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Abstract

In multi-agent planning, preserving the agents’ privacy has
become an increasingly popular research topic. For preserv-
ing the agents’ privacy, agents jointly compute a plan that
achieves mutual goals by keeping certain information pri-
vate to the individual agents. Unfortunately, this can severely
restrict the accuracy of the heuristic functions used while
searching for solutions. It has been recently shown that, for
centralized planning, the performance of goal oriented search
can be improved by combining goal oriented search and
width-based search. The combination of these techniques has
been called best-first width search. In this paper, we inves-
tigate the usage of best-first width search in the context of
(decentralised) multi-agent privacy-preserving planning, ad-
dressing the challenges related to the agents’ privacy and per-
formance. In particular, we show that best-first width search
is a very effective approach over several benchmark domains,
even when the search is driven by heuristics that roughly es-
timate the distance from goal states, computed without us-
ing the private information of other agents. An experimental
study analyses the effectiveness of our techniques and com-
pares them with the state-of-the-art.

Introduction
Over the last years, several frameworks for multi-agent
(MA) planning have been proposed, e.g., (Brafman and
Domshlak 2008; Nissim and Brafman 2014; Torreño, On-
aindia, and Sapena 2014). Most of them consider, in differ-
ent ways, the agents’ privacy: some or all agents have pri-
vate knowledge that cannot be communicated to other agents
during the planning process and plan execution. This pre-
vents the straightforward usage of most of the current pow-
erful techniques developed for centralized (classical) plan-
ning, which are based on heuristic functions computed by
using the knowledge of all the involved agents.

For classical planning, it has been shown that width-based
search algorithms can solve instances of many existing do-
mains in low polynomial time when they feature atomic
goals. Width-based search relies on the notion of “novelty”.
The novelty of a state s has been originally defined as the
size of the smallest tuple of facts that holds in s for the
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first time in the search, considering all previously generated
states (Lipovetzky and Geffner 2012). Width-based search
are pure exploration methods that are not goal oriented. For
computing plans that are not necessarily optimal, the per-
formance of goal oriented search can be improved by com-
bining it with width-based search. The combination yields a
search procedure, called best-first width search, that outper-
forms the state-of-the-art planners even when the estimate of
the distance to the problem goals is inaccurate (Lipovetzky
and Geffner 2017). The heuristic used to guide such a pro-
cedure uses all the knowledge of the problem specification.

In the setting of MA planning, computing search heuris-
tics using the knowledge of all the involved agents can re-
quire many exchanges of information among agents, and
this may compromise the agents’ privacy. For preserving the
privacy of the involved agents, the distance to the problem
goals is estimated by using the knowledge of a single agent.
However, this estimate is much more inaccurate than the es-
timation obtainable using the knowledge of all the agents.
Since for classical planning best-first width search performs
very well even when the estimate of the goal distance is
inaccurate, such a procedure is a good candidate to effec-
tively solve MA-planning problems without compromising
the agents’ privacy. The contribution of the paper is investi-
gating the usage of best-first width search for decentralized
privacy-preserving MA-planning. Specifically, we propose a
new search procedure MA-BFWS, which uses width-based
exploration in the form of novelty-based preferences to pro-
vide a complement to goal-directed heuristic search.

For preserving the privacy of the involved agents, the pri-
vate knowledge shared among agents is encrypted. An agent
αi shares with the other agents a description of its search
states in which all the private facts of αi that are true in a
state are substituted with a string code obtained by encrypt-
ing all the private fact names of αi together. This encryption
has an impact on the measure of novelty, and hence it also
affects the definition of the heuristic guiding the search.

We adapt the definition of classical width (Lipovetzky and
Geffner 2012) to MA planning, and we propose a defini-
tion of state novelty for which MA-BFWS can be complete
when states are pruned only if their novelty is bigger than
the width of the problem. Then, we define several heuris-
tics for which the preferred states in the open list are the
ones with the smallest novelty and, among those, the ones
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with the lowest goal distance. For this purpose, we define
the novelty in another different way, taking the heuristics
used to estimate the goal distance into account (Lipovetzky
and Geffner 2017).

Finally, an experimental study evaluates the effectiveness
of the proposed heuristics, and compares the proposed ap-
proach with state-of-the-art planners which preserve agents’
privacy in a form weaker than our approach, showing that
best-first width search is competitive also for MA planning.

Background
The MA-STRIPS planning problem. Our work relies on
MA-STRIPS, a “minimalistic” extension of the STRIPS lan-
guage for MA planning (Brafman and Domshlak 2008),
that is the basis of the most popular definition of MA-
planning problem (see, e.g., (Nissim and Brafman 2014;
Maliah, Shani, and Stern 2016)).

Definition 1 A MA-STRIPS planning problem Π for a set
of agents Σ = {αi}ni=1 is a 4-tuple 〈{Ai}ni=1, P, I, G〉
where:

• Ai is the set of actions agent αi is capable of executing,
and s.t. for every pair of agents αi and αj Ai ∩Aj = ∅;

• P is a finite set of propositions;
• I ⊆ P is the initial state;
• G ⊆ P is the set of goals.

Each action a consists of a name, a set of preconditions,
Prec(a), representing facts required to be true for the ex-
ecution of the action, a set of additive effects, Add(a), rep-
resenting facts that the action makes true, a set of deleting ef-
fects, Del(a), representing facts that the action makes false,
and a real number, Cost(a), representing the cost of the ac-
tion. A fact is private for an agent if other agents can neither
achieve, destroy or require the fact (Brafman and Domshlak
2008). A fact is public otherwise. An action is private if all
its preconditions and effects are private; the action is public,
otherwise. A state obtained by executing a public action is
said to be public; otherwise, it is private.

