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Abstract

Adaptive control is a classical control method for complex
cyber-physical systems, including transportation networks. In
this work, we analyze the convergence properties of such
methods on exemplar graphs, both theoretically and numer-
ically. We first illustrate a limitation of the standard back-
pressure algorithm for scheduling optimization, and prove
that a re-scaling of the model state can lead to an improve-
ment in the overall system optimality by a factor of at most
O(k) depending on the network parameters, where k charac-
terizes the network heterogeneity. We exhaustively describe
the associated transient and steady-state regimes, and derive
convergence properties within this generalized class of back-
pressure algorithms. Extensive simulations are conducted on
both a synthetic network and on a more realistic large-scale
network modeled on the Manhattan grid on which theoretical
results are verified.

Introduction
We consider the scheduling problem on queuing networks,
and specifically on urban road networks. Concretely, the
problem consists of the allocation of time slots to traffic
lights at intersections. While the routing policy may impact
the stability of the scheduling solution (Boyer, Blandin, and
Wynter 2015), the routing problem is often considered de-
coupled (Nikolova, Brand, and Karger 2006) and is not ad-
dressed here.

The computational complexity of the scheduling problem
on large-scale road networks has motivated the search for ef-
ficient decentralized algorithms only requiring local knowl-
edge of network properties and efficient in the absence of
coordination. Such decentralized approaches have proven
quite efficient in practice (Smith et al. 2013; Xie, Smith, and
Barlow 2012), have connections with fluid dynamic mod-
els (Brett et al. 2016), and are amenable to agent-based
learning methods such as reinforcement learning (Richter,
Aberdeen, and Yu 2007).

In the context of communication networks, the backpres-
sure algorithm (Tassiulas and Ephremides 1992) provides
a throughput-maximizing control policy, i.e. a policy that
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guarantees that given any feasible flow, the maximal net-
work queue size is asymptotically bounded. Furthermore,
the backpressure policy requires only evaluation of queue
size on neighboring road links.

Several properties of the backpressure algorithm make it
appealing for adaptive control of dynamical road networks.
First, the backpressure solution is a policy, which by defini-
tion is able to handle variability of the network state. Second
it can be implemented and deployed in a fully decentralized
manner since it requires only local information. Lastly, it
comes with theoretical guarantees on the queue size, and has
been shown to perform very well in practice.

In the context of intelligent transport systems, significant
research efforts have been dedicated to extensions of the
backpressure algorithm in recent years, in particular to ad-
dress the specifics of traffic light scheduling on road net-
works (Varaiya 2009). The case of unknown routing rates
was also investigated (Gregoire et al. 2014), as well as the
case of queues with finite capacity (Gregoire et al. 2015),
see also (Hu and Smith 2017a) and (Hu and Smith 2017b).

In-depth theoretical analysis of the backpressure proper-
ties, such as its behavior under heavy load conditions (Bram-
son 1999), or its link with game theory (Tenbusch et al.
2014) have also been investigated (Singh and Stolyar 2015;
Moharir and Shakkottai 2013). Similar results exist for the
closely related max weight algorithm (Stolyar and others
2004) and an adapted backpressure algorithm (Venkatara-
manan et al. 2010) has been devised in this context. The
backpressure algorithm was also shown to be a greedy gra-
dient descent over the quadratic potential (Wunder and Kas-
parick 2012). In this context, acceleration methods have
been proposed (Zargham, Ribeiro, and Jadbabaie 2013). We
refer to (Moeller et al. 2010) for application to wireless sen-
sor networks.

One of the most explicit drawbacks of the backpressure
algorithm occurs at a network scale: in steady state, for
certain model networks, queue sizes strictly decrease from
the origin to the destination along every possible path (Bui,
Srikant, and Stolyar 2009), (Ying et al. 2011), meaning that
commuters traveling over longer paths incur longer queues.
In this body of work, adjustments have been proposed via
the consideration of an additional design cost explicitly ac-
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counting for path lengths, hence attempting to compensate
that drawback. Other limitations have been investigated for
specific network configurations (Stolyar 2011).

