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Abstract

In stochastic sequential decision problems, such as Stochas-
tic Shortest Path Problems, the GUBS (Goal with Utility-
Based Semantics) criterion considers a trade-off between
probability-to-goal and cost-to-goal using a goal semantics
based on Expected Utility Theory (EUT); in such a semantics,
goal paths have priority over non-goal paths, but it implies
neither the MAXPROB criterion nor the dual optimization
criterion that finds the cheapest policy among the policies that
maximize goal probability. Whereas evaluation criteria based
on a sound theory such as EUT are desirable, optimal policies
under GUBS are non-markovian. Non-markovian solutions
are undesirable because there is not always a finite represen-
tation and even if it can be represented in a finite way, the
representation may be too large to be stored. Here we define
a special case of GUBS criterion that allows a finite repre-
sentation to the optimal policy, the eGUBS criterion, where
the cost utility function is exponencial. Considering this spe-
cial case, we contribute with: (i) the proof that the eGUBS-
optimal policy has a finite representation; (ii) the first exact
algorithm to obtain finite optimal policies for the eGUBS cri-
terion, and (iii) four strategies to find sub-optimal policies.
We conduct experiments on one synthetic problem to eval-
uate each strategy. Although optimal solutions have a high
memory cost, sub-optimal policies can save memory space
with a small decrease in performance.

1 Introduction
Stochastic Shortest Paths Problems (SSPs) (Bertsekas and
Tsitsiklis 1991) have become the standard model for prob-
abilistic planning. SSP models the interaction between an
agent and its environment. The agent selects and executes
an action (that has probabilistic outcomes) which has a cost
and leads the agent to a next state. The agent’s objective is to
reach the goal while minimizing the expected cost through a
sequence of actions. The solution for an SSP is a determin-
istic policy that maps states to actions.

While many works in the literature about SSPs assume
that at least one policy exists that guarantees to reach the
goal (Bertsekas and Tsitsiklis 1991; Bonet and Geffner
2005; 2003), some works deal with problems where there
are dead ends and therefore a goal can not be reached with
probability one.
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For SSPs with dead ends, some research has focused only
on finding policies that maximize the probability of reach-
ing a goal (MAXPROB criterion) (Kolobov et al. 2011;
Teichteil-Königsbuch, Kuter, and Infantes 2010; Camacho,
Muise, and McIlraith 2016), while other approaches work
with two criteria: maximizing the probability of reach-
ing a goal and minimizing the average accumulated costs
of reaching a goal (Teichteil-Königsbuch 2012; Kolobov,
Mausam, and Weld 2012; Trevizan, Teichteil-Königsbuch,
and Thiébaux 2017).

Two approaches that work with these two conflicting cri-
teria are iSSPUDE (Kolobov, Mausam, and Weld 2012) and
S3P (Teichteil-Königsbuch 2012) that consider a dual op-
timization criterion, which finds the cheapest policy among
the policies that maximize goal probability. This dual cri-
terion prioritizes the probability of success and the perfor-
mance is treated as secondary. Another criterion is the Min-
Cost given Max-Prob (MCMP) that was proposed in (Tre-
vizan, Teichteil-Königsbuch, and Thiébaux 2017) and which
results in the minimum expected cost policy among those
with maximum success probability. However, these criteria
do not really establish a compromise between probability-
to-goal and cost-to-goal.

To deal with this limitation, Freire and Delgado (2017)
proposed the GUBS (Goals with Utility-Based Semantics)
criterion to evaluate policies; the GUBS criterion defines
a trade-off between cost-to-goal and probability-to-goal for
SSPs with dead ends based on the expected utility theory
(EUT). This criterion derives a parametric model from a set
of axioms and describe how to set the parameters rationally.
Freire and Delgado (2017) also proposed an approximate al-
gorithm to solve discrete-cost SSPs based on the GUBS cri-
terion. Evaluation criteria based on normative theories such
as EUT are sound and desirable, but optimal policies un-
der GUBS are non-markovian. Non-markovian solutions is
a concern for planning algorithms; first, it is not always the
case that a finite representation is possible; second, even if it
can be represented in a finite way, the representation may be
impractical.

In this paper, considering a special case of the GUBS
criterion where exponential cost utility is used, we present
the first exact algorithm to obtain finite optimal policies for
SSPs with dead ends. Even if a finite optimal solution exists,
it might be impractical storing such a solution; therefore,
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we also design four sub-optimal strategies to save memory
space.

