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Abstract
Conflict-based Search (CBS) is a effective approach to opti-
mal multi-agent path finding. However, performance of CBS
approaches degrade rapidly in highly-contended graphs with
many agents. One of the reasons this occurs is that CBS does
not detect independent subproblems; i.e. it can re-solve the
same conflicts between the same pairs of agents up to ex-
ponentially many times, each time along a different branch.
Constraint programming approaches with nogood learning
avoid this kind of duplication of effort by storing nogoods
that record the reasons for conflicts. This can exponentially
reduce search in constraint programming. In this work, we
present Lazy CBS, a new approach to multi-agent pathfind-
ing which replaces the high-level solver of CBS with a lazily
constructed constraint programming model with nogoods. We
use core-guided depth-first search to explore the space of
conflicts and we detect along each branch reusable nogoods
which help to quickly identify feasible solutions. Our exper-
iments show that Lazy CBS can significantly improve on the
state-of-the-art for optimal MAPF problems under the sum-
of-costs metric, especially in cases where there exists signifi-
cant contention.

Introduction
Multi-agent Pathfinding (MAPF) is a planning problem
which asks us to coordinate the movements of a team of
agents: from a set of unique starting locations to a set
of unique target positions all while avoiding collisions.
This problem appears in a variety of different application
areas including warehouse logistics (Wurman, D’Andrea,
and Mountz 2008), office robots (Veloso et al. 2015),
aircraft-towing vehicles (Morris et al. 2016) and computer
games (Silver 2005). Often the the environment in which
agents operate is given as an undirected graph, such a grid.
Common objectives then include minimising the total arrival
time of all agents (aka. sum-of-costs) and minimising the ar-
rival of the last agent at its target location (aka. makespan).
In each of these common settings MAPF is known to be
NP-hard (Yu and LaValle 2013) to solve optimally. Inter-
est in the problem has nevertheless generated a wide variety
of methods including optimal, suboptimal and and bounded
suboptimal techniques. A recent survey of the area is given
in (Felner et al. 2017).
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In this work we are interested in computing optimal plans
for MAPF problems on undirected graphs and under sum-
of-costs. A dominant family of algorithms appearing in this
setting is Conflict-based Search (Sharon et al. 2015). CBS-
like algorithms divide the MAPF problem into two parts: a
low-level search – which finds optimal paths for individual
agents – and high-level search, which both tracks and re-
solves conflicts between pairs of agents. Both the high- and
low-level solvers of CBS are typically implemented as A∗

or else other similar best-first techniques.
The efficiency of the CBS framework is highly depen-

dent on having accurate heuristics: unfortunately, while this
is (initially) true for the low-level solver, the high-level
solver often discovers objective changes quite late in the
search process. So while CBS-based approaches often per-
form quite well on sparse problems with low contention,
success rates can drop dramatically as the number of agents
and rate of contention increase. A key limitation of the CBS
approach is the inability to learn information across nodes.
Example 1 Consider the four-agent pathfinding problem il-
lustrated in Figure 1(a). This consists of two independent
subproblems, each requiring one of the two agents to wait
before crossing. CBS chooses one of the two conflicts, e.g.
between a1 and a2, and the search starts expanding chil-
dren, eventually discovering that every solution to this con-
flict causes the objective to increase. Figure 1(b) shows the
tree generated by CBS in this case. The problem is that the
conflict between a3 and a4 exists in every node generated
thus far and under every child CBS will generate the tree
shown in Figure 1(b). Overall CBS will generate 110 high-
level nodes before it can find an optimal solution, with each
generated node resulting in a call to the low-level pathfinder.

For an alternative perspective consider a hypothetical con-
straint programming model for MAPF as follows: there ex-
ist variables p[l, t] where p[l, t] = i indicates that agent ai
is permitted to occupy location l at time t. There also exist
variables ci which represent the cost of the path for agent i.
The objective in this model is to minimize the sum of all ci,
subject to constraints:
• for each agent, there exists a path with cost at most ci and,
• at most one agent is at a given location at any time and,
• at most one agent can transition between any pair of adja-

cent cells at any time.