To maintain agents’ privacy, the private knowledge shared
among agents can be encrypted. An agent can share with the
other agents a description of its search state in which each
private fact that is true in a state is substituted with a string
obtained by encrypting the fact name (Bonisoli et al. 2018).
This encryption of states does not reveal the names of the
private facts of each agent αi to other agents, but an agent
can realize the existence of a private fact of agent αi and
monitor its truth value during search. This allows the other
agents to infer the existence of private actions of αi, as well
as to infer their causal effects. Another way to share states
containing private knowledge during the search is to substi-
tute, for each agent αi, all the private facts of αi that are true
in a state with a string obtained by encrypting all private fact
names of αi together (Nissim and Brafman 2014). Such a
string denotes a dummy private fact of αi, which is treated
by other agents as a regular fact. The work presented in this
paper uses this latter method for the encryption of states.
With this method, other agents can only infer the existence
of a group of private facts of αi, since the encrypted string

contained in the states exchanged by αi substitutes a group
of an arbitrary number of private facts of αi.

Width-based Search. Pure width-based search algo-
rithms are exploration algorithms that do not look at the
goal at all. The simplest such algorithm is IW (1), which
is a plain breadth-first search where newly generated states
that do not make an atom X = x true for the first time in the
search are pruned. The algorithm IW (2) is similar except
that a state s is pruned when there are no atoms X = x and
Y = y such that the pair of atoms X = x, Y = y is true in
s and false in all the states generated before s.
IW (k) is a normal breadth-first except that newly gen-

erated states s are pruned when their “novelty” is greater
than k, where the novelty of s is i iff there is a tuple t of i
atoms such that s is the first state in the search that makes
all the atoms in t true, with no tuple of smaller size having
this property (Lipovetzky and Geffner 2012). While simple,
it has been shown that IW (k) manages to solve arbitrary
instances of many of the standard benchmark domains in
low polynomial time provided that the goal is a single atom.
Such domains can be shown to have a small and bounded
widthw that does not depend on the instance size, which im-
plies that they can be solved (optimally) by running IW (w).
Moreover, IW (k) runs in time and space that are exponen-
tial in k and not in the number of problem variables.

The procedure IW , that calls IW (1) and IW (2), sequen-
tially, has been used to solve instances featuring multiple
(conjunctive) atomic goals, in the context of Serialized IW
(SIW), an algorithm that calls IW for achieving one atomic
goal at a time (Lipovetzky and Geffner 2012).

Width-based exploration in the form of simple novelty-
based preferences instead of pruning can provide an effec-
tive complement to goal-directed heuristic search without
sacrificing completeness. Indeed, it has been recently shown
that the combination of width-based search and heuris-
tic search, called best-first width search (BFWS), yields a
search scheme that is better than both, and outperforms the
state-of-the-art planners (Lipovetzky and Geffner 2017).

Related Work
The MA-planning algorithm most similar to ours is MAFS
(Nissim and Brafman 2014). MAFS is a distributed best first
search that for each agent considers a separate search space.
The existing work investigating the use of a distributed A*
for partial-order MA-planning shares the motivations on
preserving the agents’ privacy with ours (Torreño, Onaindia,
and Sapena 2014). Differently from this approach, our MA-
planning procedure searches in the space of world states,
rather than in the space of partial plans, and it exchanges
states among agents rather than partial plans.

Our work is also related to the one on developing heuris-
tics for MA-planning. Štolba, Fišer, and Komenda (2015b)
study the use of heuristic functions based on the heuristic of
the well-known planner FF. Similarly, the work in (Štolba
and Komenda 2014) proposes a distributed algorithm com-
puting a complete relaxed planning graph and, subsequently,

164



extracting a relaxed plan from the distributed relaxed plan-
ning graph. Differently, our heuristics combine the novelty
measure of search states with a more inaccurate, but com-
putationally cheaper estimate of the cost required to achieve
the problem goals.

Using width-based search for MA planning is not a novel
idea. Bazzotti et al. (2018) study the usage of Serialized-IW
(abbreviated by MA-SIW) in the setting of MA planning.
The MA problem solved by MA-SIW is split into a sequence
of episodes, where each episode j is a subproblem solved by
IW, returning a path to a state where one more problem goal
has been achieved with respect to the last episode j−1. Our
approach does not split the MA problem into subproblems,
but solves the whole problem at once by using the novelty
as a heuristic to guide the search.

IW search was also used for solving a classical planning
problem obtained from the compilation of a MA-planning
problem (Muise, Lipovetzky, and Ramirez 2015). This work
applies to centralized MA planning, while our work investi-
gates the distributed MA-planning problem.

An important difference between our approach and the
existing ones using heuristic search for distributed privacy-
preserving MA planning (e.g. (Maliah, Shani, and Stern
2016; Štolba, Fišer, and Komenda 2015a)) is that with
our approach the public projection of public actions is not
shared. Our conjecture is that without sharing such a pro-
jection it is more difficult to infer private preconditions and
effects of public actions, since the agents ignore their exis-
tence. While sharing the public projection of public actions
may be useful to compute more accurate search heuristic,
our approach is nevertheless competitive with the state-of-
the-art planners.

Width-based Search for MA planning
A problem of Serialized-IW and MA-SIW is that they are
incomplete. In this section, we propose another approach of
using width-based search for MA planning, which guaran-
tees that a solution is found when the problem is solvable.

Algorithm 1 shows a search procedure for an agent of the
MA-planning problem combining width-based search and
goal-directed search, that we call k-MA-BFWS. Parameter
k ∈ N is an upper bound for the novelty of states that can be
expanded, i.e., states with novelty greater than k are pruned
from the search space. The version of the algorithm without
this pruning is called MA-BFWS; in this version the novelty
is used as a preference criterion for ranking the search states
in the open list.