2 Stochastic Shortest Path Problem
In the discussion that follows, we consider Stochastic Short-
est Path Problem (Bertsekas and Tsitsiklis 1991) described
by the tupleM = 〈S,A, P, c,G〉 where: S is a finite set of
states; A is a finite set of actions that can be performed at
each period of decision t ∈ {0, 1, 2, . . .}; P : S ×A×S →
[0, 1] is a transition function that represents the probability
of state s′ ∈ S be reached after the agent executes an action
a ∈ A in a state s ∈ S, i.e., Pr(st+1 = s′|st = s, at =
a) = P (s, a, s′); c : S × A → R+ is a positive cost func-
tion that represents the cost of executing an action a ∈ A
in a state s ∈ S, i.e., ct = c(st, at); and G is a non-empty
set of goal states that are absorbing (states with no outgoing
transitions).

An SSP defines a decision process, where the agent starts
in state s0 and at any time step t the agent: observes the
current state st, chooses an action at, pays the cost ct =
c(st, at), and the process transits to st+1 by following con-
ditional probability distribution Pr(st+1 = s′|st = s, at =
a) = P (s, a, s′).

Under an SSP and the agent policy π to take decisions, we
consider the following random variables: (i) history Hπ

T =
〈s0, a0, c0, s1, a1, c1, . . . , sT 〉; (ii) accumulate cost CπT =
T∑
t=0

ct; and (iii) goal indicator βπT = 1 if {∃t ≤ T |st ∈ G}

and βπT = 0 otherwise. The agent is supposed to act by min-
imizing accumulated cost and maximizing the probability to
reach a goal state.

The probability-to-goal of a policy π starting in state s0 =
s is given by:

PπG(s) = lim
T→∞

E[βπT |s0 = s]. (1)

The cost-to-goal of a policy π starting in state s0 = s is
given by C

π

G(s) = lim
T→∞

E[CπT |s0 = s, βπT = 1].

The solution to an SSP consists in a policy π. A policy π
can assume different descriptions and we list some important
ones bellow:
• Stationary policies (π : S → A): a stationary policy maps

every state st into an action at = π(st);
• Non-Markovian policies (π : H → A): a non-Markovian

policy maps every history Ht at step t into an action at =
π(Ht); and

• Accumulated-cost augmented policies (π : S ×R → A):
a non-Markovian policy that maps every accumulated cost
Ct at step t and state st into an action at = π(st, Ct).

2.1 The GUBS Criterion
An agent should strive for reaching goal state while avoid-
ing high cost, but it is not clear how to establish a trade-off
between both objectives. The GUBS criterion (Freire and
Delgado 2017) formalizes optimal policies by: (i) consider-
ing preference axioms that prioritize goal histories over non-
goal histories; and (ii) considering EUT to average over the
random variables CπT and βπT .

Definition 1 (The GUBS criterion (Freire and Delgado
2017)). Let u(·) be a utility function over cost,Kg be a con-
stant utility for reaching the goal. The GUBS criterion is
defined by the following utility function:

U(CT , βT ) = u(CT ) +KgβT ,

and a policy π using this criterion is evaluated by:

V π(s) = E[U(CT , βT )|π, s0 = s].

Theorem 1 (GUBS conditions (Freire and Delgado 2017)).
The model GUBS guarantees the decision-maker prioritizes
goals histories over non-goal histories under the following
conditions:

1. u : R → [Umin, Umax];
2. u(C) is strictly decreasing in C; and
3. Kg > Umax − Umin.

where Umin, Umax ∈ R.

Different from iSSPUDE (Kolobov, Mausam, and Weld
2012), S3P (Teichteil-Königsbuch 2012) and MCMP (Tre-
vizan, Teichteil-Königsbuch, and Thiébaux 2017), the
GUBS criterion accepts a policy π′ to be preferred to an-
other policy π (π′ � π), even if Pπ

′

G < PπG provided that the
cost-to-goal in π′ make up for the loss in the probability-to-
goal. Theorem 2 describes a necessary conditions such that
π′ � π.

Theorem 2 (GUBS Mininum Trade-off (Freire and Del-
gado 2017)). Consider an SSP and two policies π and π′

such that PπG > Pπ
′

G , then, under the GUBS model, π′ � π
only if:

Pπ
′

G

PπG
>

Kg

Umax − Umin +Kg
.

Although the GUBS criterion allows an adequate trade-
off between probability-to-goal and cost-to-goal, finding an
optimal policy for GUBS has three main problems. First, an
optimal solution is non-Markovian in the accumulated cost.
Second, just like finite horizon MDP, optimal policy must be
obtained backwards. Third, we may require too much mem-
ory space to store an optimal policy.