155



s2 s4

s1 u v s3 u′ v′

w x w′ x′ g3

g2 g1 g4

0

0

1 0

1 1

0

(a1, u, 1) (a2, u, 1)

(a1, w, 2) (a2, w, 2)

(a1, x, 3) (a2, x, 3)

c1

c2 c3

0

0

1 0

1 1

0

(a3, u′, 1) (a4, u′, 1)

(a3, w′, 2) (a4, w′, 2)

(a3, x′, 3) (a4, x′, 3)

c1

c2 c3

(a) (b) (c)

Figure 1: (a) MAPF problem containing independent conflicts, (b) partial search tree for (a1, a2), and (c) partial subtree for
(a3, a4) conflicts. In CBS, the tree shown in (c) will be fully expanded below each leaf in (b).

Indeed, (Surynek 2012) describes a SAT-based makespan-
optimal MAPF solver using a very similar encoding. The
pure SAT-based model performs very well on small graphs
with very high occupancy, but has trouble with larger graphs
and other objectives (i.e. sum-of-costs).

Rather than add all constraints and all variables to the
initial model however, we propose to use this formulation
lazily. Like CBS, our approach distinguishes between high-
level and low-level search and like CBS our low-level solver
plans paths for individual agents using time-expanded A*.
Unlike CBS our high-level search does not branch on de-
tecting a conflict between a pair of agents. Instead, we add
the violated constraint to our partial constraint model and
we rely on core guided search (Andres et al. 2012) to find a
feasible plan with minimum-cost.

Where high-level CBS explores the space of all pairwise
conflicts using a best-first strategy, our core-guided search
uses a depth-first traversal. Where high-level CBS keeps a
set of explicit constraints applicable only for the current
node, our core-guided search constructs a database of no-
goods: learned constraints that explain where the search pre-
viously failed and under what conditions. Similar in spirit to
the way a CLOSED list helps A* to avoid duplicated effort,
a database of nogoods helps our core-guided search to avoid
re-solving subproblems previously seen.

Example 2 Consider the example shown in Figure 1(a).
Core-guided search will lazily add variables to represent
which agent is permitted to use locations u, v, x and (pos-
sibly) w as it attempts to resolve the conflict between agents
a1 and a2. Once it determines that it is not possible for both
agents to take their shortest path the solver learns the no-
good 〈c1 ≥ 6〉 ∨ 〈c2 ≥ 5〉 and a subsequent solution where
e.g. agent a1 waits for a2. Next, the solver will explore the
conflict for agents a3 and a4, eventually learning the nogood
〈c1 ≥ 5〉 ∨ 〈c2 ≥ 5〉 and the subsequent solution where e.g.
a3 waits for a4. Critically, by the nature of nogood learning,
even if the search interleaves conflict resolutions between
the two agent pairs, since the conflicts are independent, the
same learning will result.

Preliminaries
Problem: We are given as input an undirected graph G =
(V,E) which represents an operating environment where V
is a set of locations (equiv. nodes) and E is a set of edges that
serve to transition from one location to another. We assume
there exists a function ADJACENT(G, l) which returns the
nodes adjacent to node l.

There exists in the environment a team of agents A such
that each ai ∈ A has a unique start location si ∈ S and
a unique target location ti ∈ T with S, T ⊆ V . Time is
discretised into steps of unit duration and at each step agents
can move from one vertex to the next at a cost of 1. Agents
can also wait at their current location at a cost of 1 and they
can wait at their target location at a cost of 0 but only if they
do not move again after arriving.

While moving agents are subject to a set of constraints.
The first constraint is that no more than one agent can oc-
cupy a given vertex at any one time. We model this as
(ai, l, t) which states that agent ai is forbidden from using
location l at timestep t. In addition, no more than one agent
can transition between the same pair of vertices at the same
time. We model this as (ai, li, lj , t) which says that agent ai
cannot transition from location li to location lj at timestep t.

A feasible solution to the problem is a set of paths that
transitions each agent from its start location to its target po-
sition while respecting all constraints. An optimal solution
is one that minimises the total arrival time of all agents. This
objective is also known as sum-of-costs.

