
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Mixed Discrete Continuous Non-Linear
Planning through Piecewise Linear Approximation

Elad Denenberg, Amanda Coles
Department of Informatics, King’s College London

Bush House, 30 Aldwych,
London, United Kingdom WC2B 4BG
{elad.denenberg,amanda.coles}@kcl.ac.uk

Abstract
Reasoning with continuously changing numeric quantities is
vital to applying planners in many real-world scenarios. Sev-
eral planners capable of doing this have been developed re-
cently. Scalability remains a challenge for such planners, es-
pecially those that reason with non-linear continuous change.
In this paper, we present a novel approach to reasoning with
non-linear domains. Bounding the problem using linear over
and under-estimators, allows us to use scalable planners that
handle linear change to find plans for non-linear domains. We
compare the performance of our approach to existing plan-
ners on several domains and demonstrate that our planner can
achieve state-of-the-art performance in non-linear planning.

Introduction
Planning is fundamental to intelligent autonomous systems:
deciding what to do, and when to do it, in order to achieve
desired goals. One of the key challenges to deploying auto-
mated planners in real-world applications is reasoning with
complex and expressive models that capture the temporal
and numeric constraints, both discrete and continuous, that
arise in these scenarios. The last twenty years have seen
great focus from the community in developing increasingly
expressive planners to address these problems: beginning
with those capable of reasoning about time, e.g. (Do and
Kambhampati 2001; Gerevini, Saetti, and Serina 2006), dis-
crete numeric change e.g. (Hoffmann 2003) and most re-
cently the most expressive hybrid planners that combine this
with reasoning about continuous numeric change over time.

Broadly speaking there are two approaches to planning
with continuous effects. The first is to discretize time ac-
cording to a user-selected quantum ε. Planners such as UP-
Murphi (Della Penna et al. 2009), DiNo (Piotrowski et al.
2016) and ENHSP (Scala et al. 2016) take this approach.
They are flexible in terms of the types of non-linear numeric
functions supported, but depend heavily on an ε value selec-
tion that permits both scalability and solving of problems.
Since the planners consider applying actions every ε, small
values lead to poor scalability; whereas large values exclude
solutions leading to incompleteness.

The second approach reasons about continuous time: us-
ing propositional planning techniques to generate action se-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

quences that satisfy propositional preconditions; and then
using a sub-solver to schedule this action sequence to sat-
isfy the temporal and numeric constraints (or to determine
that this is impossible). These planners typically scale better,
as they are not affected by the ε issue; however, most of them
are restricted to reasoning only with constraints and continu-
ous changes that are linear because they use linear program-
ming sub-solvers. Such planners include the forward-search
planners COLIN (Coles et al. 2012), POPF (Coles and Coles
2014) and OPTIC (Benton, Coles, and Coles 2012). Of the
few planners that reason with continuous time and non-
linear effects SMTPlan (Cashmore et al. 2016) and PluReal
(Bryce 2016) can handle polynomial effects, their scalability
is limited by the use of a SAT-compilation based approach
which must add a happening at every turning point of each
non-linear effect.

In this paper, we present a novel, scalable approach to
planning with discrete and continuous non-linear numeric
effects. Our approach builds on the planner OPTIC, which
uses forward search combined with a Mixed Integer Pro-
gramming (MIP) solver ensuring the temporal and numeric
constraints of the problem are met. In its original form OP-
TIC is restricted to continuous linear change because MIPs
can only represent linear functions. In our work we gen-
eralize the approach to non-linear change by generating
piecewise linear upper and lower bound approximations of
non-linear functions and use the MIP to find solutions that
are correct according to the most pessimistic bound (e.g. a
greater than constraint must be satisfied by the lower bound),
iteratively refining our approximations if necessary.

Linearization facilitates non-linear planning without the
need to discretize time, while still handling a large class
of non-linear functions. Our results show that the resulting
planner OPTIC++, outperforms state-of-the-art hybrid plan-
ners on a number of domains; and further, is able to handle
a wider class of functions (e.g. logarithmic functions) than
other planners that remain indifferent to a user-selected ε.

Background

Here we define the problem of planning with continuous nu-
meric change, and discuss existing approaches.

137



Problem Definition
A temporal planning problem with continuous and discrete
numeric effects is a tuple 〈I,G,A,P,V〉, where P is a
proposition set and V is a numeric variable set. I and G
are respectively complete/partial value assignments to these
propositions and numeric variables, representing the initial
and goal state of the problem. A is a set of actions.

To define actions, we require the following definitions:
Definition 1 (Linear Numeric Condition). A condition
of the form vi {≥,≤,=} w1v1 + w2v2 + . . . c, vi ∈ V,
wi, c ∈ R
Definition 2 (Instantaneous Linear Change). An equation
of the form vi {+=,=, -=}w1v1 + w2v2 + . . . c, vi ∈ V,
wi, c ∈ R

Note this instantaneous change does not depend on time.
Definition 3 (PDDL Expressible Continuous Change).
Any continuous change that can be expressed in PDDL: any

rational function of the form:
dvi

dt
{+=,=, -=} P (t)

Q (t)
where P (t) and Q (t) are polynomials:

P (t) =
∑
i w

i
∏
j

(
vj
)mj

,and vj ∈ V,wi ∈ R, mj ∈ N
Note that any function that can be expressed as an ODE

can be defined as a continuous effect in PDDL. This includes
natural exponents and logarithms, and any rational function.
Definition 4 (Continuous Linear Change). Change of the

form:
dvi

dt
{+=,=, -=} c, vi ∈ V, c ∈ R, i.e. linear in time.