In this work, we propose to analyze the convergence dy-
namics of the backpressure algorithm. Specifically, we are
interested in a fine-grained analysis of the backpressure al-
gorithm in different regimes, and associated convergence
properties. We first explicitly re-cast the backpressure al-
gorithm as a more general approximate gradient descent
method, and show that in that class of methods, significant
performance gaps exist depending on the choice of param-
eters. These general conclusions are derived on the case
of a fundamental building block for network flow analysis,
namely the 2×1 network including two upstream links con-
nected to one downstream link.

We then conduct an in-depth theoretical analysis of the
2 × 1 network, and verify these results in simulation. We
confirm experimentally that the results from the theoretical
analysis obtained on a simple network apply to realistic net-
works such as the Manhattan grid.

The main contributions of this work include:

• illustration of arbitrarily large performance gaps in the
backpressure class of adaptive control algorithms,

• theoretical identification and characterization of transient
and stationary regimes of the 2 × 1 network under back-
pressure algorithms,

• numerical validation of theoretical properties and illustra-
tion on realistic networks such as the Manhattan grid.

The rest of this article is organized as follows. We first in-
troduce notations and formulate the problem considered. We
then present our main results on the convergence dynamics
on the 2 × 1 network. We subsequently analyze the rela-
tive convergence of two instances of approximate gradient
descent algorithms. Finally, we present detailed numerical
results of the algorithm performance, and conclude.

Preliminaries
Network model
We consider a discrete-time network of queues with
ql,m(t) ∈ R+ denoting the (continuous) number of vehi-
cles queuing at location l at time t with the intention of trav-
eling to the downstream link m next. In the transportation
context, each ql,m(·) represents a distinct queue of vehicles
waiting to cross an intersection with segregated movements
(e.g. turn left, go straight, turn right). We also note q the
vector of ql,m and omit the time dependency for compact-
ness. Queuing networks can also model public transport and
multi-modal networks (Horni, Nagel, and Axhausen 2016),
although the emergence of mobile data often requires hybrid
approaches (Blandin et al. 2019).

The outflow sl,m(t) of queue ql,m(t) at time t is the maxi-
mum number of vehicles able to cross the intersection within
a time slot, defined as the minimum of the queue size and the
queue capacity, assumed static:

sl,m(t) = min(ql,m(t), cl,m). (1)

When this minimum sl,m(t) is reached at the queue size
ql,m(t), the intersection is in unsaturated regime, and when
the minimum is reached at the queue capacity cl,m ∈ R+

∗ ,
the intersection is in saturated regime.

Given initial conditions ql,m(t = 0) for the queues, and
prescribed source and sink flows el,m(t) specifying the num-
ber of vehicles entering and leaving the network, the conser-
vation of vehicles reads:

ql,m(t+ 1) = ql,m(t) + rl,m(t)
∑
k

uk,l(t)sk,l(t)

− ul,m(t) sl,m(t) + el,m(t) (2)

where rl,m(t) ∈ [0, 1] is the proportion of vehicles reach-
ing node l intending to visit node m next, and such that∑
m rl,m(t) = 1, and ul,m(t) ∈ {0, 1} is a control variable

specifying whether queue ql,m(t) is activated, i.e. has green
light, at time t. For each intersection, the activation set fol-
lows standard constraints encoding compatible movements,
(e.g. in the case of left-hand driving, turn right movements
can be activated simultaneously, but not go straight and turn
left movements).

Given an objective function V (q) satisfying Lyapunov
properties, the scheduling problem is concerned with the
design of an activation policy ul,m(·) with good properties
with respect to V (·).

Backpressure algorithm
In this section we recall some existing results. The backpres-
sure algorithm (Tassiulas and Ephremides 1992) provides
maximal throughput stability in the sense that if the inputs
flows are feasible in expectation, then the queue sizes are
asymptotically bounded.