Constraint Programming: Constraint Programming
(CP) is a generic approach to solve constraint satis-
faction problems. Let l..u define the range of integers
{d | d ∈ Z, l ≤ d, d ≤ u}. Given an integer variable x
we can write atomic constraints that constrain x of the
form 〈x ≤ d〉, 〈x ≥ d〉, 〈x = d〉, and 〈x 6= d〉 , d ∈ Z. An
atomic constraint holds if the value assigned to x satisfies
the condition. For our purposes a constraint satisfaction
problem (CSP) P = (V,D, C) is defined by a finite set of
(integer) variables V , an initial domain D which is a set of
atomic constraints over variables V , and a set of constraints
C. We can equivalently view D as a mapping from v ∈ V to
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the set of values it is permitted to take. A solution to a CSP
is a mapping from each v ∈ V to some value d that satisfies
all atomic constraints in D, such that each constraint c ∈ C
is satisfied.

Example 3 When we construct the model for the problem in
Figure 1, the only variables present are the path cost vari-
able c1, . . . , cn, with initial domain D0 = {ci 7→ [0,M ]|i ∈
1 . . . 4} for some sufficiently large upper bound M on indi-
vidual path lengths. D0 can be equivalently viewed as the
conjunction of atomic constraints D0 =

∧4
i=1 〈ci ≥ 0〉 ∧

〈ci ≤M〉. �

CP Execution: Constraints in CP solvers are implemented
by propagators that reason by examining the current domain
and inferring new information that must hold in that domain.
Let AC(P ) be the set of atomic constraints for all v ∈ V . A
propagator for constraint c is a function from sets of do-
mains to sets of atomic constraints. pc : P(AC(P )) →
P(AC(P )). It returns a set of atomic constraints pc(D)
such that c ∧ D → a, a ∈ pc(D). Constraint program-
ming (CP) solvers repeatedly apply a set of propagators to an
initial domain Dinit adding any new atomic constraints in-
ferred to the domain until no further progress can be made.
If the propagator infers a contradictory set of atomic con-
straints then the CSP has no solution. If all variables can
only take a single value given the current domain D, the
problem has been solved (the unique values define a solu-
tion). Otherwise the solver branches, splitting the current
CSP (V,D, C) into two subproblems using an atomic con-
straint a where D 6→ a, D 6→ ¬a to obtain two subproblems
(V,D ∪ {a}, C) and (V,D ∪ {¬a}, C) which it explores
recursively (in a depth-first manner).

Example 4 Clearly, the initial domains in Example 3 could
be tightened: no agent can achieve a shortest path of length
0. After setting up the problem, the propagators run to find
the shortest paths for each agent, tightening the domain to
{c1 7→ [5,M ]} ∪ {ci 7→ [4,M ] | i ∈ 2 . . . 4}, or equiva-
lently 〈c1 ≥ 5〉 ∧

∧4
i=2 〈ci ≥ 4〉 ∧

∧4
i=1 〈ci ≤M〉. �

Lazy Clause Generation: Lazy clause generation (LCG)
solvers (Ohrimenko, Stuckey, and Codish 2009) augment
constraint programming with conflict-directed clause learn-
ing, which allows the solver to avoid repeatedly exploring
infeasible subproblems. In order to do so propagators must
be augmented to record the reasoning they perform by pro-
viding explanations: whenever a propagator for constraint
c infers a new atomic constraint inference a under current
domain D, i.e. a ∈ pc(D), it must also return an explana-
tion E → a, where E is a conjunction of atomic constraints
such that D → E, and c ∧ E → a. For more details about
lazy clause generation solvers see (Ohrimenko, Stuckey, and
Codish 2009).

Core-guided optimization: To solve optimization prob-
lems, constraint programming solvers typically rely on
branch-and-bound, finding a solution then adding a con-
straint to restrict search to look for better solutions. Unfor-

tunately, as the constraints communicate only through do-
mains, CP solvers often perform poorly when proving op-
timality over additive objectives: we can often achieve the
lower bound of any one objective component (by sacrific-
ing the others), and we cannot update the objective bound
until almost all the component bounds change. Core-guided
approaches to optimization can overcome this weakness.

Essentially, core-guided approaches begin by fixing all
objective components to their minimum values, and search
for a solution to the resulting problem. If this succeeds, we
have clearly found the optimum. If the solver concludes that
no such solution exists, it returns a core: a (not necessarily
minimal, but hopefully small) subset of objective compo-
nents which cannot collectively take their minimum values.
The solver then relaxes the objective value – but only with
respect to variables which appear in the core – and re-solves,
repeating this process until a solution is found.