Definition 5 (Initial Time Indifferent Continuous
Change). Let vi ∈ V be a variable, and f

(
vi, t

)
a

PDDL expressible change acting on vi. f will be ini-
tial time indifferent if for any start time ti0 and tj0:

dnvi
(
ti0 + τ

)
dtn

=
dnvi

(
tj0 + τ

)
dtn

∀n ∈ N, τ ∈ R
This defines any change with a gradient that does not de-

pend on the time at which the change has started, and is not
altered by actions that started before this change.

Each action in A can now be defined by a tuple:
〈d, pre`, eff `, pre↔, eff↔, prea, eff a〉 (1)

where d is the action’s duration defined by conjunction of
linear numeric conditions constraining d. pre` and prea are
conjunctions of preconditions: facts and linear numeric con-
ditions that must be true at the action’s start and end. pre↔ is
the invariant condition: a conjunction of preconditions that
must be true throughout the action’s duration.

eff ` and eff a are effects that occur at the action’s start
and end, such effects may add or delete a proposition p ∈ P
(eff +, eff −) or update a numeric variable vi ∈ V according
to a linear instantaneous change (eff num). eff↔ is a con-
junction of continuous effects operating throughout the ac-
tion’s duration. In general, this effect can be any continuous
PDDL expressible change; here we focus on planning with
monotonic non-linear initial time indifferent change.

The solution is a plan: a timestamped action sequence,
with all preconditions satisfied on execution, transforming I
into to G.

Related Work
Here we explore more existing planners capable of reason-
ing with continuous change. dReal (Gao, Kong, and Clarke
2013) uses the discretizing method. It uses an ICP solver
which discretizes intervals to find a solution; dReach (Bryce
et al. 2015) uses SMT encoding prior to utilizing dReal.

Planners reasoning about time include the work of (Pi-
acentini et al. 2018) which compiles the entire problem
to a MIP, and Graphplan/SAT/SCOP compilation such as
TMLPSAT (Wolfman and Weld 1999) and Kongming (Li
and Williams 2011). All can reason with linear change only.

A few existing planners can handle non-linearity: SCIP-
Plan (Say and Sanner 2018) uses Spatial Branch-and-Bound
to solve Mixed Integer Non-Linear Programming problems.
The planner cqScotty (Fernández-González, Karpas, and
Williams 2017) can handle non-linear constraints, but is re-
stricted to linear effects. uNICOrn (Bajada, Fox, and Long
2015), as well as (Alaboud and Coles 2019) use a linearize-
validate cycle to compile the non-linear problem, allowing a
linear planner to be used. (Denenberg and Coles 2018) con-
sidered using OPTIC with a linearized model but that ap-
proach proved inefficient. uNICOrn relies on the accuracy
level of the linearization, with a low accuracy level it may
produce plans that are not valid, and therefore, does not carry
an advantage over discretizing planners in this regard.

Forward Search Planners with MIP Schedulers
This work builds on OPTIC (an extension of COLIN). The
relevant mechanism is described in (Coles et al. 2012). OP-
TIC performs forward search using WA* with COLIN’s
relaxed plan heuristic and no helpful actions. The search
branches from the initial state in the space of instanta-
neous snap-actions (instantaneous actions representing start-
ing and ending of durative actions).

Snap-action A` represents the durative action A’s start
and has precondition pre`A

⋃
pre↔A and effects eff +`A,

eff −`A; eff num`A; Aa is the analogous action for A’s end.
Search proceeds from the initial state, at each state branch-
ing over applicable actions, exploring partially-ordered but
un-time-stamped snap-action sequences.

A snap-action is applicable if its propositional precondi-
tions are satisfied, and its effects do not delete the proposi-
tional invariants of any previous actions that have started but
have not yet finished. Each action yields a new proposition-
ally consistent partial plan and a new resulting state updated
according to its effects. We refer to each snap-action in the
partial plan as a step.

OPTIC adds ordering constraints as necessary to enforce
the plan’s propositional consistency. If stepi deletes propo-
sition p or requires p as a precondition, it is ordered after the
last step that added p. If stepi adds p, it is ordered after the
last step that deleted p. For numeric conditions, any step that
conditions on, or refers to, variable vi in an effect is ordered
after the most recent step that modified/referred to vi, giving
a total ordering on all steps modifying each variable.

While this forward search enforces propositional consis-
tency of the plan, it is possible that the partial plan can-
not be scheduled to satisfy the temporal and numeric con-
straints. To determine temporal and numerical consistency

138



step variables constraints

Generate`
t0 ≥ 0

Gen FL0 = 80
Gen FL′0 ≥ 0

Refuel`

t1 −t0 ≥ ε
Gen FL1

= Gen FL′0 − 1(t1 − t0)
≥ 0

Gen FL′1

= Gen FL1

≤ 90
≥ 0

Refuela

t2
−t1 ≥ ε
−t1 ≤ 15

Gen FL2

= Gen FL′1 + 1(t2 − t1)
≤ 90
≥ 0

Gen FL′2
= Gen FL2

≥ 0

now tnow −t2 ≥ ε
Gen FLnow

= Gen FL′2 − 1(tnow − t2)
≥ 0

Table 1: MIP Equations of a Partial Plan

OPTIC represents the partial plan’s constraints as a set of
MIP equations to which a feasible solution represents valid
time-stamps for plan steps. If no solution exists, the par-
tial plan cannot be scheduled and is pruned from the search
space (no further attempt to extend it).

Running Example - The Linear Generator
We demonstrate the MIP building process with the gener-
ator domain. A generator is required to supply energy for
100 minutes. The planner can take two actions: first, gen-
erate energy. Generating consumes fuel with a change rate
of 1litre/min. While generating, the fuel level must not drop
below 0. The second action is to refuel from an auxiliary
tank. The refuel rate is 2litres/min. While refuelling the auxil-
iary tank fuel level must not drop below 0, and the generator
fuel level must not exceed the main tank capacity of 90 litres.
The maximum duration of the refuel action is 15min.