Each agent αi considers a separate search space, since
each agent maintains its own list of open states, open, and,
when an agent expands an open state, it generates a set of
successor states using its own actions. Moreover, each agent
also maintains its own list of received messages to process,

1More precisely, when the open and open msg lists of an agent
become empty, the agent sends a special message to the other
agents representing the fact that its own lists are empty. Similarly,
the agent sends another special message to the others when its own
open list is not empty anymore. The algorithm terminates when the
lists of all the agents are empty.

1 Procedure k-MA-BFWS(sI , G,Ai, f)
2 open← sI
3 gsI ← 0
4 while open is not empty or open msg is not

empty1 do
5 foreach s ∈ open msg do
6 open← open ∪ s
7 open msg ← open msg \ s
8 end
9 s← SelectBest(f, open)

10 open← open \ s
11 if G ∈ s then /* Plan found */
12 return ReconstructPlan(s)
13 end
14 if s was generated by agent αi and s is public

then
15 SendStateMessage(〈s, g(s)〉)
16 end
17 foreach a ∈ Ai s.t. Prec(a) ⊆ s do /*

Expand*/
18 s′ ← s \Del(a) ∪Add(a)
19 g(s′)← g(s) + Cost(a)
20 if w(g)(s

′) ≤ k then
21 open← open ∪ s′
22 end
23 end
24 end
25 return failure

Algorithm 1: k-MA-BFWS run by agent αi from the
initial state sI to achieve goals G using only set of ac-
tions Ai of αi. The output is a single-agent solution plan
πi for αi, or failure. Parameter k ∈ N is an upper bound
for the novelty of expanded states. g(s) is the accumu-
lated cost, and f is the eval function to sort the open list.

open msgs. Algorithm 1 assumes the presence of a sepa-
rate thread listening for incoming messages sent from other
agents; each time a message is received, it is added to the
end of open msg list.

Agent αi iteratively expands the states in the open list and
those contained in the received messages. Loop 4–23 is re-
peated until the lists open and open msg are empty. Agent
αi extracts all the states in open msg, computes the novelty
according with the states generated or received by αi, com-
putes the given heuristic function f , and adds the states to
the open list. Then, αi extracts the best state s from open
according to f (steps 5–9). We considered f as a sequence
of n arbitrary heuristics 〈h1, . . . , hn〉 that are applied con-
secutively to break ties. Each time a state s is extracted from
open, first αi checks if the state satisfies the goals of the
planning problem. If it does, agent αi, together with the
other agents, reconstructs the plan achieving s and returns
its solution single-agent plan (steps 11–13). Once an agent
expands a solution state s, Procedure ReconstructPlan(s)
performs the trace-back of the solution plan. Agent αi be-
gins the trace-back, and when it reaches a state received via
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a messagem, it sends a trace-back message to the agent who
sent m. This continues until the initial state is reached. The
MA-plan derived from the trace-back is a solution of the MA
planning problem. Finally, at step 12 Algorithm 1 returns the
plan output by ReconstructPlan(s).

Then, agent αi checks if state s is the result of its own
public action, and in this case it sends a message to all other
agents containing state s together with its accumulated cost
g(s) from the initial state up to s (steps 14–16). Finally, αi
expands state s by applying the executable actions and, for
each successor state s′ of s, αi evaluates the novelty and
evaluation function f , and decides whether to add s′ in its
open list according to the novelty of state s′ (steps 17–23).

Algorithm 1 prunes a state s according to a novelty mea-
sure akin to Katz et al. (2017) novelty heuristics, but defined
instead on the basis of the cost g(s) accumulated through the
trajectory from the problem initial state to s (steps 20-21).

Definition 2 (Accumulated Cost Novelty) The novelty
w(g)(s) of a state s is the size of the smallest tuple t in s
that: (1) is achieved for the first time during search, or (2)
for which every other previously generated state s′ where t
is true has longer paths, i.e., g(s′) > g(s).

The accumulated cost g of the states that are at the same
time in the open list of agent αi can be very different, be-
cause the search does not necessarily extract the state from
open with the lowest accumulated cost, and open may con-
tain also states incoming from other agents, who visit dif-
ferent search spaces that might contain states with a much
greater g-value.

To guarantee the agents’ privacy, the private knowledge
contained in the search states exchanged among agents is en-
crypted. The encryption affects the measure of novelty. E.g.,
consider states s1 = {p}, s2 = {q}, s3 = {p, q}, where p
and q are private facts of an agent different from αi. Let [x]
denote the encrypted string representing one or more private
facts x of another agent. With the encryption, the descrip-
tions of these states for αi are {[p]}, {[q]}, {[p, q]}. Assume
that the order with which these states are processed by αi is
s1, s2, s3, and g(s1) ≤ g(s2) ≤ g(s3). Then, without the
encryption, for αi w(g)(s1) = w(g)(s2) = 1, w(g)(s3) = 2,
while with the encryption we have w(g)(s1) = w(g)(s2) =
w(g)(s3) = 1, because in s3 the special string representing
encrypted facts [p, q] is true for the first time in the search.
This consequently affects the pruning of the search space:
1-MA-BFWS without the encryption prunes s3 from the
search space, while 1-MA-BFWS encrypting private facts
does not prune s3.

Lemma 1 The noveltyw(g)(s) computed over the set of pre-
viously generated encrypted states is lower than or equal to
the novelty computed over the set of previously generated
states without the encryption.