2.2 Risk Sensitive SSP and Exponential Utility
In this work, we consider an exponential utility function
based on risk-sensitive SSPs (RS-SSP). A Risk Sensi-
tive SSP (RS-SSP) (Patek 2001) is defined by the tuple
RSSSP = 〈M, λ〉 where M is an SSP and λ is the risk
factor that models the agent’s risk-attitude. The exponential
utility function u used by the RS-SSP is:

u(x) = − sgn(λ)eλx,

where sgn(λ) is a function that returns the sign of λ, and

x =

M∑
t=0

c(st, π(st)), where M ∈ N is the time step when

the goal is reached and M = ∞ if the goal is not reached.
If λ < 0 the agent considers a risk-prone attitude, if λ > 0
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the agent considers a risk-averse attitude and in the limit if
λ→ 0 the agent considers a risk-neutral attitude.

If λ < 0, the value function of a policy π in RS-SSPs is
well-defined and is given by:

V πλ (s) = lim
T→∞

E
[
− sgn(λ)eλC

π
T |s0 = s

]
,

and the value of a policy π can be computed by solving the
following system of equations:

V πλ (s) =


− sgn(λ), if s ∈ G
eλc(s,π(s))

∑
s′∈S

P (s, π(s), s′)V π(s′),

otherwise
(2)

3 Exponential GUBS
To use the GUBS criterion, we must define a bounded util-
ity function u(·) and a constant Kg . Both must be elicited
from a user whom the agent takes action in the name of.
The exponential utility function satisfies conditions 1 and 2
of Theorem 1 and as we have seen in the previous section,
presents good convergence properties when the risk factor
is negative. Therefore, in this paper we consider Exponen-
tial GUBS (eGUBS), a restricted GUBS criterion where the
utility function u(·) is exponential and the risk factor is neg-
ative. The eGUBS criterion has only two parameters to be
defined: λ and Kg .
Definition 2 (The eGUBS criterion). The eGUBS criterion
considers the GUBS criterion where u(x) = eλx and λ < 0.

To solve the GUBS criterion, it is necessary to augment
the state space with the accumulate cost Ct and consider
a State-Cost Value Function. However, the accumulate cost
may be infinite and, when using dynamic programming, op-
timality is obtained backwards.
Definition 3 (State-Cost Value Function). Consider that
the agent has already paid cost C and is in the state s, then
follows policy π from now on. The State-Cost Value Function
is defined by:

V π(s, C) = E[U(C + CT , βT )|π, s0 = s],

and describes the expected utility obtained by the agent.
Theorem 3 (State-Cost Value of Stationary Policies to
eGUBS). Consider a stationary policy π and the eGUBS
criterion, then the State-Cost Value Function of π is:

V π(s, C) = eλCV πλ (s) +KgP
π
G(s),

where V πλ (s) and PπG(s) were defined in Equations 2 and 1,
respectively.

Proof.

V π(s, C) = E[U(C + CT , βT )|π, s0 = s]
= E[u(C + CπT ) +Kgβ

π
T |s0 = s]

= E[eλ(C+CπT ) +Kgβ
π
T |s0 = s]

= eλCV πλ (s) +KgP
π
G(s)

Since solutions to SSPs with the GUBS criterion are non-
Markovian policies, it may be the case that a stationary pol-
icy can be improved by augmenting the state space with the
accumulated cost. Definition 4 describes how to improve a
stationary policy, while Theorem 4 describe sufficient con-
ditions to a stationary policy being optimal.

Definition 4 (Look-Ahead Policy Improvement to eGUBS
criterion). Given a stationary policy π, such a policy can be
improved into a non-markovian policy π′, for all s ∈ S, by:

π′(s, C) = arg max
a∈A

{∑
s′∈S

P (s, a, s′)×

(
eλ(C+c(s,a))V πλ (s′) +KgP

π
G(s′)

)}
.

Theorem 4 (Cmax and Optimal Stationary Policy to
eGUBS). In the eGUBS criterion, there exists a valueCmax
such that if accumulated cost reach Cmax, the optimal pol-
icy from that point is stationary. Such a stationary policy π∗

maximizes a lexicographic dual criterion:

• π∗ maximizes probability to goal, i.e., Pπ
∗

G (s) ≥
PπG(s)∀s ∈ S, π ∈ Π, where Π is the set of stationary
policies; and

• π∗ maximizes the expected exponential utility, i.e.,

V π
∗

λ (s) ≥ V πλ (s)∀s ∈ S, π ∈ Π∗,

where Π∗ is the set of stationary policies that maximizes
probability to goal.