Formulation of MIP
For every partial plan we formulate the temporal constraints
then the continuous numeric constraints. Table 1 shows the
MIP equations for the variable representing the main tank
fuel level and the temporal constraints for the partial plan
Generate`,Refuel`,Refuela in the linear generator domain.

Temporal Constraints: We create a MIP variable ti for
each plan step i representing the application time of the ac-
tion that step i represents. Two types of temporal constraints
are possible: duration and ordering.

Duration constraints are conjunctions of linear constraints
as per Definition 1. For any durative action A in the partial
plan, with time-stamp variables ti and tj for its start A` and
end Aa, we write each constraint in the conjunction:

tj − ti{≥,≤,=}w1v1 + w2v2 + . . . c (2)

To enforce the ordering constraints generated during search,
stating stepj comes after some other step stepi we write:

tj − ti ≥ ε (3)

where ε is a small constant.
Table 1 shows the ordering constraints for each step in

our example (e.g. t1 − t0 ≥ ε). In addition, the duration
constraint of refuel is transformed to t2 − t1 ≤ 15.

Numeric Constraints: For each plan step i and for each
variable v ∈ V we define three MIP variables: vi and v′i rep-
resenting the variable’s value before and after the step; and
δvi representing the coefficient of all the continuous linear
change active on v (used to calculate the value of vi+1).

Let A be a durative action with a continuous linear effect
as per Definition 4, and let cA be the constant defining said
linear change. Then δvi is calculated thus:

δvi =

{
δvi−1 + cA ifAi = A`
δvi−1 − cA ifAi = Aa

(4)

i.e. at step i which starts A, cA will be added to δvi and at
step j which ends A, cA will be removed from δvj . Thus
δvi is the sum of all effects currently active on v ∈ V (if
we begin indexing steps from i=0, δv0 = cA for step0). All
steps affecting or referring to v are totally ordered, so δvi is
always correctly known when required.
v′i’s value immediately after the application of an instanta-

neous snap action is calculated by summing up all instanta-
neous numerical effects eff i

num acting at that step. Numeric
effects are linear equations (Definition 2), so:

v′i = vi + w1v1i + w2v2i + . . . c (5)

The value of v prior the action’s application is calculated
according to the active continuous linear change:

vi = v′i−1 + δvi−1 (ti − ti−1) (6)

where ti−1 is the time-stamp of the previous step, and δvi−1
is the sum of all rates of the continuous linear effects that
operated on v between the two time-stamps.

We formulate the numeric preconditions pre`, prea (Def-
inition 1) of the action at stepi over the respective variables
vi. We formulate invariant conditions pre↔ after the action’s
start step, i (over v′i), before the action’s end step and at ev-
ery step between them. This is sound because all effects are
linear: turning points are only possible at steps that alter δv,
so a condition satisfied at all steps is satisfied throughout.

Table 1 shows the the numeric constraints formula-
tion for the generator fuel level in our example. The
value of δGen FLi is calculated for each step: when
the generator is working it consumes fuel at a rate of 1
(δGen FL0 = −1), refuelling increases fuel at a rate of 2
(δGen FL1 = −1 + 2 = 1). Equations calculate the value
of Gen FL and Gen FL′ before and after each step. Fi-
nally, constraints at appropriate steps ensure that the fuel
level does not go below 0 or rise above 90.

So far all constraints have been Linear Programming (LP)
constraints; however, this approach has been extended by
making use of MIP to reason with preferences that impose
soft constraints on the plan trajectory by adding big M con-
straints (Benton, Coles, and Coles 2012).

139



A feasible solution to this MIP is a valid time-stamp for
each of the actions, that respects all the temporal and nu-
meric constraints. A valid schedule for a propositionally
sound plan that satisfies the goal is a solution to the plan-
ning problem. The search and MIP work together to achieve
this: search proposing propositionally sound plans and the
MIP solver determining whether there is a valid schedule.

Partial Plan Optimization
We can optimize a partial plan according to a given met-
ric F , or if none is specified minimize plan makespan. To
calculate the makespan or the variable values for the ob-
jective OPTIC defines an additional temporal variable tnow
which is ordered after all steps and calculates the value of
the variables at that time point. The last three rows in Ta-
ble 1 demonstrate this. The MIP objective is defined over
the values of vnow; or set to minimize tnow for makespan.

Planning with Non-Linear Continuous Effects
Now we extend OPTIC to reason with non-linear continuous
change; using piecewise linear estimators defined thus:
Definition 6 (Piecewise Linear Function). A piecewise lin-
ear function is a continuous function of the form:

f(t) =


a0t+ b0 0 < t ≤ τ1
a1t+ b1 τ1 < t ≤ τ2
...
an−1t+ bn−1 τn−1 < t < τn

(7)

where ai, bi and τi ∈ R are constants defining the lin-
ear pieces, n is the number of pieces and ∀i aiτi + bi =
ai+1τi + bi+1.
Definition 7 (Over (Under) estimators). A function f (t) is
said to be an over (under) estimator of function g (t), if
∀t ∈ R f (t) ≥ (≤) g (t)

Using over and under-estimators we can say two things
about a solution to the partial plan MIP equations:
Case 1: If a feasible MIP solution is found, with the over

estimator adhering to all less-than constraints and the un-
der estimator adhering to all greater-than constraints, that
plan is valid in the non-linear case.

Case 2: If no feasible solution can be found with the over
estimator satisfying the greater-than constraints and under
estimator satisfying less-than constraints, the partial plan
is not valid in the non-linear case and can be pruned.

