
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Tabu-Based Large Neighbourhood Search for
Time/Sequence-Dependent Scheduling Problems with Time Windows

Lei He,1,2 Mathijs de Weerdt,2 Neil Yorke-Smith2

1College of Systems Engineering, National University of Defense Technology, 410073 Changsha, China
2Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

{l.he, m.m.deweerdt, n.yorke-smith}@tudelft.nl

Abstract

An important class of scheduling problems is characterised
by time-dependency and/or sequence-dependency with time
windows. We introduce and analyze four algorithmic ideas
for this class: a novel hybridization of adaptive large neigh-
bourhood search (ALNS) and tabu search (TS), randomized
generic neighbourhood operators, a partial sequence domi-
nance heuristic, and a fast insertion strategy. An evaluation
of the resulting hybrid algorithm on two domains, a real-
world multi-orbit agile Earth observation satellite scheduling
problem, and an order acceptance and scheduling problem,
shows that it robustly outperforms a mixed integer program-
ming method, a two-stage hybridization of ALNS and TS,
and recent state-of-the-art metaheuristic methods.

Introduction
An over-subscribed scheduling problem, where the capac-
ity cannot meet the demand, consists of simultaneously
selecting a subset of orders to be processed as well as
the associated schedule. This problem is important because
it represents a class of real-world problems including the
Earth observation satellite scheduling problem (Augenstein
et al. 2016), the order acceptance and scheduling problem
(Oğuz et al. 2010), and the orienteering problem (Verbeeck,
Vansteenwegen, and Aghezzaf 2017). Many real-world in-
stances in this class have time/sequence-dependent setup
times and time windows: the setup time between every two
orders depends on the specific pair of orders or their sched-
uled start times, and the scheduled start time of each order
must be in its time window.

The adaptive large neighbourhood search (ALNS) algo-
rithm and tabu search (TS) algorithm have been applied to
such problems (Liu et al. 2017; Pisinger and Ropke 2007;
Cesaret, Oğuz, and Salman 2012). ALNS was first proposed
by Ropke and Pisinger (2006) for pickup and delivery prob-
lems with time windows. It provides a flexible framework
in which a portfolio of operators can be defined according
to the problem characteristics. Thanks to the adaptive mech-
anism for the weights of multiple operators, it can provide
robust solutions for instances with different characteristics.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TS was first proposed by Glover (1986). In TS, recently vis-
ited solutions are stored in a tabu list to prevent short-term
cycling (i.e., re-visiting the same state in the solution space).

Hybridizing state-of-the-art algorithms can result in a bet-
ter algorithm outperforming each of the standalone methods
(Slotnick 2011; Gunawan, Lau, and Vansteenwegen 2016).
Žulj, Kramer, and Schneider (2018) proposed the first hy-
bridization of ALNS and TS to solve the order batch prob-
lem. Their method combines the diversification capabilities
of ALNS and the intensification capabilities of TS. It uses
ALNS to search for better solutions and, if a certain number
of ALNS iterations have passed, invokes TS. Thus ALNS
and TS are alternated in a simple two-stage manner. De-
spite the improvement, this hybridization does not work well
for the class of scheduling problems with time/sequence-
dependent setup times and time windows, especially when
the instance scales (He et al. 2018). Besides, it does not help
avoiding the short-term cycling of ALNS.

This first result raises the question whether there exists a
better hybridization of ALNS and TS and whether there ex-
ist other algorithmic techniques that can improve the search
efficiency of algorithms on this class of problems.

The main contributions of this paper are as follows:

1. In contrast to a two-stage hybridization, we propose a
tight hybridization of ALNS and TS. Our novel hybrid
ALNS–TS approach provides results with higher quality
and robustness and consumes less time compared with
state of the art. The tabu mechanism helps the ALNS to
avoid searching recently visited solutions.

2. We observe there exists a correlation between the tabu
and randomness types and the completion ratio of prob-
lem instances, which helps to tune the algorithm for over-
subscribed problems.

3. We introduce a partial sequence dominance heuristic,
which greatly improves the performance of ALNS, espe-
cially when the problem instances grow in size.

4. We develop a fast insertion algorithm consisting of in-
sertion position ordering and time slack strategies. The
method finds the optimal insertion for each order and
rapidly determines insertion feasibility and cost.

186

Altogether, our hybrid algorithm, called ALNS/TPF, ex-
hibits robust performance across a range of instances of
over-subscribed scheduling problems with time/sequence-
dependent setup times and time windows.

Background
This section describes the mathematical formulation of the
problem, gives a review of approaches to instance domains,
and lastly describes the standard ALNS framework.