Definition 1. The backpressure policy is the solution u to
the maximization problem :

max
u

∑
l,m

(
ql,m −

∑
k

qm,krm,k

)
cl,mul,m. (3)

It can be shown, e.g. see (Wongpiromsarn 2014), that this
objective function leads to activating at each decision point
the traffic movement maximizing the difference between its
upstream queue and its downstream queue, hence the term
“backpressure”.

We first show that the back pressure policy, although aris-
ing from a local greedy formulation, corresponds to an ap-
proximate gradient descent step.

Proposition 1. The backpressure algorithm (3) is an ap-
proximate gradient descent step update on the objective
function V (q) = 1

2

∑
l,m

q2
l,m = 1

2q
T q.

Proof. If we note δ(t + 1) = q(t + 1) − q(t), the one-step
temporal difference in the objective function reads:

V (q(t+1))−V (q(t)) = δ(t+1)T q(t)+
1

2
δ(t+1)T δ(t+1).

(4)
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Expanding δ(t + 1) using the conservation equation (2) we
can re-write δ(t+ 1)T q(t) as:

δ(t+ 1)T q(t) =

ET q −
∑
l,m

(
ql,m −

∑
k

qm,krm,k

)
ul,msl,m

where E is the vector of el,m, and the time-dependence is
omitted on the right-hand side. In the saturated regime, the
first term on the right-hand side of equation (4) dominates,
and a steepest gradient descent step on the approximate tem-
poral difference δ(t+ 1)T q(t) reads:

arg min
u
δ(t+ 1)T q(t) =

arg max
u

∑
l,m

(
ql,m −

∑
k

qm,krm,k

)
ul,msl,m. (5)

Approximating the throughput (1) as sl,m ≈ cl,m leads to
the definition of the backpressure (3), which corresponds to
making the approximation that the queues are in the satu-
rated regime.

Motivated by expression (5), in the following we define the
priority of a queue as:

pl,m =

(
ql,m −

∑
k

qm,krm,k

)
cl,m. (6)

This view of backpressure as a general one step update for
an approximate gradient descent in the context of adaptive
control motivates us to consider a generalization of the ob-
jective function via re-scaling. Specifically, given γl,m >
0, we consider a generalized objective function V (q) =
1
2

∑
l,m

γl,mq
2
l,m associated with the generalized priorities:

pl,m =

(
γl,mql,m −

∑
k

γm,kqm,krm,k

)
cl,m. (7)

We now illustrate that this re-scaling can impact the perfor-
mance of the approximate gradient descent method by an
arbitrary factor depending on the network heterogeneity. We
focus the analysis on the comparison between two values of
γl,m, the case of γl,m = 1 which corresponds to the classical
backpressure, and the case of γl,m = 1/cl,m which corre-
sponds to a variant of the backpressure algorithm where time
spent in the queue is the quantity to be optimized (since q/c
is the steady-state saturated regime approximation of time
spent in the queue).

Heterogeneous Flows
We now define a simple but fundamental example and show
the limitations of the backpressure algorithm on that case.
Consider a simple network with 2 upstream queues q1,3, q2,3

and 1 downstream queue q3,4, where heterogeneity between
the upstream queues is parameterized by a factor k. This
topology corresponds to the classical merge junction in traf-
fic engineering (Daganzo 1995), see (Garavello and Piccoli

2006) for the underlying mathematical theory of network
fluid-dynamics model.

Given a reference capacity c, link capacities are defined
as c2,3 = k c1,3 = kc. Link inflows are defined as f2,3 =
k f1,3 = kηc. Without loss of generality, we also assume
that the downstream queue is constant since the main object
of this study is the competing dynamics of upstream queues
given an arbitrary downstream queues. For stability, we also
make the classical assumption that the inflow is lower than
the uniform capacity, i.e. ηi = fi

ci
≤ 0.5.