When neither of the statements is true, the estimators need
to be refined, until we determine solution existence or inex-
istence. We explain the refinement process in a later section.

Figure 1a demonstrates this logic. Assume that the black
curve is a description of the sum of all effects on v. The
red (dashed-dotted) lines are the piecewise linear over-
approximations, the blue (dashed) under-estimators. If the
constraints are v > 0 and v < 5 between time 0 and 5 then
clearly the plan which affected the variable v in this manner
is valid, since the over estimator is always less than 5, and
the function is always less than the over estimator. Similarly
since the under estimator is always greater than 0 so is v. If

t

v

0 1 2 3 4

1

2

3

4

(a) The Linearization logic

t

fuel

0 20 40 60 80

20

40

60

80

(b) Fuel Loss During Generation

Figure 1: Linearization

the constraint was v > 5, by examining the over estimator
one can conclude that the plan is not valid. However, if the
constraints were v > 1 and v < 3.6 then the > constraint
fails on the lower estimator, and the < constraint on the up-
per estimator; they are however satisfied by the upper and
lower estimator respectively, so we know we need to refine
the approximation in order to find out whether this might be
a valid plan.

Linearization Process
The use of piecewise linear functions has a long history
in the field of control. A classic reference is (Bemporad,
Ferrari-trecate, and Morari 2000), which uses piecewise
affine linear functions to prove the observability and con-
trollability of a hybrid problem. Our approach differs as we
implement the above logic to solve two instances of the lin-
earized problem while not relying on a constant discretiza-
tion of the function, rather, we define in this section an auto-
matic linearization process with a reducing segment size.

The planner described in this work is capable of reasoning
with PDDL expressible, initial time indifferent, monotonic
continuous change. Since it inherits the PDDL definition of
change, it requires the effects to be differentiable. One can
calculate the value of an effect at any time t by integrat-
ing the given derivative (assuming that the effect in question
alone is acting on the variable).

We generate piecewise linear upper and lower bounding
functions (Definitions 6 and 7) for all continuous non-linear
effects, these are of the form :

vk = akt+ bk ∀k (8)

where k = 0 . . . N − 1 represents the kth linear segment vk.
The framework of OPTIC++ is depicted roughly in Fig 2.

The initial linearization is done in the action grounding
phase. We assume input domains in which all continuous
effects are defined by monotonic, initial time indifferent
change only. We exploit the monotonicity in the initial lin-
earization by not searching for turning points in the duration
of the action. Determining whether extrema exist, and find-
ing them, is undecidable; numerical methods for root finding
exist, however they add exponential complexity. We plan in
future to extend our work to some classes of non-monotonic
functions, where root finding might be feasible, but for now

140



Physics Model
Planner

Grounded Problem

Forward search

MIP

Linearization

Refine

Initial

Figure 2: OPTIC++ Framework

we focus on the monotonic case. Initial time indifference
allows us to linearize and refine effects before the formula-
tion of the MIP, if the linearization depended on the relative
timestamps assigned to actions we would have to present the
MIP with several possible linerizations (determined at each
state) for each effect. Again we leave this to future work.

Linearization Process - Concave: We define a linear seg-
ment on the concave side of the effect by sampling the values
of at two different time-points τk+1 and τk (τk being the kth
sampled time-point) thus:

ak =
v (τk+1)− v (τk)

τk+1 − τk
(9)

bk = v (τk)− v (τk+1)− v (τk)

τk+1 − τk
τk (10)

Each segment is defined on the interval [τk, τk+1]
Initially, we sample two time-points: time 0, and at the

maximal duration of the action initiating the effect. If a max-
imum duration is not defined for the action, then we use a
large time-horizon. The first approximation on the concave
side is therefore a straight line between the effect’s start and
end. To refine the estimator the value at an additional point
is sampled (we explain how this is selected later). The seg-
ment in which the sampled time-point falls is replaced by
two new segments, calculated as above.

Linearization Process - Convex: We define a convex
linear segment by the function’s value and the derivative’s
value at a selected time-point τk. The piece is a tangent at
the sampled point and so ak is equal to the derivative and bk
is:

bk = vk − akτk (11)
The interval defining each segment is found by its intersec-
tion with the estimator’s previous and next segments:

τk =
bk−1 − bk
ak − ak−1

(12)

The initial convex approximation has two segments calcu-
lated from the start and end points. A segment is added to the
estimator by sampling a point, the new segment constants
are calculated as described, the time on which the segment
is defined is found by the intersection with existing segment.

Fig 1b demonstrates the linearization: the effect shown is
hyperbolic and taken from the generate action in the non-
linear generator domain. The linear under-approximation is
calculated using the values at the effect start, end and an
additional sampled point that was added during the search.

δvu0
δvu1

δvun−1

τ0 τ1 τ2 τn−1 τn

Figure 3: An Approximation of Non-linear Effect

The linear over-approximation is calculated using these val-
ues and the derivatives at these three time-points.

Selecting a Point for Refinement: If Case 1 of the over
(under) estimator adhering to the less(greater)-than con-
straints does not have a solution; but Case 2 of requiring
the over (under) estimator to adhere to the greater(less)-than
constraints does find a solution then we cannot prove or dis-
prove whether a solution exists so a refinement takes place.
Since we cannot know (without expensive computations)
which condition/effect caused constraint violation we refine
both estimators for the effects of all actions that appeard in
the plan for which the refinement was required.

The solution to the Case 2 problem is in the form of a
time-stamped partial plan, i.e., a sequence of start and end
snap-actions, and the times at which they occur. The first
candidate point considered for refinement is the time value
assigned to the end of the action that started the effect.