Such a value Cmax is given by:

Cmax = max
(s,a)∈X

{W}

where:

W = − 1

λ
log

V π
∗

λ (s)−
∑
s′∈S

P (s, a, s′)eλc(s,a)V π
∗

λ (s′)

Kg

(∑
s′∈S

P (s, a, s′)Pπ
∗

G (s′)− Pπ
∗

G (s)

)
and

X =

{
(s ∈ S, a ∈ A)

∣∣∣∣∣(V π∗λ (s)−

∑
s′∈S

P (s, a, s′)eλc(s,a)V π
∗

λ (s′)) < 0

}
.

Proof. A policy π∗ is optimal if it cannot be improved
through look-ahead, i.e., it does not exist any state s that
can be improved by using an action a 6= π∗(s). Since π∗

optimizes probability-to-goal, only pairs in (s, a) ∈ X ,
that improve on expected exponential utility are candidate
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to improve policy π∗. Therefore, for policy π∗ to be opti-
mal, the following constraint must be observed for all pair
(s, a) ∈ X :

eλCV πλ (s) +KgP
π
G(s) ≥∑

s′∈S
P (s, a, s′)

(
eλ(C+c(s,a))V πλ (s′) +KgP

π
G(s′)

)
eλC

(
V πλ (s)−

∑
s′∈S

P (s, a, s′)eλc(s,a)V πλ (s′)

)
≥∑

s′∈S
P (s, a, s′)KgP

π
G(s′)−KgP

π
G(s)

V πλ (s)−
∑
s′∈S P (s, a, s′)eλc(s,a)V πλ (s′)∑

s′∈S P (s, a, s′)KgPπG(s′)−KgPπG(s)
≤ e−λC .

While the first passage is only simple mathematical manip-
ulations, in the second passage we take advantage of the in-
equality

∑
s′∈S

P (s, a, s′)KgP
π
G(s′)−KgP

π
G(s) < 0. Apply-

ing log in both sides of the inequality, we obtain:

log
V πλ (s)−

∑
s′∈S P (s, a, s′)eλc(s,a)V πλ (s′)∑

s′∈S P (s, a, s′)KgPπG(s′)−KgPπG(s)
≤ −λC

C ≥ − 1

λ
log

V πλ (s)−
∑
s′∈S P (s, a, s′)eλc(s,a)V πλ (s′)

Kg

(∑
s′∈S P (s, a, s′)PπG(s′)− Pπ∗G (s)

)

In the next section we present an exact algorithm to solve
SSPs that use the eGUBS criterion. Definition 4 motivates
to find a stationary policy (Algorithm 1) and lift it to a
piecewise-stationary policy (Algorithm 2), and to do this we
define an accumulated cost schedule. The results of Theo-
rem 4 then allow us to discuss under what conditions the
obtained policy is eGUBS-optimal (Theorem 6).

4 An Exact Algorithm to the eGUBS
Criterion

In this section we contribute with the first exact algorithm
to solve SSPs that use the GUBS criterion by considering
the special case when utility function is exponential. Such
algorithm consists of three phases:

1. Finding an optimal Risk Sensitive Dual Criterion policy
π;

2. Defining an accumulated-cost schedule that is a non-
negative strictly monotonic increasing sequence, i.e., an
ordered set that determines points in the accumulated cost
where policy (value) can be altered; and

3. Finding a finite horizon optimal policy π∗ for SSPs with
the eGUBS criterion.

Next we contribute with algorithms to phase 1 (Risk-
Sensitive Dual Criterion algorithm), and phase 3 (eGUBS
Value Iteration algorithm, eGUBS-VI). Then, regarding
accumulated-cost schedule, we discuss in Section 4.3 con-
ditions for the optimality of eGUBS-VI algorithm.

4.1 Finding an Optimal Risk-Sensitive Dual
Criterion Policy

In this section we define the Risk-Sensitive Dual Criterion
and describe the algorithm to compute the optimal policy
for this criterion.

Definition 5 (The Risk-Sensitive Dual Criterion). The
Risk-Sensitive Dual Criterion considers a lexicographic cri-
terion, where for all s ∈ S:

(i) if PπG(s) > Pπ
′

G (s), then π � π′; or

(ii) if PπG(s) = Pπ
′

G (s) and V πλ > V π
′

λ , then π � π′.
Given an SSP, a risk factor λ and a minimum error ε, Al-

gorithm 1 computes Vλ(·), PG(·) and the optimal policy π(·)
for the Risk-Sensitive Dual Criterion. In line 7 the algorithm
computes the maximum probability, in line 8 computes the
set of actions that are MAXPROB for each state, and in line
9 computes the value function for the risk-sensitive criterion
considering these actions. The stop criterion of this algo-
rithm depends on δ1 and δ2. The algorithm continues updat-
ing Vλ(·) and PG(·) while δ1, the maximum sum of the dif-
ference of the values and the difference of the probabilities,
is greater than ε, or the difference of using another action
that is not MAXPROB (a ∈ A \ A(s)) is better than using
the MAXPROB action (δ2 ≤ 0). This last condition guaran-
tees that even if ε is inappropriate, the result of Algorithm 1
can still be used on Theorem 4.

