiraux, F. 2006. Guide-
lines in nonholonomic motion planning for mobile robots. In
Robot Motion Planning and Control.
LaValle, S. M. 2006. Planning Algorithms. Cambridge
University Press.
Mansouri, M., and Pecora, F. 2014. More Knowledge on
the Table: Planning with Space, Time and Resources for
Robots. In International Conference on Robotics and Au-
tomation (ICRA).

Nocedal, J., and Wright, S. J. 1999. Numerical Optimiza-
tion. Springer Series in Operations Research.
Pecora, F.; Andreasson, H.; Mansouri, M.; and Petkov,
V. 2018. A Loosely-Coupled Approach for Multi-Robot
Coordination, Motion Planning and Control. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic planning for PDDL+ domains. In
International Joint Conference on Artificial Intelligence (IJ-
CAI).
Rainer, K.; Grisetti, G.; and Konolige, K. 2011. g2o : A Gen-
eral Framework for Graph Optimization. In International
Conference on Robotics and Automation (ICRA).
Rajan, K., and Saffiotti, A. 2017. Towards a science of
integrated AI and Robotics. AI 247.
Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; and
Bertram, T. 2012. Trajectory modification considering dy-
namic constraints of autonomous robots. In German Con-
ference on Robotics (Robotik).
Rösmann, C.; Hoffmann, F.; and Bertram, T. 2017. Inte-
grated online trajectory planning and optimization in distinc-
tive topologies. Robotics and Autonomous Systems 88.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016a.
Interval-based relaxation for general numeric planning. In
European Conference on Artificial Intelligence (ECAI).
Scala, E.; Ramirez, M.; Haslum, P.; and Thiebaux, S. 2016b.
Numeric Planning with Disjunctive Global Constraints via
SMT. In International Conference on Automated Planning
and Scheduling (ICAPS).
Schmitzberger, E.; Bouchet, J.; Dufaut, M.; Wolf, D.; and
Husson, R. 2002. Capture of homotopy classes with proba-
bilistic road map. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

57