If the candidate point is close to any of the points already
sampled (this can happen, when the duration constraint is
equality) or no end action has yet been applied in the partial
plan, we select the point in the middle of the largest estima-
tor section. This prevents the approximations converging in
one area and impeding finding a feasible solution.

Completeness: Branches are pruned from the search only
if they are proved inconsistent. For a continuous effect, by
using Case2. This is a worst-case scenario: The value of the
variable will always be less than an overestimator; therefore,
if an overestimator violates a greater-than constraint the ef-
fect is bound to violate the same constraint.

When refining during the search, in order not to linger
too long at a given state, a limit of L refinements is defined.
If more refinements are required, then the state is put on a
second open list, to be used when all other branches have
been explored. When the state is revisited, it can be refinedL
more times before being put in the second list again. There-
fore refining does not affect completeness.

Encoding Piecewise Linear Effects in the MIP
We now detail new MIP variables describing the estimator,
and their computation in MIP construction at each state.

MIP Representation of a Single Non-linear Effect
To accommodate a non-linear effect starting at step i, the
first modification we make is to replace vi at each step with
upper and lower estimations of v: vui , vli. The same is done
for v′i and δvi. Instantaneous effects operate on both estima-
tors: if a constant value is assigned, added or subtracted, then
the effect is applied to both estimators. If the value of a dif-
ferent variable is used, we use the upper or lower bound on
that variable as appropriate in order to maximize (minimize)

141



tj

δvj0

tj + τj
1

δvj1
Added

ti

δvi0

ti + τ i
1

δvi1

ti + τ i
2

δvi2

Old

tj

δvi0 + δvj0

tj + τj
1

δvi0 + δvj1

ti + τ i
1

δvi1 + δvj1

ti + τ i
2

δvi2 + δvj1

New

(a) A Possible Option for Combining Two effects

tj

δvj0

tj + τj
1

δvj1
Added

ti

δvi0

ti + τ i
1

δvi1

ti + τ i
2

δvi2
Old

tj

δvi1 + δvj0

tj + τj
1

δvi1 + δvj1

ti + τ i
2

δvi2 + δvj1New

(b) Another Possible Option for Combining Two effects

Figure 4: Combining an Additional Effect to an Existing Single Effect

the upper (lower) bound on v. For instance when a variable
u is subtracted then vui would be:

v′ui = vui − uli (13)
The next modification ensures the correct value of vui (vli) is
computed, by applying the appropriate continuous change
to v′ui−1 (v′li−1). In the linear case we defined δvi as the
sum of all derivatives acting at step i and then wrote
vi = v′i−1 + δvi−1 (ti − ti−1). However, we now have a
piecewise linear representation with a sequence of different
derivatives, acting on the variable at different time-points.
To demonstrate why a single value δvi no longer suffices,
consider a single linearized effect, illustrated in Fig 3. The
value of v at tj depends on which segment of the piecewise
linear function tj occurs in.

The linearization can be thought of as a set of pairs
δvueff = ((δvu0 , τ0) . . . , (δvun, τn)) each stating that at a con-
stant time τk after the effect begins the gradient is approx-
imated by δvuk . If a future stepj falls in segment m (τm ≤
tj − ti ≤ τm+1) vj can be computed by adding the cumu-
lative effects of the previous segments prev(m) (a known
constant for a given segment) to the effect according to the
distance between τm and tj , since(m):

prev(m) =
∑

k=1..m

δvuk−1 (τk − τk−1) (14a)

since(m) = δvum (tj − (ti + τm)) (14b)
Now we have:
vj = v′i + prev(m) + since(m)iff τm ≤ tj − ti ≤ τm+1

(15)
In a single effect, the change rates δvuj are the estimator’s
slopes (aks) of Eq. (8), and the time points correspond to the
time points defining the estimator τk.

To enable the MIP to choose which effect segment a fu-
ture step (tj) will occur in an effect that started at stepi,
we use Big-M constraints. For each segment m ∈ [0, n) in
which tj could occur we write the following constraints:

(tj − ti) +MBj,m ≥ τm (16a)
(tj − ti)−MBj,m ≤ τm+1 (16b)

vuj ≥ v′ui + prev(m) + since(m)−MBj,m (16c)

vuj ≤ v′ui + prev(m) + since(m) +MBj,m (16d)
where M is a large constant, and Bj,m is a binary variable
for step j and segment m. We additionally write:∑

k∈[0,n)

Bj,k = n− 1 (17)

These constraints force one variable Bj,m to be set to zero;
hence, the underlying temporal constraints in equations 16a
and 16b must be satisfied for that m (i.e. tj occurs in seg-
mentm). Equations 16c and 16d ensure that vuj is calculated
according to the equation for segment m.

If step j starts an action A with a linear effect at tj , while
a non-linear effect with n sections is executing, the change
rate δvA is added to all sections of δveff that appear after tj .
However, since we do not know in which section tj is, we
generate n vectors δveff , selecting from them using Eq.(16)

Combining Several Non-Linear Effects
Assume the first non-linear effect acting on vu, having a set
of change rates δvi

u = δveff , has started at step i. In addi-
tion, assume that at step j > i an additional non-linear effect
has started. For the calculation of vj+1 at stepj+1, after j, we
need to sum all active effects. Therefore we need to combine
both of the linearized effects to properly represent the way
in which they are acting on vu. Combining those effects will
generate several vectors each representing the total change
in way a similar to that for a single effect.