Different core-guided optimization methods differ mostly
in how the interaction between successive cores and the ob-
jective is handled. The two most fruitful approaches are im-
plicit hitting-set approaches (such as MaxHS (Davies and
Bacchus 2011; 2013)), and OLL (Andres et al. 2012).

We shall assume a constraint programming solve func-
tion SOLVE(C,Dinit, A) which solves a constraint problem
C∧Dinit∧A with constraints C, initial domainDinit and as-
sumptions (atomic constraints) A, either returning an empty
set meaning that C ∧ Dinit ∧ A is satisfiable, or a subset
S ⊆ A such that C ∧ Dinit → ¬∀c∈Sc, i.e. its not possible
for all assumptions in S to simultaneously hold. Extending
nogood learning solvers to support this assumption interface
is straightforward (Eén and Sörensen 2003).

Implicit CBS with lazy clause generation
In this section, we present an alternate high-level solver
for conflict-based search. Rather than exploring an explicit
search tree using A∗, we instead maintain an implicit repre-
sentation of the set of feasible conflict resolutions.

Figure 2 gives an overview of the algorithm. We repeat-
edly call the solver to obtain a solution to the constraints
observed so far, with additional assumptions that each cost
variable takes its minimum value. For each agent ai, the
solver contains a propagator which updates its path cost ci
with respect to the constraints enforced. If the solver detects
unsatisfiability, it also returns a core: a subset of the given
assumptions that are collectively infeasible. We then use the
core to update the lower bound on the objective. If it finds
satisfiability, we check the alleged solution for conflicts: if
none are found, we have found the optimal plan (with re-
spect to sum-of-costs). If a conflict is found, we introduce a
fresh decision variable to resolve the conflict into the solver,
and re-solve.

Constraints and constraint solving
Consider what happens when the solver finds a candidate
plan where agents a1 and a2 both occupy location l at time
t. In classical CBS variants, the high-level solver generates
two successors: one with constraint (a1, l, t), and the other
with constraint (a2, l, t).
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1: function LAZY-CBS(m,[a1, . . . , an])
2: s← INITIALIZE-SOLVER(m, [a1, . . . , an])
3: P ← CURRENT-PLAN(s)
4: L← {cii 7→ |P [i]| | i ∈ 1 . . . n}

5: lb←
n∑

i=1

L[i]

6: assumps ←
∧
i

〈ci ≤ L[ci]〉

7: while HAS-CONFLICT(P ) do
8: conflict ← GET-CONFLICT(P )
9: s← PROCESS-CONFLICT(s, conflict)

10: while SOLVE(s, assumps) 6= ∅ do
11: core ← SOLVE(s, assumps)
12: s, lb, L← PROCESS-CORE(s, core, lb, L)

13: assumps ←
∧

ci 7→li∈L
〈ci ≤ li〉

14: P ← CURRENT-PLAN(s)

15: return lb, P

Figure 2: High-level overview of the Lazy-CBS algorithm.

In Lazy-CBS, we instead rely on the solver to manage
our exploration of the search space. We introduce a variable
p[l, t] which indicates which agent is permitted to use loca-
tion l at time t. When p[l, t] is set to some value other than
i, an obstacle is added to the local map for agent ai, and
the corresponding pathfinder is woken to (possibly) update
the lower bound of ci. Now the solver, in order to find a so-
lution, will have to set this variable to a value, which will
permit at most one agent to use location l at time t. Note
that p[l, t] 6= ai is equivalent to (ai, l, t).

The solver, SOLVE, we invoke is simply a lazy clause
generation solver, with the assumptions A and constraints
path(ai, ci,p) for each agent ai. This constraint finds a
shortest path for agent ai from its start to its goal, assum-
ing the constraints described by the p variables, and updates
the lower bound on the ci variable that records the length
of the ai’s path. The propagator is incremental in the sense
that it stores a current incumbent path, and if the p variables
still allow this path it does nothing, otherwise it re-plans in
the same manner as CBS (Sharon et al. 2015). During the
solver’s search there is no interaction between the paths of
different agents.

The solver can terminate in two ways. If it fails, then it
will generate a unsatisfiable core core, being a subset of the
assumptions, this is a standard feature of the way solvers
with assumptions work (Eén and Sörensen 2003). It will
then add variables and constraints using PROCESS-CORE
and define a new set of assumptions, following an OLL-
based approach to core-guided search (Andres et al. 2012).
We then re-invoke the solver.