Theorem 5 (RS-Dual Algorithm Convergence). The Risk-
Sensitive Dual Criterion algorithm converges.

Proof sketch. Note that, both operators (lines 7 and 9) are
contractions. Since PG(s) is updated with null cost, PG(s)
are bounded by initial values 1 of goal states. Because λ < 0

and c(s, a) > 0, eλc(s,a) works as discount, which guar-
antees convergence (Minami and Silva 2012); since every
history that does not reach goals has infinite cost and value
0.

4.2 eGUBS-VI Algorithm
The eGUBS-VI algorithm is presented in Algorithm 2.
eGUBS-VI algorithm consider two accumulated-cost sched-
ule: C, the policy schedule, and D, the value schedule.
eGUBS-VI algorithm constructs a piecewise-stationary pol-
icy π∗ : S ×C → A based on an accumulated-cost schedule
C such that:

at = π∗(st, Cnext(Ct, C)),

where Cnext(Ct, C) = min{D|D ∈ C ∪ {Cmax} and D ≥
Ct}. Because C is used to define a policy, we call it policy
schedule.

We make use of Theorem 4 to calculate a finite horizon
Cmax(M,Kg, λ, Vλ, PG, π). eGUBS-VI algorithm keeps
track of three value functions based on an accumulated-cost
schedule D (we call it value schedule):

• V ∗λ (s, C) is the value function of the risk-sensitive crite-
rion starting at state s and following policy π∗ from the
accumulate cost C;
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Algorithm 1 Risk-Sensitive Dual Criterion Algorithm.
1: Input: SSPM, risk factor λ, minimum error ε
2: Initialize: δ1 ← +∞, δ2 ← 0, Vλ(s) ← 0 for all s ∈
S \ G, Vλ(s)← − sgn(λ) for all s ∈ G, PG(s)← 0 for
all s ∈ S \ G, and PG(s)← 1 for all s ∈ G

3: while δ1 ≥ ε or δ2 ≤ 0 do
4: V ′ ← Vλ
5: P ′ ← PG
6: for all s ∈ S \ G do
7: PG(s)← max

a∈A

∑
s′∈S

P (s, a, s′)P ′(s′)

8: A(s)←

{
a

∣∣∣∣∣PG(s) = ∑
s′∈S

P (s, a, s′)P ′(s′)

}

9: Vλ(s)← max
a∈A(s)

{
eλc(s,a)

∑
s′∈S

P (s, a, s′)V ′(s′)

}
10: end for
11: δ1 ← max

s∈S

{
|Vλ(s)− V ′(s)|+ |PG(s)− P ′(s)|

}
12: δ2 ← min

s∈S,a∈A\A(s)
{PG(s)−

∑
s′∈S

P (s, a, s′)PG(s
′)}

13: end while
14: for all s ∈ S do

15: π(s)← arg max
a∈A(s)

{
eλc(s,a)

∑
s′∈S

P (s, a, s′)V ′(s′)

}
16: end for
17: return Vλ(·), PG(·), π(·)

• P ∗G(s, C) is the probability to goal starting at state s and
following policy π∗ from the accumulate cost C; and

• V ∗(s, C) is the value function for the eGUBS criterion.
eGUBS-VI is a dynamic programming algorithm; it starts

from the risk-sensitive dual criterion policy π (line 2) and do
backup updates fromDN untilD1 (line 3) on the three value
functions V ∗λ (line 17),P ∗G (line 18), and V ∗ (line 19). IfC ∈
C, then C is a point of policy improvement and a stationary
policy is generated (lines 11 and 12, Definition 4); otherwise
the current stationary policy is considered (lines 14 and 15).

4.3 Theoretical Results about eGUBS-VI
Optimality

In this section we present the sufficient conditions for
eGUBS-VI algorithm returning the optimal policy. First, we
consider the case when the cost is rational.
Theorem 6 (Rational cost - Optimal policy). Consider that
the cost function has an image in the rational numbers, i.e.,
c : S×A → I ⊂ Q and that all values ri ∈ I has a quotient
ri =

pi
q

representation with the same denominator q (if it

is not the case, it can be obtained by calculating the least
common multiplier). Finally, let p be the greatest common
divisor of the numerator of I.