Fig 4a presents merging two effects. The added effect
(top) is weaved with the existing effect (middle) creating a
new effect (bottom). If the relative time at which j started af-
ter step i is known, then we can describe a new vector δvj

u.
Let δvki be a change rate of section k that is acting on the

variable v by an effect that started at step i. Also, let δvmj
be a change rate of section m of the effect that started at
step j. If the sections overlap in time, the result is a section
(numbered n) in the new vector δvj, that has the rate:

δvnj = δvki + δvmj (18)

In the single effect vector, each section’s start and end points
were defined as constants offsets from step i that started
the effect. When effects of multiple steps are defined, we
need to define the active gradient with respect to the appro-
priate time step. For example, in Figure 4a, the first sec-
tion’s end in the new vector is defined with respect to tj
as its time-point tj + τ j1 depends on the time at which j
started; whereas the second segment ti + τ i1 occurs a con-
stant time after step i started. Hence, the combined effect
vector records not just τm but also tn the step index that
the effect happens τm after. Thus the new effect δvj

u is
δvj

u = ((δvu0 , (t0, τ0)) . . . , (δvun, (tn, τm))) where tn is the
nth step in the vector, which may relate to any previous step
in the partial plan, and τm the corresponding constant offset.

142



There are many ways to create δvj, depending on the
scheduled time of tj . The difference between Fig 4a and 4b
shows this. The number of possible δvjs created depends on
the number and size of segments in the current and added ef-
fects. In the worst case if δvi has n segments and the added
effect δveff m, then there are (m+ n)! possible δvj vec-
tors. We reduce that: first, thanks to total ordering we con-
sider only interleavings that have j starting after i. Second,
we have information about the section sizes, and check and
exclude invalid permutations. Third, as in the linear case,
here too ending actions removes their effect, and thus re-
duces the number of possible vectors. While this may still
leave us with many vectors, we inevitably have to solve this
combinatorial part of the problem, and we show in our eval-
uation that the planner’s scalability is reasonable.

In the general case, step i might already have multiple
effects operating on variable v and therefore multiple δvi

ms.
If step j > i adds another non-linear effect on v the process
above is used to create a new δvj for each existing δvi.

To describe the problem in the MIP, all feasible δvmj s
are created, where m is the mth possible vector. In addition,
Big-M constraints are written corresponding to each vector:

(tj − ti) +MPj,m ≥ π1 (19a)
(tj − ti)−MPj,m ≤ π2 (19b)

where πi defines the interval in which the tj needs to occur
for the corresponding δvmj to be active, and Pj,m are binary
variables, as the Bj,ms of Eq. (16).

At stepj+1, we write Eq. (15) according to each δvmj . ti in
Eq. (16a)-(16b) will be replaced with the MIP variables rep-
resenting the correct section start. To ensure the we calculate
the value of vj+1 according to the right vector, Pj+1,m will
be added to Eq. (17) as follows:

−Pj+1,m +
∑
i=0..n

Bi = n− 1 (20)

Though the input effects are monotonic, a function com-
posed of two or more monotonic effects is not guaranteed
to remain monotonic. Therefore, δvi vector sections are
checked for sign changes, indicating a possible minimum or
maximum. The values of vu and vl are calculated at such
points, and the invariant constraints are checked at these
points in the MIP.

Evaluation
We implemented our approach in OPTIC++ and tested in
four domains1. Our evaluation uses the following constants:
time horizon (106), refinement limit (L=20) and big M
(105). We have found these constants sufficient in all the do-
mains we have explored. With a time horizon lower than the
duration of the longest action OPTIC++ could not find a so-
lution. Too small an L would degrade performance, we sel-
dom required more than 5. Too small an M would not force
the equations, and too large anM would cause floating point
errors. For OPTIC++ and SMTPlan we set ε = 0.001, chang-
ing this value does not affect their performance. All tests

1The domains can be found in https://github.com/eladden/
ICAPS2019Benchmark

were performed on an Intel i7-6700T CPU@2.80GHz×8
with 15GB RAM. The results are presented in Table 2.

We compare to three state-of-the-art hybrid planners
SMTPlan, DiNo and ENHSP. We chose these planners be-
cause they take input in standard PDDL, and have been
shown to outperform other planners, e.g. dReach (Pi-
otrowski et al. 2016); which are more difficult perform a fair
comparison with due to the need to translate PDDL to drm.

The comparison with ENHSP must be interpreted cau-
tiously: ENHSP does not support durative actions, whereas
the other planners do not support global constraints, due the
the different parsers they use. This difference requires that
the domains be rewritten for ENHSP. Therefore, though the
physics was the same, the models on which the planners
were compared are not exactly equivalent.

Linear Generator: This is the running example. Its aim
here is to demonstrate the overhead of using upper and lower
estimators on a linear domain (in practice, OPTIC++ could
trivially detect the case where all effects are linear and re-
vert to OPTIC). The main tank capacity is 1000 litres, all
auxiliary tank capacities are 10 litres.

As expected, OPTIC++ was slower. However, the differ-
ence becomes less significant as the problem becomes big-
ger, this implies that the overhead is in the linearization
phase, rather than search itself being slower in OPTIC++.

Non-linear Generator: Similar to the linear version but
for the refuelling effect. The fuel level added to the main
generator’s main tank (and reduced from an auxiliary) is:

dFgen (t)

dt
= 0.4t (21)

The generation fuel consumption function remains linear. In
this domain, there is just one non-linear effect, which inter-
acts with a linear effect. Each tank capacity here is 100 litres.
This domain differs from the non-linear variant from (Cash-
more et al. 2016) in two ways: first, the duration of the refuel
action is not governed by a duration constraint, rather, by the
requirement for the tank’s fuel level to not fall below zero.
Second, only one tank at a time can refuel the generator. This
forces a different happening for each refuel action.