If the solver succeeds then we check whether the paths
held by the propagators (CURRENT-PLAN) are mutually con-
sistent (HAS-CONFLICT). If the plan is free of conflicts, it is
necessarily an optimal plan. If there is a conflict we choose
one (GET-CONFLICT) and introduce a new p variable to re-

solve it (PROCESS-CONFLICT). The search is restarted in or-
der to find a solution where the new variable is given a value.
Note that this redoes lots of computation, and we could im-
prove our method by being able to add restart the solver di-
rectly from the previous solution, this has not yet been im-
plemented. The recomputation is ameliorated since all no-
goods discovered in earlier searches are stored we will not
redo any failed computation, and using solution-based phase
saving (Demirovı́c, Chu, and Stuckey 2018) we will direct
search to be close to the previous solution, avoiding unnec-
essary changes to the incumbent paths held in the path
propagators.

Let us illustrate the operation of Lazy CBS, using our ex-
ample from Figure 1.
Example 5 Initially, we start with a solver containing
only the four pathfinding propagators path(ai, ci,p), i ∈
1..4 and four cost variable c1, . . . , c4. There are ini-
tially no p variables. Running each pathfinder indepen-
dently, we obtain the initial (infeasible) plan shown in Fig-
ure 1(a). We add assumptions assumps = {〈c1 ≤ 5〉,
〈c2 ≤ 4〉 , 〈c3 ≤ 4〉 , 〈c4 ≤ 4〉}. We check the plan for con-
flicts, and find the first conflict to be at time 1 at u.

To resolve the conflict at (u, 1), we introduce a fresh
variable p[u, 1], and inform the propagators for a1 and a2
of the new potential obstacle. We then ask the solver for
a new candidate solution. p[u, 1] is unfixed, so the solver
chooses a value; let us assume 1. As p[u, 1] 6= 2, the
obstacle (u, 1) is added to the map for agent a2, which
is then re-planned. This yields a new candidate solution,
which now conflicts at (v, 2). We repeat the process, in-
troducing p[v, 2] and branching. Re-planning a2 again, the
shortest path is of length 5; the propagator attempts to up-
date the lower bound of c2, but fails as this violates its
(assumed) upper bound. The solver generates a nogood
〈p[u, 1] 6= 2〉∧〈p[v, 2] 6= 2〉 → 〈c2 ≥ 5〉 recording this dis-
covery. The solver then backtracks, and the nogood forces
p[v, 2] = 2, which causes a1 to be re-planned. We continue
this process, eventually introducing p[w, 2] and deriving no-
goods which cut-off all remaining leaves of the subtree in
Figure 1(b), at which point the solver concludes there is no
way for a1 and a2 to simultaneously achieve their minimum-
cost solution, returning a core {acc1 ≤ 5 ∧ 〈c2 ≤ 5〉} ex-
pressing the constraint 〈c1 ≤ 5〉 ∧ 〈c2 ≤ 4〉 → false .

Using this core we relax bounds on a1 and a2 to be 6 and
5 respectively, but allowing the combined cost to increase by
1.

Trying again, the solver starts following its most recent
solution. It chooses p[u, 1] = 2 and p[x, 3] = 2. The
pathfinder for a1 runs, discovering the shortest path for a1
is now length 6. With the current assumptions, this forces
the maximum cost for a2 to 4. The solver now returns a
minimum-cost plan with no conflicts between a1 and a2, but
a conflict remains between a3 and a4. We repeat the same
process of introducing variables and re-solving, until the
solver derives a new core {〈c3 ≤ 4〉 , 〈c4 ≤ 4〉}. We again
relax bounds on a3 and a4, re-solve under the new assump-
tions. The solver returns a new plan which is optimal with
respect to the constraints so far, and which has no conflicts
– this is our final, cost-optimal plan.
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Here we see some key differences from ‘traditional’ CBS:
exploration proceeds depth-first, observed constraints re-
main persistent across branches of the search tree, and –
most critically – so is information we learn about cost and
feasibility of partial plans. This allows us to avoid the be-
havior we observe in Example 1: each time a subproblem
fails because of the bound on c3, conflict analysis discovers
that it is dependent only on constraints involving a3 and a4,
so does not need to explore other ways of resolving (a1, a2)
conflicts.