Capacity c
Inflow ηc

Capacity kc
Inflow kηc

Capacity (k + 1)c
Inflow (k + 1)ηc

q1,3(t)

q2,3(t)

q3,4(t)

Figure 1: 2 × 1 parametric junction with two upstream
queues and one downstream queue.

We now prove that the classical backpressure algorithm (3)
can perform arbitrary poorly for heterogeneous networks.
We present the results for the case q3,4(t) = 0.
Proposition 2. Consider the 2 × 1 network from Figure 1,
with η = 0.5 and q3,4(t) = 0. A basic scheduling alternating
activation of each upstream queue leads to:

q1,3(t) ≈ ηc and q2,3(t) ≈ kηc (8)
while the backpressure activation rule (3) yields:

q1,3(t) ≥ k2ηc and q2,3(t) ≥ kηc (9)
Proof. First, given that in this discrete time setting each ve-
hicle spends at least one time step in the queue, we have
ql,m ≥ fl,m. Here, since the demand is feasible, an alternat-
ing schedule would result in q1,3(t) ≈ f1,3, and similarly for
q2,3, which proves (8).

Second, on this example, the backpressure priorities from
equation (6) read pl,m(t) = cl,mql,m(t). Since ql,m(t) ≥
fl,m, we have p2,3(t) = c2,3q2,3(t) ≥ k2c2η. The queue q1,3

is activated only if p1,3(t) = c1,3q1,3(t) > p2,3(t) ≥ k2c2η,
or equivalently q1,3(t) > k2cη. When q1,3 goes below that
value, queue q2,3 is activated because it has higher priority.

Hence the minimal queue size over time under backpres-
sure is k times the queue size under the alternating schedule.
A similar analysis can be conducted with non-zero q3,4, the
result is obtained for a sufficient upstream queue heterogene-
ity compared to the downstream queue value.

In the rest of the article, we investigate the convergence
dynamics of the approximate gradient descent dynamics un-
der the generalized backpressure priorities (7).

Stability Domain
We first characterize the asymptotic convergence of the para-
metric 2 × 1 network from Figure 1. To simplify the no-
tations on this network, we index the upstream queues by
i ∈ {1, 2}.
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Regime Types
For η < 0.5, the demand is feasible, capacities exceed input
flows, which means that at least one queue is activated more
often than needed to process the input flow, which means
su,i(t) < ci. For the 2×1 junction, either only one upstream
queue is in the unsaturated regime, and we call this network
regime R1, or both upstream queues are in the unsaturated
regime, and we call this network regime R2.

Due to space limitation, we focus on the regimeR1 which
exhibits more complex behavior (indeed under the condition
η < 0.5 regime R2 can be proven to be a transient regime
evolving intoR1 eventually) and serves as illustrative exam-
ple of a limitation of the classical backpressure algorithm in
the example of previous section. With a slight abuse of no-
tations, we use the saturation state, s for saturated and u for
unsaturated, to index the queue (e.g. (u, s) = (1, 2) when
queue 1 is unsaturated and queue 2 is in the saturated state).

A re-scaled backpressure algorithm
A discussed earlier, a queue is bounded below by a qi,min
which is the value of its input flow:

qi,min = fi ≤ qi(t). (10)

The expressions of the associated minimal priority pi,min
can be derived by instantiating equation (7) with the priority
value (10):

pi,min = pi(qi = qi,min) ≤ pi(t)

In order for a queue to be activated, its priority must be at
least greater than the minimal priority of every competing
queue. We call pact this a-priori minimal priority to be acti-
vated:

pact = max
j
pj,min, (11)

and the expression associated qi,act follows from (7) as:

qi,act = qi(pi = pact) =
γ0

γi
Q+

1

γici
pact. (12)