DiNo and SMTPlan employ symmetry breaking methods:
DiNo breaks symmetry in the model checker, and SMTPlan
in the SMT solver. Since OPTIC++ does not employ sym-
metry breaking it was implemented in the model. We made
two versions of this domain: one with symmetry breaking
(SB) (requiring the tanks to be used in order - one before
two and so on), and one without. The headline comparison
between the planners should be OPTIC++ on the domain
which required defined order (termed SB) compared with
DiNo and SMTPlan on the domains which do not. The re-
sults are shown in Table 2. The results in the table refer to
DiNo running with a time step ε = 0.1. Using ε = 1 resulted
in DiNo failing to find a solution because the discretization
isn’t fine enough to admit a solution, ε = 0.01 timed out
on all instances. ENHSP timed out when using ε = 0.1 and
smaller. The results shown in the table are for ε = 1. The
plans ENHSP found with this larger ε are valid within said
epsilon, i.e. the generator could be ran for 1001 seconds -

143



Linear Generator
tanks 10 20 30 40 50 60 70 80 90

OPTIC 0.67 3.70 12.04 99.97 390.65 63.65 117.61 190.52 224.67
OPTIC++ 1.87 10.19 30.80 152.00 420.27 63.77 119.11 192.85 235.50

Non Linear Generator 3D Printer
tanks 1 2 3 4 5 6 7 8 9 10 secondary cart. 1 2 3 4 5

OPTIC++ SB 0.12 0.80 2.38 10.19 8.27 32.57 51.10 143.55 492.65 827.92 OPTIC++ SB 0.31 239.64 - - -
OPTIC++ 0.13 2.52 48.91 - - - - - - - OPTIC++ 0.25 - - - -

SMTPlan SB 0.11 - - - - - - - - - SMTPlan SB 0.01 - - - -
SMTPlan 0.11 0.12 0.14 0.20 0.31 - - - - - SMTPlan 0.02 0.08 0.48 1.84 23.54

DiNo SB 0.1 - - - - - - - - - - DiNo SB 1 - - - - -
DiNo 0.1 6.78 741.95 - - - - - - - - DiNo 1 - - - - -

ENHSP SB 1 5.27 7.93 9.15 11.33 - - - - - - ENHSP SB 1 - - - - -
ENSHP 1 4.56 7.64 9.09 11.17 - - - - - - ENHSP 1 - - - - -

Powered Landing
height 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

OPTIC++ 4.54 2.59 3.30 1.37 1.49 1.51 1.53 1.37 1.71 1.33 1.63 1.50 1.59 1.34 1.77 1.05
DiNo 0.1 8.51 22.97 41.78 61.72 86.92 113.62 141.65 170.47 199.69 230.84 263.62 299.05 340.17 380.33 382.16 -

ENHSP 0.1 0.47 1.16 4.88 - - - - - - - - - - - -

Table 2: Runtime (s): “-” indicates planner failure to report a solution in (1000s); Numbers after planner names indicate the ε
value used: we use (in their favor) the highest value that permits a valid solution.

but this would not be deemed valid by the other planners.
All planners produced the same solution plans (modulo ε).

When SMTPlan found a solution it did so faster than other
planners. Because it represents effects as polynomials and
solves an SMT problem, polynomial change is defined di-
rectly in the equations, thus it fits this problem best. SMT-
Plan’s disadvantage is with many happenings: as the num-
ber of actions grow, SMTPlan scales badly. OPTIC++ scales
better to plans that require larger number of happenings. In-
deed in our evaluation SMTPlan was unable to solve any
problem (in any domain) requiring more than 6 happenings.

3D Printer: This domain describes the working of a 3D
printer. The “ink” of the 3D printer is PLA plastic. The
printer draws PLA from a main cartridge of radius Rm =
0.1m, it has additional secondary cartridges from which
PLA can be drawn, each with its own radius Rc = 0.04m.
The cartridge is built with an internal spring assuring that
the radius remains constant. The engines of this printer sup-
ply all axes with a constant torque (Tm and Tc). Remember
that T = Iα, I is the moment of inertia and α is the angu-
lar acceleration. We assume here that the moment of inertia
remains constant through the duration of the printing.

The length of the PLA string that is used by either the
print or the feed action is therefore:

L = L0 + v0t+
1

2
Rαt2 (22)

The printer can print, and draw PLA from the main cartridge,
and it can, simultaneously feed additional PLA to the main
cartridge from a secondary. In our domain the engines begin
from rest, therefore all ω0 = 0. The torques and moments of
inertia were such that αm = −0.1rad/s2 in printing, and each
secondary cartridge acceleration was αc = 10rad/s2. In this
domain the planner is required to work with two interacting
non-linear (polynomial) effects.

DiNo timed out on all instances of the problem with
ε = 1, OPTIC++ was able to plan with 2 cartridges before
timing out, SMTPlan was able to plan with 5, ENHSP was
unable to find any solution, moreover, it incorrectly deemed
the problem unsolvable. Here SMTPlan outperforms OP-
TIC++ as it is avoiding the combinatorial blow-up OPTIC++

encounters in the overlapping non-linear effects by exploit-
ing the fact that the effects are polynomial (as it only sup-
ports polynomials it can rely on additional assumptions); as
OPTIC++ is more general, and doesn’t assume effects are
polynomial it has to deal with the combinatorial overlapping
of effects. Since solutions to the larger problems here have
small numbers of happenings SMTPlan is not affected by
the issues we saw in Non-Linear Generator. This is the one
case in our evaluation where we found another planner to be
superior to OPTIC++: specifically if all effects are known to
be polynomial, these effects overlap, and there are a small
number of happenings in the solution plan, SMTPlan is the
better option. Again, all planners generated identical plans.

Powered Landing: This domain was used in (Piotrowski
et al. 2016) to demonstrate DiNo’s ability to solve plans
with different required makespans. It serves here to show
the great advantage OPTIC++ gains by reasoning with con-
tinuous time rather than discretizing, as well as to demon-
strate OPTIC++ solving a non-polynomial domain: some-
thing SMTPlan cannot do. The domain models a 1D rocket
powered landing. A rocket is free falling to the surface of a
planet from an initial height d0 and a given velocity v0. The
goal is to reach a marginal area of no more than df above
the ground with a velocity no larger than vf .