Explaining path costs
In order to make use of LCG solving, we must also equip
our path propagators with explanations: whenever we con-
clude ci ≥ k because the shortest path for agent i must be
at least length k given the values of the p variables, we must
also be able to identify a subset of obstacles (constraints on
the p variables) sufficient to force the bound change. A sim-
ple strategy, which is certainly sound, is to collect the set of
obstacles, O, which are currently enforced for agent ai (as a
set of atomic constraints), i.e. O = {〈p[l, t] 6= i〉 | p[l, t] 6=
i}.

However, this produces explanations with limited re-
usability. By modifying algorithms used for explanations on
MDDs (Gange, Stuckey, and Szymanek 2011), we can iden-
tify minimal explanations. The intuition for the algorithm
is reasonably simple. Starting from the goal location, we
sweep backwards, identifying forbidden (l, t) pairs which,
if they were reachable from the start, would complete a path
of cost less than k. Then, we sweep forward from the start,
discarding any obstacles which do not complete a forbidden
path.

An algorithm for collecting explanations is give in Fig-
ure 3. G is the input graph, s and g the start and goal loca-
tions, O the set of active obstacles for the agent, and k the
bound to be explained. EXPLAIN-LB(G, i, s, g,O, k) returns
a minimal subset of constraints O (though not necessarily
minimum-size) which require agent i to take a path of length
at least k. The algorithms make use of a heuristic H(l1, l2)
which returns a lower bound on the distance from location
l1 to location l2. This can be precomputed for the map G
for MAPF problems, or a simple Manhattan distance can be
used.

Example 6 Recall the problem illustrated in Figure 1. As-
sume a1 has been forbidden entering all of {u, v, w, x} at its
optimal time, blocking all paths of length 5.

Figure 4 illustrates the computation of EXPLAIN-LB.
During MARK-FORBIDDEN, we explore backwards from g1;
in this case, {v, w, x} all admit paths to g1 which do not
pass through any other obstacles. u is not marked as forbid-
den, because any sufficiently short path through u must later
pass through either v or w.

Then, COLLECT-SUFFICIENT explores forward from s1,
collecting a minimal set of obstacles. Here u and v are
both reachable and forbidden, so must remain part of
the explanation. x is never reached during the COLLECT-
SUFFICIENT, because all sufficiently short paths through x

1: function EXPLAIN-LB(G, i, s, g,O, k)
2: F ← MARK-FORBIDDEN(G, i, s, g,O, k)
3: E ← COLLECT-SUFFICIENT(G, i, s, g,O, k, F )
4: return E
5: function MARK-FORBIDDEN(G, i, s, g,O, k)
6: F ← ∅
7: Q← {(g, k − 1)}
8: while Q 6= ∅ do
9: (l, t)← POP(Q)

10: if 〈p[l, t] 6= i〉 ∈ O then
11: F ← F ∪ {〈p[l, t] 6= i〉}
12: else
13: for l′ ∈ {l} ∪ ADJACENT(G, l) do
14: if H(s, l) ≤ t− 1 ∧ (l′, t− 1) /∈ Q then
15: Q← Q ∪ {(l′, t− 1)}
16: return F
17: function COLLECT-SUFFICIENT(G, i, s, g,O, k, F )
18: E ← ∅
19: Q← {(s, 0)}
20: while Q 6= ∅ do
21: (l, t)← POP(Q)
22: if 〈p[l, t] 6= i〉 ∈ F then
23: E ← E ∪ {〈p[l, t] 6= i〉}
24: else
25: for l′ ∈ {l} ∪ ADJACENT(G, l) do
26: tE ← t+ 1 +H(l′, g)
27: if tE < k ∧ (l′, t+ 1) /∈ Q then
28: Q← Q ∪ {(l′, t+ 1)}

Figure 3: Explaining lower bound changes for a single agent.

are eliminated by including u and v. We thus return the ex-
planation p[v, 2] 6= 1 ∧ p[w, 2] 6= 1→ c1 ≥ 6.