In regime R1 one queue is saturated and the other queue is
unsaturated. It follows from (12) that:

qs,act =
γ0

γs
Q+

γjfj − γ0Q

γscs
cj ≥ cs (13)

where j is such that pj = pact. If j = s, meaning that queue
j is in the saturated state, then equation (13) simplifies to
η ≥ 1, which is impossible by assumption. Hence the queue
j must be in the unsaturated state when reaching its activa-
tion priority, and the other queue is in the saturated state:

pact = pu,min = pu(qu = fu) (14)

We can now express sufficient conditions for each of the
queues to be in saturated or unsaturated state, depending on
the exogenous network parameters.
Proposition 3. In the R1 regime, the following states can
exist:
• (u, s) = (1, 2) when the following conditions are satis-

fied:

– for γ = 1n: Q ≥ k2−η
k−1 c

– for γ = [ 1
ci

]i∈{1,...,n}: Q ≥ k−η
k−1 (k + 1)c

• (u, s) = (2, 1) when the following conditions are satis-
fied:

– for γ = 1n: Q ≤ k2η−1
k−1 c

– for γ = [ 1
ci

]i∈{1,...,n}: Q ≤ kη−1
k−1 (k + 1)c

Proof. The bounds follow from instantiating equation (13)
on the cases (u, s) = (1, 2) and (u, s) = (2, 1).

We represent the different phases characterized by Proposi-
tion 3 in Figure 2.

Figure 2: Saturated and unsaturated states for each link
in R1 regime. When k is large compared to Q (bottom right
part of the chart), i.e. in case of significant heterogeneity,
the smaller capacity queue (named 0) is saturated, while for
larger Q values (top left part of the chart), i.e. for high net-
work load and resulting high coupling between high-demand
links, the larger capacity queue (named 1) is saturated.

We observe that with the proposed non-uniform weights
γl,m = 1/cl,m, the saturation region decreases, which sug-
gests a better utilization of the network capacity.

Convergence properties
In this section we characterize the transient and stationary
phases of the system, and provide theoretical results on the
impact of the weights γ on the limit of the gradient descent.

Transient state
In regime R1, under the assumption that η < 0.5, we first
prove that in general, there exists a transient regime during
which the maximal priority decreases.

Definition 2. The rolling min-max over 2 time slots reads:

p̃max(t) = min
v∈{t−1,t}

max
i∈{1,2}

pi(v)

Lemma 1 provides conditions to ensure the overall decrease
in queue size during the transient phase.
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Lemma 1. For the 2× 1 network, with η < 0.5, we have:

∀t, p̃max(t+ 2) ≤ p̃max(t). (15)

Furthermore, with i∗ = arg max pi(t) and j the other
queue, and with ∆p(t) = pi∗(t)− pj(t) ≥ 0, we have ∀t:

qi∗(t) > 2fi∗ and
(
qj(t) > fj or ∆p(t) > 0

)
=⇒ p̃max(t+ 2) < p̃max(t)

(16)

Proof. The technical proof can be found in the supplemental
material.

We can now use the specificity of the R1 regime to de-
scribe the dynamics of the 2× 1 network:

Corollary 1. If pmax(t) = ps, i.e. i∗(t) = s, the saturated
queue is activated for the time slot t and:

qu(t) > qu,min =⇒ p̃max(t+ 2) < pmax(t)

and{
qu(t) = qu,min
∆p(t) = 0

=⇒
{
i∗(t) = s
i∗(t+ 1) = i∗(t+ 2) = u

(17)
In other words qs is activated at most once consecutively

and it is followed by two activations of qu.

Proof. The proof is obtained via a disjunction over the val-
ues of qu(t), details included in the supplemental material.

Corollary 1 states first that the end of the transient state is
related to the time when the unsaturated queue takes its min-
imal value. Equation (17) describes the queuing process in
steady state: the saturated queue cannot be activated more
than once consecutively. This implies that the unsaturated
queue remains very close to its minimum value.

Characterization of the steady state
We now generalize the result from Corollary 1.

Proposition 4. The steady state is reached after a finite time
t0 and is characterized by:

∀t ≥ t0, p̃max(t) = pact

where pact is defined by (14).