Proof. For simplicity, take a MA-planning problem with
only two agents αi and αj , and consider the computation of
the novelty for αi. The proof for problems with more than
two agents is similar. Take a state s and a tuple t ⊆ s such
that, without the encryption, w(g)(s) = |t|. With the encryp-
tion, we distinguish three cases. (1) Tuple t is formed by

public or private facts of αi. In this case, since only the pri-
vate facts of αj are encrypted for αi, the facts forming tuple
t are the same as without the encryption, and hence even
with the encryption w(g)(s) = |t|. (2) Tuple t is formed
by at least n ≥ 1 private facts of agent αj , and the tuple
t′ of private facts of αj that are true in s is different from
those of previously generated states such that their accumu-
lated cost is lower than or equal to g(s). Then, with the en-
cryption, the tuple t′ is substituted by a new string. Such a
string denotes a dummy fact that is false in all the previously
generated states. Hence, by definition, with the encryption
w(g)(s) = 1, and, of course, it is lower than or equal to |t|.
(3) Tuple t is formed by at least n ≥ 1 private facts of agent
αj , the tuple t′ of private facts of αj that are true in s is the
same as in a state s′, s′ has been previously expanded, and
g(s′) ≤ g(s). With the encryption, the tuple t′ is substituted
by a string u, which denotes a dummy fact that, in this case,
is true in both s and s′. Therefore, the smallest tuple in s that
is true for the first time in the search is formed by public or
private facts of αi plus u. By definition, with the encryption
w(g)(s) = |t| − n + 1 and, since n ≥ 1, such a value of
w(g)(s) is lower than or equal to |t|. �

The definition of width by Lipovetzky and Geffner (2012)
for the state model induced by STRIPS applies directly to
the state model induced by MA-STRIPS.

Definition 3 (MA-STRIPS width) The width w(Π) of a
MA-STRIPS planning problem Π is w if there is a sequence
of tuples 〈t0, . . . , tn〉 such that (1) ti ⊆ P and |ti| ≤ w
for i = 0, . . . , n, (2) t0 ⊆ I , (3) all optimal plans for ti
can be extended into optimal plans for ti+1 with an action
a ∈ {Ai}|Σ|i=1, and (4) all optimal plans for tn are also opti-
mal plans for G.

In the definition above, some actions that extend optimal
plans for a tuple ti into optimal plans for tuple ti+1 can be
private. k-MA-BFWS does not send states generated by pri-
vate actions to other agents. In the following theorem, note
that the novelty w(s) of a state s is computed with respect
to the search space of agent α that generated s. The search
space of α includes its generated states as well as the states
received from other agents.

Theorem 1 k-MA-BFWS using f = 〈w, h1, . . . , hm〉 is
complete for problems Π with width w(Π) ≤ k when w =
w(g) and the action cost function is Cost : A 7→ R+.

Proof Sketch. The definition of width w(Π) = k (Def. 3)
implies that there is an optimal plan πopt where every state
si along the plan has novelty w(si) ≤ k (Def. 2), induc-
ing a sequence of tuples 〈t0, . . . , tn〉 that complies with the
conditions in Definition 3. If w = w(g), by Definition 2,
there must exist at least one tuple t ∈ si, where |t| ≤ k,
such that no other state s′ can be generated with t ∈ s′

and g(s′) < g(si). k-MA-BFWS with w = w(g) is guar-
anteed to generate each state si in πopt, no matter the order
in which states are generated, as long as by assumption zero
cost actions are not allowed. State expansion order is deter-
mined breaking ties by a sequence of search heuristics hi.
No heuristic hi causes k-MA-BFWS to prune nodes, even if
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hi =∞, as hi does not have access to the private actions of
other agents and cannot be proved to be safe. When a state
in an optimal plan has been generated by another agent, the
private facts are encoded. Given Lemma 1, the novelty of
such states is guaranteed to be lower or equal, hence they
are not going to be pruned by k-MA-BFWS. �

Theorem 2 MA-BFWS is complete.

Proof. MA-BFWS does not prune the search space accord-
ing to the novelty of search states. In MA-BFWS, each agent
αi expands all the search states reachable from the problem
initial state except the private states of agents different from
αi. This is the same set of search states expanded by MAFS.
Since MAFS is a complete search procedure (Nissim and
Brafman 2014), even MA-BFWS is complete. �

Theorem 3 Let P pub be the set of public facts, and P pri
be the set of private facts of agent αi ∈ Σ such that the
total number of facts P is P pub ∪αi∈Σ P pri . Let ni =∑
αi∈Σ,j 6=i |P

pr
j |k be the number of encrypted strings de-

noting dummy fluents that can be sent to agent αi. k-MA-
BFWS using heuristic f terminates after expanding at most

1.
∑
αi∈Σ

(
|P pub|+|P pri |+ni

)k
states if action costs are 0,

2.
∑
αi∈Σ

(
|P pub|+|P pri |+ni

)2k
states if action costs are 1,

3.
∑
αi∈Σ

(
|P pub|+ |P pri |+ni

)2k×|A| states when the cost
function is Cost : A 7→ R≥0,

where |Σ| is the number of agents, and |A| is the number of
available actions for all agents.

Proof. Let fi = |P pub| + |P pri | + ni be the number of
possible state facts for an agent αi of the MA problem Π.
We distinguish three cases. (1) When all action costs are
one, the longest path π an agent αi can expand has length
|π| = fki . For π to be expanded, every state s1, . . . , sfk

i

along the path needs to have novelty wg(si) ≤ k. There-
fore, each state si either makes a tuple t of size k true for the
first time, or achieves a tuple t with a lower g(si) < g(s′)
than other previously generated states s′ with t ∈ s′. A
path |π| > fki cannot be expanded as the state sfk

i +1 in
the path has novelty wg(sfk

i +1) > k. For a path to reach
length fki , each state s1, . . . , sfk

i
must have added at most

one new tuple or improved the g-value of at most one tu-
ple to pass the novelty pruning criteria wg(si) ≤ k. Since
g grows monotonically, the g-value of a tuple t cannot be
improved more than once along the same path π. Once state
sfk

i +1 is expanded in the path, all tuples have been gener-
ated with smaller g-values. Therefore, each tuple t can let
fki states to be expanded with novelty wg(si) ≤ k. Given
that we consider at most fki tuples, in total we can ex-
pand f2k

i states. In the worst case, each agent αi ∈ Σ can
expand the state space independently, yielding the overall
maxαi∈ΣO(f2k

i ). (2) In case all action costs are zero, the
g-value can never be improved once a tuple has been made
true by a state. Therefore each tuple t can let just one state
to be expanded with novelty wg(si) ≤ k, and the total num-
ber of expanded states is at most maxαi∈ΣO(fki ). (3) If the