Failure-guided search with unsatisfiable cores
Core-guided search makes assumptions that a set of literals
are true, and then either finds a solution where all literals
are true or returns a subset of the assumptions which cannot
all be simultaneously true. In our case, the assumptions are
about the path length of the agents as well as some artificial
terms added to implement OLL core-guided search (Andres
et al. 2012). The algorithm is shown in Figure 5. Given a
core of size m we first add a nogood defining the core to the
solver. We introduce a variable t taking values in the range
1..m to bound the number of literals true in the new nogood.
We can set t’s lower bound to 1, since we know at least 1
literal must be true. We relax all the bounds on the variables
in the core by 1, allowing them to take larger values. We
then add an assumption that the upper bound of t is 1, which
requires at most one literal to take a larger value.

Example 7 Recall our problem from Figure 1. Each agent
has a shortest path of cost 4, except for agent 1 with a short-
est path of 5. We initially try solving with the assumptions
〈c1 ≤ 5〉∧〈c2 ≤ 4〉∧〈c3 ≤ 4〉∧〈c4 ≤ 4〉, that is each agent
should takes its shortest path distance.

After resolving some conflicts (as described above), the
solver finds there is no solution, with a nogood 〈c1 ≤ 5〉 ∧
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(a) MARK-FORBIDDEN (b) COLLECT-SUFFICIENT

Figure 4: Explaining ci ≥ 6. Filled nodes are obstacles,
red nodes are explored by MARK-FORBIDDEN, blue nodes
explored by COLLECT-SUFFICIENT. Dashed nodes were
pruned due to H .

1: function PROCESS-CORE(s, {at1, . . . , atm}, lb, L)
2: where at i ≡ 〈ci ≤ L[ci]〉
3: s← CONSTRAIN(s,∨mi=1¬ 〈ci ≤ L[ci]〉)
4: s, t← NEW-VAR(s, 1..m) . A new penalty term.
5: for i ∈ 1..m do
6: L[ci]← L[ci] + 1 . Relax bounds on the core
7: s← CONSTRAIN(s, t ≥

∑m
i∈1(ci ≥ L[ci]))

8: L[t]← 1 . But restrict the new penalty term.
9: return lb+ 1, L, s

Figure 5: Processing a core produced by the solver. At least
one member of the core must take a sub-optimal value. We
relax all members of the core, but introduce a fresh penalty
term t to represent the number of violations. Here s is the
LCG solver state, and L the current cost bounds.

〈c2 ≤ 4〉 → false – indicating a cardinal conflict between
agents a1 and a2. We then relax the bounds on both agents,
but we introduce a new variable t1 = 〈c1 ≥ 6〉 + 〈c2 ≥ 5〉
which counts the number of agents in {a1, a2} that take a
value greater than their lower bound. Since t1 is constrained
to be at least 1, this forces at least one agent to take a longer
path, i.e. enforcing the nogood 〈c1 ≥ 6〉 ∨ 〈c2 ≥ 5〉 repre-
senting the core.

The next iteration solves under the assumptions
〈c1 ≤ 6〉 ∧ 〈c2 ≤ 5〉 ∧ 〈t1 ≤ 1〉 ∧ 〈c3 ≤ 4〉 ∧ 〈c4 ≤ 4〉. The
assumption on t1 ensures that at most one of agents 1 and 2
can take a longer path than its shortest path.

Feasible paths for a1 and a2 are quickly found, paths for
a3 and a4 are found to be in conflict. The same search is
performed, and an unsat core 〈c3 ≤ 4〉 ∧ 〈c4 ≤ 4〉 → false
is discovered. We process this core, relaxing c3 and c4, and
introduce new term t2 to count how many agents in {a3, a4}
take a longer path, re-solving with assumptions 〈c1 ≤ 5〉 ∧
〈c2 ≤ 5〉 ∧ 〈t1 ≤ 1〉 ∧ 〈c3 ≤ 5〉 ∧ 〈c4 ≤ 5〉 ∧ 〈t2 ≤ 1〉. This
iteration succeeds, finding a feasible (thus optimal) plan.

Note that in later iterations the previously introduces t
variables will take part in unsatisfiable cores, and their vi-
olations will be counted by newly introduced t variables.
This implements the OLL approach to unsatisfiable core op-
timization, see (Andres et al. 2012) for more details.

Experimental Evaluation
We have developed a prototype of our proposed approach
(available at https://bitbucket.org/gkgange/lazycbs), taking
the low-level pathfinder of a CBS-based MAPF solver and
embedding it as a propagator in geas (https://bitbucket.org/
gkgange/geas), a lazy clause generation-based constraint
programming solver.