Proof. First we prove that if queue s is regularly acti-
vated then p̃max(t) strictly decreases overtime. It eventually
reaches the minimal value pact.

Lemma 1 states that p̃max(t) is non-increasing therefore
bounded above by P . The input flow within one time slot is
bounded (actually equal to fi) so between two time slots,
pmax(t) remains bounded above with pmax(t) ≤ P +
max
i
fi. In the 2 × 1 network, pi is affine of qi, so queues

are also bounded above. Hence there exists an interval such
that every queue is activated at least once within this interval
otherwise the constants input flows would make it diverge.

Let us consider such an interval and a time ts in that inter-
val at which qs is activated. Equation (15) states that p̃max is
non increasing. Corollary 1 states that while qu(t) > qu,min,
p̃max is decreasing strictly. Let us consider the other case,
for which qu(ts) = qu,min, corresponding to pu(ts) = pact
according to (14). We have that ps(ts) = pmax(ts):

• if ps(ts) > pact, equivalently ∆p(ts) > 0 and (16) yields
p̃max(t) strictly decreasing,

• else, ∆p(ts) = 0, pmax(t) = pact, so ∀t > ts, p̃max(t) =
pact which is the lower bound.

In any case, either p̃max(t) decreases or has reached its
lower bound after the activation of qs, which means that in
finite time, p̃max(t) is arbitrarily close to pact.

It follows that p̃max(t) being constant bounds the size of the
queues below and above. Experimentally, these bounds are
quite tight, see Figure 3.
Theorem 1. In the R1 regime, given η < 0.5, the 2× 1 net-
work converges to a steady state where under a generalized
backpressure algorithm with γ > 0:
• for the unsaturated queue qu:

fu ≤ qu(t) ≤ 2fu

• and for the saturated queue:

qs,act + (fs − cs) ≤ qs(t) ≤ qs,act + fs

with
qs,act =

γ0

γs
(1− cu

cs
)Q+

γucu
γscs

fu

Proof. The proof consists of expanding the results from
Proposition 4.

For the unsaturated queue we obtain:

pu(t) ≤ p̃max(t) + γufucu = pact + γufucu (18)

Equation (14) states that pact = pu(qu = fu) Consequently
the queues associated with the priorities from equation (18)
read:

qu(t) ≤ 2fu
and the lower bound corresponds to (10).

For the saturated queue:
ps(t) ≤ p̃max(t) + γsfscs

= pact + γsfscs
= (γufu − γ0Q)cu︸ ︷︷ ︸

pact (cf.(14))

+γsfscs

= ps,max

We define as well the upper bound qs,max of qs s.t. ps,max =
ps(qs = qs,max) = (γsqs,max − γ0Q). Consequently:

qs,max = fs + γ0
γs

(1− cu
cs

)Q+ γucu
γscs

fu

For the minimum qs,min, we note that it is reached after an
activation done with ps(t) = pact (defined as the minimal
priority to be activated):

ps,min = pact + γs(fs − cs)cs
= ps,max − γscscs

This corresponds to associated queue values qs,min =
qs,max − cs and the result follows.
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Figure 3: Convergence to the steady state for queues (top)
and priorities (bottom). As predicted by the theory, the pri-
ority decreases (here until time step 25) and then oscillates
around a constant activation priority.

We illustrate the results of this section using a numerical
simulation reported in Figure 3.

After a transient state corresponding to priority values
higher than pact, the system stabilizes to a periodic state.
Priorities oscillate around pact and p̃max(t) is constant, as
expected from the theory.

Total time spent in the network
We now derive the total time spent in the network, assuming
that the average queue size is the average of the bounds from
Theorem 1.

Definition 3. The average queue size of q̄s is approximated
by:

q̄s = qact + fs −
1

2
cs

The queue size translates directly into time spent given our
implicit choice of a unit time step. We can now compare the
classical backpressure algorithm and the proposed backpres-
sure algorithm based on total time spent in the network.