Domain #Instances 1-MA-BFWS 2-MA-BFWS hFF
Blocksworld 214 100.0% 100.0% 100.0%
Depot 155 85.81% 91.61% 100.0%
DriverLog 185 95.68% 100.0% 100.0%
Elevators 255 82.75% 66.27% 99.22%
Logistics 172 0.0% 93.6% 100.0%
Rovers 277 98.92% 100.0% 99.28%
Satellites 488 20.9% 98.36% 100.0%
Sokoban 61 54.1% 93.44% 98.36%
Taxi 95 90.53% 98.95% 98.95%
Wireless 160 51.88% 36.88% 58.75%
Woodworking 1084 98.89% 99.17% 97.05%
Zenotravel 258 99.22% 79.84% 100.0%
Overall 3404 77.59% 91.63% 96.94%

Table 1: Number of instances, and coverages of 1-MA-
BFWS and 2-MA-BFWS guided by g w.r.t. MA-BFWS
guided by f = 〈hFF〉 computed by each agent using its own
actions for problem instances with a single goal.

cost function Cost : A 7→ R≥0 maps actions A to posi-
tive real numbers including zero, then each tuple t can be
improved f2k

i with At action, the number of actions with
different cost that add tuple t, which in the worst case is A.
Therefore the total number of states that can be expanded is
maxαi∈ΣO(f2k

i × |A|). �

Corollary 1 Let m be the maximum novelty of a state ex-
panded by MA-BFWS, once a plan has been found and MA-
BFWS terminates. Then, the number of expanded states is
bounded by the complexity of k-MA-BFWS when k = m.

If a problem is solved by 1-MA-BFWS it does not en-
tail that the problem has width 1, it entails rather a lower
bound, much like the notion of effective width discussed by
Lipovetzky and Geffner (2012). Still, it provides an estimate
on how hard it is to solve a MA planning problem. Table 1
shows that, even for the MA setting, for single atom goals
all domains but Wireless generally have width lower than
or equal to 2. For this analysis, we considered the domains
from the distributed track of the first international compe-
tition on distributed and multi-agent planning. For each in-
stance with m goal atoms, we created m instances with a
single goal, and ran 1-MA-BFWS and 2-MA-BFWS over
each one of them. The total number of instances is 3404. The
search heuristic used for 1-MA-BFWS and 2-MA-BFWS is
very simple: the best state in the open list is selected among
those with the lowest novelty measure w(g), breaking the
ties with the accumulated cost g. For each domain we show
the total number of single goal instances, and the percent-
age of instances solved with width equal to 1 and lower than
or equal to 2. We considered action costs unitary. Therefore,
by Theorem 3, this table shows that 77.59% of the single
goal problems can be solved with a quadratic time O(n2)
where n = |P | is the number of propositions in the prob-
lem. These blind and bounded planners perform well with
respect to a baseline goal-directed heuristic search planner,
MA-BFWS guided by the same heuristic used by planner FF
but computed by each agent using only its own action. How-
ever, problems with multiple goals in general have a higher
width. In the next section we explore how to scale up to mul-
tiple goals.
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Novelty-based heuristics
In MA planning, agents have private information that they
do not want to share with others. The heuristic computed
using only the knowledge of one single agent can be much
more inaccurate than using the knowledge of all the agents.
In this section, we propose some search heuristics for
privacy-preserving MA planning that combine the measure
of the novelty of search states with the estimated distance
to reach the problem goals. The goal distance is estimated
by using the knowledge of a single agent. Our conjecture
is that, in the MA setting, width-based exploration in the
form of novelty-based preferences can provide a comple-
ment to goal-directed heuristic search, so that the search can
be effectively guided towards a goal state even if the goal-
directed heuristics are inaccurate.

The computation and memory cost of determining that the
novelty w of a state s is k is exponential in k, since all the
tuples of size up to k but one may be stored and considered.
For efficiency, we simplify the computation of novelty w(s)
to only 3 levels, i.e. w(s) is determined to be equal to 1, 2,
or greater than 2.

For our heuristic functions, we used the measure of nov-
elty introduced by Lipovetzky and Geffner (2017). Given the
arbitrary functions h1, . . . , hn, the novelty w(s′) of a newly
generated state s′ is k iff there is a tuple of k atomsXk = xk
and no tuple of smaller size, that is true in s but false in all
previously generated states s′ with the same function values
h1(s′) = h1(s), . . . , and hn(s′) = hn(s). For example, a
new state s has novelty 1 if there is an atom X = x that
is true in s and false in all the states s′ generated before s
where hi(s′) = hi(s) for all i. In the rest of the paper, the
novelty measure w is sometimes denoted as w(h1,...,hn) in
order to make explicit in the notation the functions hi used
in the definition and computation of w.