For evaluation, we use 4 maps (two small grids, and two
game maps) with varying numbers of agents. For each map
and instance size, we generated 50 instances allocating ran-
dom (disjoint) start and goal locations to each agent. Ex-
periments are conducted on an Intel Core i7-7820HQ with
32Gb RAM, running Lubuntu 17.10, and all experiments
were run with a 5 minute time limit. To evaluate the effect of
replacing the high-level solver with Lazy CBS, we compare
with an implementation of CBS (Sharon et al. 2015) run-
ning the same low-level pathfinder as Lazy CBS. We also
compare with the current state of the art implementations of
CBSH (Felner et al. 2018), and ECBS (Barer et al. 2014)
using a 1% sub-optimality threshold.

Figure 6 gives results on a 4-connected 20 × 20 grid
with no obstacles (20x20) and with 10% blocked cells
(10obs-20x20). We considered examples with 20, 30, 40,
50, and 60 agents.

We show for each class of map both: the success rate for
each algorithm, that is how many of the 50 instances were
solved to optimality in the time given; and a cactus plot of
the solve time, showing the total number of instances solved
by each algorithm by a given time limit. In terms of success
rates, Lazy CBS is considerably more robust, and scales bet-
ter, than CBS. If we consider solution time, we can see that
CBS solves easy instances – requiring little search – faster,
but performance degrades very rapidly. Whereas Lazy CBS
suffers on easy instances (due to additional pathfinder calls
during depth-first exploration), but displays much more sta-
ble performance. CBSH is much more robust than CBS on
these maps due to its use of cardinal conflict reasoning, but
as the number of agents grow its success rate dramatically
drops. The cactus plot comparison shows that CBSH also
has significant overhead above CBS for easy instances, its
always bettered by Lazy CBS beyond the easiest instances.

For ECBS, performance is highly dependent on the
sub-optimality bound. Where some feasible solution ex-
ists within the initial sub-optimality bound, ECBS typically
finds a solution very quickly. But where the sub-optimality
bound is tight enough that the low-level pathfinder cannot
bypass all conflicts, we see Lazy CBS displaying higher suc-
cess rates than the suboptimal ECBS.

Figure 7 shows results on two standard benchmark
grids, den520d and lak503d, derived from the game
Dragon Age: Origins (Sturtevant 2012). On these maps, each
pathfinder call is much more expensive, so the overhead
of depth-first exploration is higher. But though the break-
even point is later, we see the same pattern emerging: Lazy
CBS suffers a modest overhead on problems with very little
search, but displays much more robust performance as prob-
lems become more difficult. The like to like comparison (in
terms of low-level search) shows that Lazy CBS is much
more effective than CBS. The advantage over CBSH in
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Figure 6: Results on an open 20× 20 grid, and a 20× 20 grid with 10% obstacles.
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Figure 7: Results on the game maps den520d and lak503d.
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terms of success rate is less apparent here, although clearly
better as the number agents grow on lak503d. The cactus
plot shows that for the den520d Lazy CBS only outpaces
CBSH for the last, hardest instances. As the game maps are
much larger (and paths therefore longer), we see success
rates of ECBS remain stable here, as even 1% provides a
enough flexibility in the low-level paths to bypass conflicts.

Clearly, Lazy CBS provides dramatically better perfor-
mance compared to CBS. Indeed, despite having no MAPF-
specific reasoning in the LCG solver, Lazy CBS is already
competitive with CBSH on all problems. And for small,
highly contested maps, Lazy CBS is much more robust.

If we replace CBS with CBSH we will be able to make
the much better decisions for the order of handling conflicts
which is made possible by using MDDs to represent all pos-
sible shortest paths for each agent. This is one of the princi-
pal advantages of CBSH over CBS.

Conclusion and further work
We have presented Lazy CBS, a new approach to optimal
multi-agent pathfinding. Experimental results demonstrate
that this approach is dramatically more robust than exist-
ing conflict-based search approaches, especially in problems
with many agents and high contention.

Though performance is already quite robust, there is room
to improve the low-level planner to cooperate more effec-
tively with a Lazy CBS approach – particularly exploiting
the depth-first exploration by re-planning incrementally. Ex-
tending the solver to allow dynamic constraint addition at a
solution, to avoid restarting the solve every time we find a
solution, should also improve the lazy approach.
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