Theorem 2. In regime R1, the ratio of total time spent in
the network as the heterogeneity increases is:

• with (u, s) = (1, 2): q̄s,classical

q̄s,proposed
∼k→∞ 1

• with (u, s) = (2, 1): q̄s,classical

q̄s,proposed
∼k→∞ k

Proof. We expand the expression of total time spent from
Definition 3 using the detailed values from Theorem 1.

Numerical Results
We first introduce the experimental setup, then go over re-
sults of benchmark experiments, and finally analyze perfor-
mance on scenarios mimicking realistic conditions.

Experimental setup
We consider a heterogeneous Manhattan grid wherein some
links have high capacity (major arterial roads) and other
links have low capacity (secondary arterial roads). At each
junction, 3 distinct movements are authorized (left, straight,
right) with the straight movement having double capacity.

The average demand for each origin node, destination
node pair is drawn from an exponential distribution. For ev-
ery origin-destination pair, the path minimizing the travel-
time at the speed limit is computed, and flow is assigned
accordingly.

Routing rates at each junction for the aggregate flow are
computed from the full assignment, by computing the pro-
portion of flow using each movement compared to the in-
coming flow. Input flow is drawn from a Poisson law with
mean defined for each origin-destination pair as explained
above.

Performance metrics such as time spent in the network are
computed by summing over time the sizes of queues.

Benchmark experiments
In this section we perform controlled experiments to inves-
tigate and validate various properties of the proposed algo-
rithm, compared to the classical backpressure algorithm. We
consider a 10×10 Manhattan grid with a major arterial every
5 blocks, and a time step of 30 seconds.

First we analyze the impact of the parameter ρ character-
izing the magnitude of the demand. Figure 4 displays the
ratio of time spent in the network for 500 time steps.

Figure 4: Ratio of time spent in the network for the two al-
gorithms for increasing demand. Every point represents 300
simulations and displays the deviation of the sample for clas-
sical backpressure (“bp”) and proposed algorithm (“new”).

These results confirm the theoretical results on the ex-
istence of three regimes depending on the values taken by
k,Q: for low demand (low ρ values), the flow is not really
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constrained so both algorithms have similar performance,
for demand around and slightly above capacity there is lit-
tle available supply and the new algorithm improves on the
classical backpressure, and for higher demand the network is
too saturated to leave room for optimization and both algo-
rithms have similar performance. In this setting, the network
is unstable for ρ > 2. The improvement is at most 25%.

Second we analyze the impact of the parameter h charac-
terizing the network heterogeneity, with 1/h being the den-
sity of major arterial roads; h = 0 corresponds to no major
arterial, h = 1 corresponds to all roads being major arterial,
2 to one over 2, etc. The results of simulations are presented
in Figure 5.

Figure 5: Ratio of time spent in the network for the two al-
gorithms for different distances between parallel highways.
Every point represents 300 simulations, for classical back-
pressure (“bp”) and proposed algorithm (“new”).

Low values of h correspond to a homogeneous network
and the experiments confirm (h = 0, 1, 2) that the proposed
algorithm has no significant impact on traffic compared to
the classical backpressure. For higher h the network is more
heterogeneous and as expected the proposed algorithm has
better relative performance.

We now analyze the impact of the ratio of the capacities
between major arterial roads and secondary arterial roads.
The results of the simulations are displayed in Figure 6.

For a homogeneous network (capacity ratio close to 1),
the performance of both algorithms is similar. The com-
parative performance of the new algorithm with respect to
the regular backpressure increases as the capacity ratio in-
creases. The higher the capacity ratio the higher the flow on
the major arterials (because their attractivity increases) so
the more flow heterogeneity there is between major arterial
and other roads.

These cases correspond to the lower part of Figure 2 for
the single junction case where the proposed algorithm was
proven theoretically to have better performance. In order to
understand how the proposed algorithm achieves better per-
formances we compare the average size of each queue for a
heterogeneous network in Figure 7.