Let
• π be the optimal policy for the risk-sensitive dual criterion

on the SSPM;
• Vλ be the accumulated exponential cost of π,

Algorithm 2 eGUBS-VI Algorithm.
1: Input: SSPM, risk factor λ, goal terminal reward Kg ,

accumulate exponential cost Vλ, probability to goal PG,
Risk-Sensitive dual-criterion policy π, value schedule
D = {D1 = 0, D2, · · · , DN ,∞} where Di < Dj ⇔
i < j, policy schedule C = {C1, C2, · · · , CM ,∞}
where Ci < Cj ⇔ i < j and C ⊆ D

2: Initialize: V ∗λ (s,∞) = Vλ(s), P ∗G(s,∞) = PG(s) and
π∗(s,∞) = π(s) for all s ∈ S

3: for C = DN down to D1 do
4: for s ∈ S do
5: for a ∈ A do
6: C ′ = min{D|D ∈ D and D ≥ C+ c(s, a)}
7: V (a)← eλc(s,a)

∑
s′∈S

P (s, a, s′)V ∗λ (s′, C ′)

8: P (a)←
∑
s′∈S

P (s, a, s′)P ∗G(s′, C ′)

9: end for
10: if C ∈ C then
11: π∗(s, C) = arg max

a∈A
eλCV (a) +KgP (a)

12: a∗ ← π∗(s, C)
13: else
14: C ′ = min{D|D ∈ C and D ≥ C}
15: a∗ ← π∗(s, C ′)
16: end if
17: V ∗λ (s, C) = V (a∗)
18: P ∗G(s, C) = P (a∗)
19: V ∗(s, C) = V ∗λ (s, C) +KgP

∗
G(s, C)

20: end for
21: end for
22: return π∗(·), V ∗(·)

• PG be the probability to goal of π;
• Cmax be like in Theorem 4; and

• C = D =

{
0,
p

q
,

2p

q
,

3p

q
, . . . , Cmax,∞

}
;

then, the input (M, λ,Kg, Vλ, PG, π,D, C) is sufficient for
eGUBS-VI algorithm returning the optimal policy.

Proof sketch. First, from Theorem 4 and initialization of
π∗(s,∞), it is true that π∗ is optimal for C > Cmax. Sec-
ond, from Theorem 3, it is also true that the three value func-
tions V ∗λ , P ∗G, and V ∗ are correct for C > Cmax. Third, the
value schedule D and policy schedule C have all the reach-
able accumulated cost. Therefore, because cost is always
positive and eGUBS-VI algorithm does backup backwards,
all the values used in the backup are correct, and the result
follows.

When the cost is integer, we can use C = D = {0, 1,
2, . . . , Cmax,∞} to guarantee that eGUBS returns the opti-
mal policy.

Corollary 1 (Integer cost - Optimal policy). Consider that
the cost function has an image in the natural numbers, i.e.,
c : S ×A → I ⊂ N . Let C = D = {0, 1, 2, . . . , Cmax,∞}
and Vλ, PG, and π be as in the Theorem 6, then the input
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(M, λ,Kg, Vλ, PG, π,D, C) is sufficient for eGUBS-VI al-
gorithm returning the optimal policy.

Corollary 2 (Correct value function). Consider cost func-
tion c(·) as in the Theorem 6 and let Vλ, PG, π and D
as in the Theorem 6, and let C ⊂ D, then, the input
(M, λ,Kg, Vλ, PG, π,D, C) is sufficient for eGUBS-VI al-
gorithm returning a value function V ∗ that is correct regard-
ing policy π∗.

In other words, if the accumulated-cost schedule respects
Theorem 6, eGUBS-VI algorithm retuns an optimal pol-
icy, if it is not the case eGUBS-VI algorithm returns a sub-
optimal one.

4.4 Sub-Optimal Strategies
In this section we describe four strategies to find sub-optimal
policies to eGUBS.

Definition 6 (Combinatorial Search). Consider cost func-
tion c(·) as in the Theorem 6 and let Vλ, PG, π and D
as in the Theorem 6. Consider an initial state distribution
θ : S → [0, 1] and find C such that:

• C ⊂ D;
• |C| = M ≤ N ; and

• maximizes the average value
∑
s∈S

θ(s)V ∗(s, 0).

Because combinatorial search has a high complexity, we
experiment with a forward greedy search, in addition to solv-
ing the problem exactly using exhaustive search. Exhaustive
search evaluates every subset of D with M elements. Thus,

exhaustive search demands
N !