The rocket may fire to slow its descent. The thrust velocity
change is given by the Tsiolkovsky equation (Turner 2009).

∆v = Ispgln

(
m0

m (t)

)
(23)

where Isp is the specific impulse, g the gravitational con-
stant, m0 the fuel mass prior to the engine firing, and m (t)
the current mass, or the mass after t seconds of thrust. We
assume that the mass flow is constant and equal to q, thus:

m (t) = m0 − qt (24)

The effect of falling is of course (Newton 1934):

d = d0 + v0t−
1

2
gt2 (25)

The constants used were: g = 9.8m/s2, Isp = 311s, q =
50kg/s, m0 = 50, 000kg, v0 = 0, df = 10m, and vf =

144



10m/s. The initial distance d0 varied from 100 to 20,000m in
the problem instances. This domain differs from that in (Pi-
otrowski et al. 2016): the duration of the fall action was orig-
inally defined by a non-linear condition on the mass. Here
the maximal duration of the falling action is simply a large
constant as this mass requirement was already subsumed by
the preconditions and OPTIC++ doesn’t support non-linear
conditions. The crash event is redundant and was not used.

Note that the optimal plan requires the same number of
actions as the fall duration increases: the rocket simply needs
to thrust for a longer duration. ENHSP and DiNo do not
scale well: degrading significantly as fall duration increases;
due to time discretization, they have more time-points to rea-
son about as the duration increases. Smaller epsilon values
make this worse: neither planner solves any problem with
ε = 0.01 (ε = 1 is not fine enough to admit valid solutions).
As OPTIC++ reasons with continuous time, neither the du-
ration of the plan, nor the value of ε affect its performance.

DiNo and ENHSP’s found plans required the firing of the
engine several times, leading to a longer makespan plan,
whereas OPTIC++ found the point after which it fired the
engine once until the required limit is reached. OPTIC++’s
solution is the optimal one. This shows that OPTIC++’s in-
built makespan optimisation, even in the absence of a metric
function, allows production of better quality plans.

Conclusions
In this paper, we presented OPTIC++, a MIP planner ca-
pable of reasoning with monotonic, initial time indifferent,
non-linear change. Our results show OPTIC++ outperforms
state-of-the-art planners on a range of benchmark domains.
In future work we plan to implement root-finding algo-
rithms to allow reasoning with non-monotonic change, and
to implement linearization in the MIP writing phase to al-
low reasoning with arbitrary non-linear effects, specifically
those that depend on actions that happen before the effect
starts. Additional research can be done by extending the
linearization logic to non-linear preconditions and duration
constraints.

Acknowledgements
This work was supported by the UK Engineering and Phys-
ical Sciences Research Council Grant EP/P008410/1 (AI
Planning with Continuous Non-Linear Change).

References
Alaboud, F. K. M., and Coles, A. 2019. Personalized medica-
tion and activity planning in PDDL+. In ICAPS.
Bajada, J.; Fox, M.; and Long, D. 2015. Temporal planning
with semantic attachment of non-linear monotonic continuous
behaviours. In IJCAI.
Bemporad, A.; Ferrari-trecate, G.; and Morari, M. 2000. Ob-
servability and controllability of piecewise affine and hybrid
systems. IEEE Transactions on Automatic Control 45:1864–
1876.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs. In
ICAPS.

Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P. 2015.
Smt-Based nonlinear PDDL+ planning. In AAAI.
Bryce, D. 2016. A happening-based encoding for nonlinear
PDDL+ planning. In AAAI Workshop: Planning for Hybrid Sys-
tems.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
ICAPS.
Coles, A. J., and Coles, A. I. 2014. PDDL+ planning with
events and linear processes. In ICAPS.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research 44:1–96.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2009. UPMurphi: a tool for universal planning on PDDL+
problems. In ICAPS.
Denenberg, E., and Coles, A. 2018. Modelling sequences
of processes in pddl+ for efficient problem solving. In Work-
shop on Knowledge Engineering for Planning and Scheduling.
ICAPS.
Do, M. B., and Kambhampati, S. 2001. SAPA: a domain-
independent heuristic metric temporal planner. In European
Conf. on Planning (ECP).
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2017.
Mixed discrete-continuous planning with convex optimization.
In AAAI.
Gao, S.; Kong, S.; and Clarke, E. M. 2013. dReal: An SMT
solver for nonlinear theories over the reals. In International
Conference on Automated Deduction.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach to
temporal planning and scheduling in domains with predictable
exogenous events. Journal of Artificial Intelligence Research
25:187–231.
Hoffmann, J. 2003. The Metric-FF planning system: Translat-
ing “ignoring delete lists” to numeric state variables. Journal
of Artificial Intilligence Research 20:291–341.
Li, H., and Williams, B. 2011. Hybrid planning with temporally
extended goals for sustainable ocean observing. In AAAI.
Newton, I. 1934. Principia mathematica.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C. 2018.
Compiling optimal numeric planning to mixed integer linear
programming. In ICAPS.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic planning for PDDL+ domains. In
IJCAI.
Say, B., and Sanner, S. 2018. Metric nonlinear hybrid planning
with constraint generation. In ICAPS.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
ECAI.
Turner, J. L. M. 2009. History and principles of rocket propul-
sion”. Berlin, Heidelberg: Springer Berlin Heidelberg. 1–35.
Wolfman, S., and Weld, D. 1999. The LPSAT System and its
Application to Resource Planning. In IJCAI.

145