Figure 6: Ratio of time spent in the network for the two al-
gorithms for increasing capacity heterogeneity. Every point
represents 300 simulations, for classical backpressure (“bp”)
and proposed algorithm (“new”).

Figure 7: Log-ratio of the average queue size for the pro-
posed algorithm versus the classical algorithm, for every link
in the network, including major arterials (highways) and sec-
ondary arterials (other roads).

The results highlight that the proposed algorithm results
in a moderate queue size increase on major arterials but
yields significant queue size reduction on secondary arterial
roads, meaning that the proposed algorithm is better able
to take advantage of the network heterogeneity. In the next
section we further explore the algorithm performance in re-
alistic scenarios.

Peak hour scenario
In this section, we analyze a scenario modeled after a peak
hour. The specific network considered is a Manhattan net-
work with a 50 × 10 grid with a major arterial road every
4 blocks. The factor ρ varies over time in a triangular shape
from 0 to 3 to model a demand temporally exceeding the net-
work capacity (ρ > 2 corresponds to an instable network).
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Figure 8: Cumulative time spent in the network for both
algorithms (the unscaled value of ρ is also represented).

Figure 8 illustrates that the excess demand causes the cu-
mulative time spent in the network to increase in all cases.
However the increase is less important in the case of the pro-
posed algorithm, in particular when the demand returns to a
low value, and subsequently. This can be explained by the
fact that in the first part of the peak period, the network is
capacity-constrained, hence no algorithm is given sufficient
freedom to optimize. However in the second phase of the
peak time, and subsequently, the proposed algorithm is able
to take better advantage of available capacity.

Incident scenario

The second scenario that we consider is an incident modeled
as a link with zero capacity for a one hour period in a Man-
hattan network. The network size and simulation parameters
are chosen such that the boundary links are never impacted,
and the incident happens after the network loading period,
and clears before the end of the simulation.

We first analyze in Figure 9 the extent to which queues are
smoothed in space via the backpressure effect of preserving
already large queues from further inflow.

For both the classical backpressure and the proposed al-
gorithm, the queues at the incident location are much lower
compared to the fixed cycle policy, which in practice reduces
the chances of grid-lock. This is achieved at the cost of hav-
ing slightly longer queues upstream of the incident.

We now consider the cumulative queue length across the
network as a function of time in Figure 10.

We observe that both the classical backpressure and the
proposed algorithm outperform the fixed cycle policy, and
the proposed algorithm slightly improves on the classical
backpressure, with the difference between all methods in-
creasing as the network gets more saturated, since the key
benefit of the adaptive scheduling algorithms lies in effi-
ciently using available link capacities around saturated con-
ditions.

Figure 9: Maximum queue size: as a function of distance
to incident (at the intersection directly connected to the inci-
dent link, 1 hop and 2 hops upstream, as well as 1 hop down-
stream) for the classical backpressure (“bp”), the proposed
algorithm (“new”), and the fixed cycle policy (“fixed”).

Figure 10: Queue size in the vicinity of the incident link:
under the classical backpressure policy (“bp”), the proposed
control policy (“new”), and a fixed cycle policy (“fix”) as a
benchmark. The incident start and end times are indicated
with vertical dashed lines.

Conclusion
In this work we investigated the problem of the convergence
properties of an approximate gradient descent method for
network adaptive control.

Using a fundamental 2×1 network, we proved that differ-
ent regimes exist depending on exogenous parameters such
as the magnitude of the demand with respect to the network
capacity, and the heterogeneity of the flow across competing
links. We characterized each of these regimes theoretically,
and verified in simulation on realistic network the expected
theoretical properties.

As part of this analysis, we also showed that appropriate
calibration of the weights in the objective function can sig-
nificantly improve the asymptotic objective value, by up to
O(k) with k the ratio of competing queues capacity.
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