(N −M)!M !
evaluations. For-

ward greedy search chooses one element on each iteration
and does not remove it from C. Thus, forward greed search

demands
N∑

i=N−M+1

i =
2NM −M2 +M

2
≤ NM evalu-

ations.
We also consider two heuristics that demands only one

evaluation. Uniform distribution that chooses elements to
be put in C in such way that: 0 ∈ C and that difference be-

tween two consecutive accumulated cost are close to
N − 1

M
,

more precisely Di is in C if and only if there exists scalar

k such that
∣∣∣∣Di − k

Cmax

N

∣∣∣∣ ≤ 0.5. The uniform distribu-

tion demands only one evaluation. Initial-dense distribu-
tion considers simply C = {D0, D1, . . . , DM−1,∞}. Just
like uniform distribution, initial-dense distribution demands
only one evaluation, however, if D is chosen just like C, the
value function is still correct, but the evaluation is cheaper.

5 Experiments
We run experiments in the river problem (Freire and Del-
gado 2017) to evaluate the eGUBS-VI algorithm and the
sub-optimal strategies.

5.1 River problem
In the river problem an agent is in one side of the river and
wants to go to the other side. The agent has two options:
(i) swimming from any point of the river bank, or (ii) going
along the river bank until a bridge. This problem is modeled
as a grid Nx ×Ny , where: (i) x = 1 and x = Nx represent
the river banks; (ii) y = Ny represents the bridge; and (iii)
y = 1 represents a waterfall where the agent can get trapped
or die. The goal is to get the other side of the river bank far
from the bridge, xg = Nx and yg = 1.

The agent can move in the cardinal directions and actions
succeed with different probability depending on the state. To
avoid proper policies, if actions are taken on the river bank,
we add a probability of 0.01 of falling in the river. If ac-
tions are taken in the bridge, transitions are deterministic. If
actions are taken in the river then transitions are probabilis-
tic and follows the chosen cardinal directions with probabil-
ity (1 − Probriver)2, follows down the river with probabil-
ity (Probriver)

2 or stays in the same place with probabil-
ity 2Probriver(1− Probriver). The waterfall is modeled as
dead-end states. The immediate cost is 1.

5.2 eGUBS-VI algorithm and Cmax

One of the main drawback of eGUBS-VI algorithm is its
memory cost, which is proportional to Cmax. We conduct
a set of experiments to see the influence of problem and
eGUBS criterion parameters. In all of them we consider a
base configuration with: Kg = 1, λ = −0.1, Ny = 50,
Nx = 5, and Probriver = 0.8. Then, we vary systemati-
cally Kg, λ,Ny and Probriver.

Figure 1 shows the influence of the problem in Cmax.
Remember that Cmax is the sufficient accumulated-cost to
the RS-Dual criterion being optimal under the eGUBS cri-
terion. River probability Probriver controls the difficulty
of crossing the river, the bigger Probriver, the smaller the
probability to goal when crossing the river; therefore when
Probriver is large, crossing the river only pays off if accu-
mulated cost is small.

Regarding size of the state space, Ny controls the cost
of the safest path, the largest probability to goal; therefore
crossing the river pays off if Ny is too large.

Figure 2 shows the influence of the GUBS criterion pa-
rameters in Cmax. Theorem 4 shows that Cmax decreases
with Kg and increases with the absolute value of λ. Fig-
ure 2 confirms such a theoretic result. In fact, if λ→ 0, then
the accumulated cost decreases utility linearly, and RS-Dual
policy is not optimal for any accumulated cost; on the other
side, if |λ| is large, utility decays fast to its inferior bound,
and future cost are irrelevant, when the RS-Dual criterion is
optimal. RegardingKg , ifKg → 0, probability to goal is not
considered and the RS-Dual criterion is hardly optimal, on
the other side, if Kg is large, the RS-Dual criterion becomes
optimal with less accumulated cost. Note that as defined in
Theorem 4, Cmax decay logarithmic with Kg .

5.3 eGUBS-VI and sub-optimal strategies
As we show in previous section, Cmax may get too large de-
pending on the problem or eGUBS criterion parameters. In
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Figure 1: Influence of problem configuration in Cmax. (Top)
Influence of River Probability in Cmax. (Bottom) Influence
of Ny in Cmax.

such scenarios, considering sub-optimal strategies is manda-
tory. We evaluated the four strategies described in Sec-
tion 4.4 in two scenarios; we fixed Kg = 1, λ = −0.1,
Nx = 5, Probriver = 0.8, and test for Ny = 50 (scenario
1), where Cmax = 44, and Ny = 100 (scenario 2), where
Cmax = 123.

The value scheduleD is considered always full; since cost
is unitary, D = {0, 1, . . . , Cmax − 1}. The policy sched-
ule C is constructed following each strategy constrained to a
given number of schedule points; we study how performance
varies according to the number of schedule points.