The first heuristic we study is f1 = 〈w(hFF), hFF〉, where
component hFF denotes the goal-directed heuristic used by
planner FF. The goal distance of an agent αi from a search
state s is estimated as the number of actions of αi in a re-
laxed plan constructed from s to achieve the problem goals.
The plan is relaxed because it is a solution of a relaxed
problem in which the negative action effects are removed.
Substantially, the best state s in open according to f1 is
not selected among those with the lowest estimated goal
distance, but among those with the lowest novelty measure
w(s) = w(hFF), and heuristic hFF is only used to break the
ties. The same heuristic was proposed for classical plan-
ning obtaining, surprisingly, good results (Lipovetzky and
Geffner 2017). The difference with respect to classical plan-
ning is that for MA planning the distance estimated to reach
the problem goals is much more inaccurate. For an agent αi,
the relaxed plan is extracted using only the actions of αi.
When an agent evaluates the search states by using only its
own set of actions, it is possible that at least one of the goals
is evaluated as unreachable. In this case, the extraction of the
relaxed plan fails, and the estimated distance is evaluated as
infinite. This is due to the agent not being able to solve the
problem alone, needing to cooperate with other agents.

We consider other types of information for the definition
of the search heuristic, in order to overcome the problem

of the inaccuracy of the goal-directed heuristics computed
using only the knowledge of a single agent. In the follow-
ing, given a search state s, G⊥ and Gu denote the number
of goals that are false in s and the number of goals that are
unreachable from s, respectively. For an agent αi, the num-
ber of goals unreachable from s is estimated by constructing
with the actions of αi a relaxed planning-graph (RPG) from
s. The goals that are not contained in the last level of the
RPG are considered unreachable.

Planner MA-BFWS with heuristic function f2 =
〈w(G⊥,hFF), G⊥, hFF〉, denoted as MA-BFWS(f2), selects
the next state s to expand among those in open with the
lowest novelty measure w(s) = w(G⊥,hFF), breaking the ties
according to the number of goals that are false in s. Heuristic
hFF is finally used to break the ties when there is more than
one state in open with the same lowest measure of novelty
and the same lowest number of false goals.

Similarly, MA-BFWS with heuristic function f3 =
〈w(Gu,G⊥,hFF), Gu, G⊥, hFF〉 selects the next state s to ex-
pand among those in open with the lowest novelty measure
w(s) = w(Gu,G⊥,hFF), breaking ties according to the num-
ber of goals that are unreachable from s. If there is more than
one state in open with the same lowest measure of novelty
and the same lowest number of unreachable goals, the ties
are broken according to the number of goals false in s. Fi-
nally, heuristic hFF is used only if there are still ties to break.

The drawback of hFF for MA planning is that often the
estimated goal distance from a search state s is infinite, even
though s is not a dead-end. As stated before, the reason for
this is that from s the planning problem cannot be solved by
an agent alone. With the next search heuristic, we study a
method to overcome this problem, for which an agent αi ex-
tracts a relaxed plan from s to the (sub)set of problem goals
that are reachable from s. The estimated distance from s to
all the problem goals is the number of actions in the relaxed
plan plus the number of problem goals unreachable from s
multiplied by a constant. In our experiments, such a constant
is equal to the maximum number of levels in the RPGs con-
structed so far. This variant of hFF is denoted as hPFF. Essen-
tially, the information about the unreachable goals is used
to refine the estimated goal distance. We report experiments
with MA-BFWS(f4), where the function f4 is obtained from
f3 using hPFF in place of hFF as goal-directed component of
the evaluation function.

Components Gu and hPFF of heuristic f4 are computation-
ally expensive, since for each expanded stateGu requires the
construction of a RPG, and hPFF additionally requires the ex-
traction of a relaxed plan from the RPG. The last two heuris-
tics we study consider the tradeoff between the accuracy of
the estimated goal-distance and its computational cost. For
this, the construction of the RPG and the extraction of the
relaxed plan are not performed for each expanded state, but
only for the initial state of the planning problem and the
search states incoming from other agents. The facts that are
preconditions of the actions in the relaxed plan are called rel-
evant. Let s′ be the last incoming state in the way to state s
for which the relaxed plan was extracted. For evaluating the
goal distance of state s, we consider the number #r of rele-
vant facts that have not been made true in the way from s′ to
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s. This measure is similar to that proposed by Lipovetzky
and Geffner (2017) for classical planning. The difference
with respect to classical planning is that a relaxed plan is ex-
tracted for each incoming state, instead of for the states that
decrement the number of achieved problem goals in relation
to their parent. This is needed as the relevant fluents are not
sent among agents in order to avoid compromising privacy.
Planner MA-BFWS(f5) with f5 = 〈w(G⊥,#r), G⊥,#r〉
considers counter #r in place of the more computationally
expensive components Gu and hPFF.

The drawback of heuristic f5 is that, when the number of
exchanged messages is high, it still requires the construction
of the RPG many times. The construction of the RPG is com-
putationally much more expensive than extracting the re-
laxed plan and, when such a construction is performed many
times, it can become the bottleneck of the search procedure.
Thereby, we propose another heuristic f6 which, for each
agent αi, requires the construction of the RPG from only the
initial state of the problem. With the aim of maintaining the
agents’ privacy, the RPG is still constructed by using only
the actions of a single agent. Nevertheless, when the MA-
planning problem cannot be solved by an agent alone, the
last level of the RPG does not contain the problem goals.
For this, the construction of the RPG from the initial state is
special, and is done in two steps. The first step is the con-
struction of the RPG from sI . Then, in the second step, the
preconditions p ∈ pre(a) of actions a ∈ Ai of agent αi that
are not added by actions of αi and are not true in the last
level of the RPG, are made true in the last level of the RPG.
Finally, the construction of the RPG continues from the last
level of the RPG constructed so far.

Consider a state s to be expanded. For heuristic f6, the
counter #r is defined as the number of relevant facts in the
RPG constructed from the problem initial state sI that have
not been made true in the way from sI to s. The computa-
tion of #r for f6 differs from f5, because an agent αi alone
can reconstruct only the portion of trajectory from the last
incoming state s′ to s, and cannot reconstruct the trajectory
from sI to s′. The trajectory from sI to s′ can contain other
actions of agent αi that should be taken into account in the
definition of the set of relevant facts that have not been made
true by αi in the way from sI to s. For this, the presence of
these actions of αi is estimated by solving a super relaxed
planning problem, i.e., a planning problem with the same
initial state of the planning problem, the set of facts that are
true in s′ as goals, and a set of actions obtained from the set
of actions of αi by ignoring the action preconditions that are
unreachable from sI , as well as negative action effects. The
procedure for the extraction of the super-relaxed plan is sim-
ilar to the one used by FF. The positive effects of the actions
in such a super-relaxed plan are facts that we estimate have
been made true in the way from sI to s′. Therefore, for f6

we define the counter #r as the number of relevant facts that
have not been made true in the super-relaxed plan from sI
to s′ and in the way from s′ to s.

Experiments
In this section, we present an experimental study aimed at
testing the effectiveness of the heuristics described so far.

Domain hFF f1 f2 f3 f4 f5 f6

From CoDMAP
Blocksworld 19 20 20 20 20 20 20
Depot 5 6 19 19 20 20 20
DriverLog 18 20 20 20 20 20 20
Elevators 3 3 20 20 20 20 20
Logistics 3 3 20 20 20 20 20
Rovers 14 17 20 20 20 20 20
Satellites 18 19 20 20 20 20 20
Sokoban 18 18 18 18 18 18 14
Taxi 20 19 19 20 20 20 20
Wireless 2 2 2 2 2 2 2
Woodworking 3 3 10 15 15 11 12
Zenotravel 20 20 20 20 20 20 20
From MBS
MA-BW 0 0 11 11 12 2 19
MA-Log 0 0 0 0 1 0 15
MA-BW-L 0 0 20 20 20 20 19
MA-Log-L 0 0 20 20 20 20 19
Overall (320) 143 150 259 265 268 253 280

Table 2: Number of problems solved by MA-BFWS with
seven different heuristics for the benchmarks problems of
CoDMAP and MBS. The best performance is in bold.

First, we describe the experimental settings; then we eval-
uate the effectiveness of our heuristics; finally, we compare
the performance of our approach with the state of the art.

Our code is written in C++, and exploits the Nanomsg
open-source library to share messages (Sustrik 2016). Each
agent uses three threads, two of which send and receive
messages, while the other one conducts the search, so that
the search is asynchronous w.r.t. the communication rou-
tines. The behavior of MA-BFWS depends on the order with
which the messages are received by an agent. Each time a
run of MA-BFWS is repeated, the agents’ threads can be
scheduled by the operating system differently, so that the
behavior of MA-BFWS can also be different. Thereby, for
each problem of our benchmark, we run MA-BFWS five
times and consider the performance of the algorithm as the
median over the five runs. When MA-BFWS exceeded the
CPU-time limit for more than two of the five runs, we con-
sider the problem unsolved.

The benchmark used in our experiments includes twelve
domains proposed by Štolba, Komenda, and Kovacs (2016)
for the distributed track of the first international compe-
tition on distributed and MA planning (CoDMAP), and
four domains MA-Blocksworld (shortly, MA-BW), MA-
Blocksworld-Large (MA-BW-L), MA-Logistics (MA-
Log), MA-Logistics-Large (MA-Log-L), which were de-
rived by Maliah, Brafman, and Shani (2017). In the fol-
lowing, these latter four domains are abbreviated to MBS.
The difference w.r.t. the CoDMAP domains Blocksworld
and Logistics is that for the domains of MBS many private
actions need to be executed between two consecutive pub-
lic actions, and agents must choose among several paths for
achieving goals. All domains have uniform action costs.

All tests are run on an InfiniBand Cluster with 512 nodes
and 128 Gbytes of RAM, each node has two 8-cores Intel
Xeon E5-2630 v3 with 2.40 GHz. Given a MA-planning
problem, for each agent in the problem we limited the usage
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Figure 1: Coverage as a function of the time for MA-BFWS
using seven heuristics for benchmarks CoDMAP and MBS.

of resources to 3 CPU cores and 8 GB of RAM. Moreover,
unless otherwise specified, the time limit was 5 minutes, af-
ter which the termination of all threads was forced.

Table 2 shows the number of problems solved by MA-
BFWS using seven different heuristics for the benchmark
problems of CoDMAP and MBS. Planner MA-BFWS(hFF)
is the baseline for our comparison, since it does not use
novelty-based preferences to guide the search. For six out of
sixteen domains, MA-BFWS with hFF solves almost all the
problems. These are the domains with problems that require
less interaction among agents.

MA-BFWS with f1 solves few more problems than hFF,
and the domains where MA-BFWS(f1) performs well are
the same as those with hFF. Surprisingly, MA-BFWS with
f2 solves many more problems than with hFF and f1. The
main difference between f2 and f1 is that the novelty-based
exploration gives preference according to the number of un-
achieved goals G⊥. This clearly results in a positive inter-
play with the search procedure. Interestingly, MA-BFWS
with f2 solves many problems of CoDMAP domains such
as Logistics, Depot, and Woodworking, and several prob-
lems from benchmark MBS, which require a greater interac-
tion among different agents.

MA-BFWS with f3 or f4 solves few more problems than
with f2, showing that the information about the number of
unreachable goals from search states can be useful. Heuristic
f5 is computationally less expensive than f3 and f4, but the
goal-directed component of f5 is less accurate. The results
in Table 2 show that the tradeoff between computational cost
and accuracy of f5 does not pay off. MA-BFWS with f5 is
better than with hPFF and f1, but solves fewer problems than
with f2, f3, and f4. The reason of this behavior is that, when
the number of incoming messages is high, heuristic f5 is
computationally still quite expensive.