Figure 3 and 4 show results for scenarios 1 and 2, respec-
tively. In scenario 1, the number of schedule points were var-
ied from 0 (RS-Dual criterion) to 20, and in scenario 2, the
number of schedule points where varied from 0 to 40. Be-
cause Exhaustive search presents a high time cost, exhaus-
tive search was tested only for schedule points between 0
and 4 in scenario 1, and it was not tested in scenario 2.

As expected, all four strategies converges to the same
level as the number of schedule points increases (top fig-

Figure 2: Influence of problem eGUBS configuration in
Cmax. (Top) Influence of risk factor λ in Cmax. (Bottom)
Influence of Kg in Cmax.

ures). While Exhaustive search is proved to found the best
schedule constrained to a given number of schedule points,
greedy search presents a performance very close to exhaus-
tive search. Clearly, greedy search strategy is better in per-
formance than uniform and initial-dense strategies. Uniform
strategy is slightly better than Initial-Dense one in scenario
1, but it is clearly worse than Initial-Dense strategy in the
scenario 2. In both scenarios with only 5 (five) schedule
points, Greedy search strategy is very close to optimality.

Regarding the cost-to-goal and probability-to-goal, all the
sub-optimal strategies present different patterns of trade-off
(bottom figures). The eGUBS criterion makes a trade-off
between probability-to-goal and cost-to-goal based on pa-
rameters Kg and λ, what is different of simply maximiz-
ing cost-to-goal for a fixed probability-to-goal. On the other
side, adequate trade-offs can be obtained by simply choos-
ing Kg = 1 and |λ| small.

First, note the difference between RS-Dual and eGUBS
trade-off; in scenario 1, the RS-Dual criterion presents prob-
ability to goal 0.921 and average cost to goal 47.8 (right-top

152



Figure 3: Comparison between sub-optimal strategies in a
problem withNy = 50. (Top) Influence of number of sched-
ules points. (Bottom) Trade-off between probability-to-goal
and cost-to-goal.

points), while eGUBS presents probability to goal 0.917 and
average cost to goal 38.7 (left-bottom points), and in sce-
nario 2, the RS-Dual criterion presents probability to goal
0.961 and average cost to goal 94.0, while eGUBS presents
probability to goal 0.959 and average cost to goal 61.6. In
both scenario, a small amount of probability is payed for a
significant decrease in average cost-to-goal.

Regarding sub-optimal strategies, initial-dense and uni-
form strategies present a complete different behaviour, the
first one presenting a better trade-off between cost-to-goal
and probability-to-goal, i.e., a smaller decrease in proba-
bility produces a greater decrease in cost-to-goal. Greedy
search presents a trade-off between initial-dense and uni-
form strategies; greedy search strategy also approaches the
eGUBS solution faster (fewer points far from optimality).

The greedy search strategy presented a good trade-off be-
tween value and number of schedule points, but, for small
M , we have a complexity of MN evaluations of eGUBS-
VI algorithm. Since Initial-dense and uniform strategies are
heuristics, they demand only 1 (one) evaluation.

Figure 4: Comparison between sub-optimal strategies in a
problem with Ny = 100. (Top) Influence of number of
schedules points. (Bottom) Trade-off between probability-
to-goal and cost-to-goal.

Figure 5 shows which accumulated-cost point is chosen
in each iteration of greedy search. We can see that the first
schedule points to be chosen are limited to small accumu-
lated cost; therefore, search may be heuristically limited to
the initial region.

6 Conclusion
The GUBS criterion makes a trade-off between probability-
to-goal and cost-to-goal based on the expected utility theory.
We contribute with the first exact algorithm to solve SSPs
that use the GUBS criterion when exponential utility func-
tion is considered with a negative risk factor, the eGUBS-VI
algorithm. Since optimal policy is non-markovian, the state
space must be extended, however space augmentation are
memory and time demanding. We make experiments with
four sub-optimal strategies, and we conclude that good poli-
cies can be found with an order of magnitude increase in the
memory space of stationary policies.

The exact algorithm developed here can be adapted in
many directions. We do not consider an initial state and
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Figure 5: Order of entrance of each accumulated cost in the
schedule points.

Cmax based on an initial state may be smaller than Cmax
for every state. However, since we make use of dynamic
programming, the states reached from an initial state and
consequently Cmax will depend on the policy that is be-
ing constructed. Additionally, the eGUBS criterion may be
used in problems where a reward must be maximized; in this
case, because null reward is allowed, an adapted version of
eGUBS-VI algorithm might be time consuming.

We also pointed directions to improve on greedy search
strategies with small losses in performance. Two possible
directions are: (i) making use of heuristics to accelerate
search, while keeping small number of schedule points;
and (ii) making use of initial-dense strategy to include new
schedule points while enough improvements are obtained, in
this case, the number of schedule points may be larger than
necessary.
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