The cheapest heuristic function to compute is f6, since the
most expensive step in the computation of our heuristics is
the RPG construction and f6 constructs the RPG only once.
The results in Table 2 indicate that f6 is a good tradeoff be-
tween accuracy and computational cost, since MA-BFWS
with f6 solves the largest set of problems. It solves several
problems even for domain MA-Blocksworld, which are un-
solved by using any other heuristic function.

Metric hFF f1 f2 f3 f4 f5 f6

Avg.T 8.62 6.36 1.69 1.57 1.55 2.14 3.51
Avg.L 61.4 55.9 61.4 60.3 61.0 92.8 67.0
kMess 1749.7 1433.8 25.9 25.0 24.8 46.8 97.4
kState 952.8 779.6 17.9 16.7 16.2 34.3 82.1
Score Q 122.6 134.4 211.1 217.5 213.1 176.1 220.8
Score T 121.9 124.9 223.9 231.7 228.1 220.0 233.4

Table 3: Average time, average plan length, number of
exchanged messages (in thousands), number of expanded
states (in thousands), time and quality score of MA-BFWS
with seven heuristics for benchmarks CoDMAP and MBS.

Figure 1 shows the coverage of MA-BFWS with the seven
heuristic functions using a time limit ranging from 0 to 300
seconds. With a time limit of few seconds, the best heuristic
is f4; with a time limit between 5 and 25 seconds, f3 is the
best; with a time limit between 25 seconds and 300 seconds
MA-BFWS with heuristic f6 solves the largest set of prob-
lems. Interestingly, the coverages obtained using a time limit
of 150 seconds are substantially the same as 300 seconds.

Table 3 shows the performance of MA-BFWS using the
proposed search heuristics in terms of average time, plan
length, number of exchanged messages, number of ex-
panded states, time score, and quality score. The averages
are computed over the problems solved by all the compared
heuristics. The time score and quality score are the mea-
sures originally proposed for the seventh international plan-
ning competition (Olaya, López C., and Jiménez 2011). MA-
BFWS with f4 is on average the fastest, and the average
numbers of exchanged message and expanded states of f4

are therefore the lowest, followed closely by f3. Remark-
ably, the average number of exchanged messages and ex-
panded states of MA-BFWS with hFF and f1 are almost two
orders of magnitude greater than with the other heuristics.

The limits of our approach are inherited from the width
based algorithms. Width based algorithms such as IW per-
form poorly in problems with high width. Variants such as
SIW and BFWS try to mitigate the high width of the prob-
lems by using serialization or heuristics. When the novelty
is used for pruning, the algorithms may become incomplete;
if novelty is used as a preference, then completeness is not
compromised. In general, novelty will help if the paths to
the goal have low width, while problems that require reach-
ing states with high width will become more challenging.

Finally, we compared our approach with other three ex-
isting approaches, MA-SIW, which is the approach mostly
related to our work, the best configuration of MAPLAN, and
PSM. MAPLAN and PSM are the best two planners that
took part in the CoDMAP competition (Štolba, Komenda,
and Kovacs 2016). Table 4 shows the results of this com-
parison for the CoDMAP domains. As for benchmark MBS,
MA-SIW solves no problem, while MAPLAN and PSM do
not support private goals, which are present in these prob-
lems. The time limit used for this comparison is 30 minutes,
that is the same limit used in the competition.

The results in Table 4 show that for the competition prob-
lems MA-BFWS outperforms MA-SIW and is better than
MAPLAN and PSM. Another planner we experimented is
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Domain MA-SIW MA-BFWS(f6) MAPLAN PSM
Blocksworld 20 20 20 20
Depot 8 20 12 17
DriverLog 20 20 16 20
Elevators 20 20 8 12
Logistics 18 20 18 18
Rovers 20 20 20 19
Satellites 20 20 20 13
Sokoban 4 17 17 16
Taxi 20 20 20 20
Wireless 0 2 4 0
Woodworking 1 14 15 18
Zenotravel 20 20 20 10
Overall (240) 171 213 190 184

Table 4: Number of problems solved by MA-SIW, MA-
BFWS with heuristic f6, MAPLAN, and PSM for bench-
mark CoDMAP. The best performance is in bold.

DPP (Maliah, Shani, and Stern 2016) that, to the best of our
knowledge, is the state-of-the-art for the CoDMAP prob-
lems. We observed that, with our test environment, MA-
BFWS(f6) solves few more problems than DPP. Remark-
ably, the only type of information that the agents share by
using our approach is the exchanged search states, while
MAPLAN, PSM, and DPP require sharing also the infor-
mation for the computation of the search heuristics. In this
sense, besides solving more problems, MA-BFWS preserves
the agents’ privacy more strongly than the other planners.

Conclusions
Goal-directed search is the main computational approach
that has been investigated in classical planning and, sub-
sequently, in MA planning. For classical planning, width-
based exploration in the form of novelty-based preferences
provides an effective complement to goal-directed search.

In our setting for MA planning, in order to preserve pri-
vacy, we do not transmit the public projection of the ac-
tions, and hence the proposed goal-directed heuristics are
not as informed as in classical planning. Moreover, the en-
cryption of the private knowledge that the agents share dur-
ing the search affects the measure of novelty. Nevertheless,
this work shows that the combination of new goal-directed
heuristics computed efficiently and width-based search is
also effective for MA planning. This opens up the possibility
to increase privacy preserving properties of MA planning al-
gorithms. For instance, given the success on black-box plan-
ning for single agents (Frances et al. 2017), we plan to in-
vestigate the implications of fully protected models given as
black-boxes, and the effect of novelty pruning in terms of
sent messages and privacy.
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