Mathematical Formulation1

Consider a set of orders O = {o1, ..., on} to be scheduled.
The sequence of orders is not fixed. Each order has a revenue
ri, a processing duration time di, and a time window [bi, ei].
Let xi be a binary decision variable representing whether
order oi is selected and pi be a decision variable represent-
ing the start time of oi. The problem can be formulated as a
mixed integer programming (MIP) model2:

max
n∑

i=1

xiri (1)

subject to

pi + di + sij ≤ pj
∀i, j ∈ {1, ..., n} if xi = 1, xj = 1, pi < pj

(2)

bi ≤ pi ≤ ei ∀i ∈ {1, ..., n} if xi = 1 (3)

xi ∈ {0, 1} ∀i ∈ {1, ..., n} (4)
The objective function (1) maximizes the total revenue of

scheduled orders. Constraints (2) restrict the time between
every two orders should be long enough for the setup, where
sij is the setup time between orders oi and oj . The value
of sij depends on i and j for the sequence-dependent setup
time case (i.e., a table of setup times for all pairs of oi and oj
is given) and depends on pi and pj for the time-dependent
setup time case (i.e., a table of setup times for all pairs of
pi and pj or a function calculating the setup time accord-
ing to pi and pj is given). Constraints (3) and (4) define the
domains of the decision variables pi and xi respectively.

Domain Instances
Due to the large number of problem variants and solution
approaches, the reader is referred to Slotnick (2011); Gu-
nawan, Lau, and Vansteenwegen (2016) for comprehensive
surveys on this class of problems.

The Earth observation satellite scheduling (EOSS) prob-
lem is a typical representative of this problem class,
where the satellite can only observe a subset of the user-
specified orders in a limited time horizon and the transi-
tion time between two orders is time/sequence-dependent.
Liu et al. (2017) and Peng et al. (2018) studied the time-
dependency of the agile satellite observation scheduling

1Here we show a high-level abstraction of the common aspects
of instances of the problem class. Different problem variants might
have specific additional constraints.

2The model can be linearised easily into a mixed integer linear
programming (MILP) model by using the Big-M notation.

problem. Liu et al. proposed an ALNS algorithm, where they
also integrated ALNS with an insertion algorithm consider-
ing time-dependency by introducing forward/backward time
slacks. Peng et al. proposed an iterated local search (ILS) al-
gorithm. They further calculated the minimal transition time,
the neighbours and earliest/latest start time of each order to
accelerate the insertion.

The order acceptance and scheduling problem (OAS)
is another important problem domain, arising for instance
when a company does not have the capacity to meet demand.
Oğuz et al. (2010) studied the OAS problem with sequence-
dependent setup times and penalty of late completion. Com-
pared with the time windows in the EOSS problem, those
in the OAS are much longer. The problem was approached
by TS (Cesaret, Oğuz, and Salman 2012), genetic algorithm
(Nguyen, Zhang, and Tan 2015) and hyper-heuristic based
methods (Nguyen 2016). Recently, Silva, Subramanian, and
Pessoa (2018) proposed an iterated local search algorithm
and used Lagrangian relaxation and column generation to
find tight upper bounds of problem instances.

Despite all this work, there is no method capable of find-
ing good solutions to diverse real-life instances within a rea-
sonable solving time.

Standard ALNS Framework

ALNS in particular is one of the most promising approaches.
It starts from an initial solution usually generated by a sim-
ple heuristic, because it is less sensitive to the initial solu-
tion than general local search (Demir, Bektaş, and Laporte
2012). ALNS proceeds to generate new solutions through
destroying and repairing. In the destroying process, some or-
ders are removed from the current solution by removal oper-
ators. The unscheduled and removed orders are then inserted
into the solution in the repairing process by insertion oper-
ators. There are multiple removal and insertion operators.
At each iteration, a pair of removal and insertion operators
is selected by a roulette wheel mechanism according to their
weights. The weight of the operatorwi is updated adaptively
according to its accumulated score πi in the previous itera-
tions, wi = (1 − λ)wi + λπi/

∑
j πj , where λ ∈ [0, 1] is a

reaction factor which controls how sensitive the weights are
to changes in the performance of operators.

A simulated annealing (SA) criterion is used to control
the acceptance of new solutions by a temperature parame-
ter T . Let f(S) and f(S′) be the reward of current solution
S and new solution S′ respectively. The new solution S′ is
accepted if f(S′) > f(S); otherwise, it is accepted with
probability: ρ = exp

(
100
T

(
f(S′)−f(S)

f(S)

))
.

ALNS/TPF: Tabu-Based ALNS Algorithm
In this section, we introduce four new algorithmic features
in our approach: tabu search hybridization (TS), randomized
heuristic neighbourhood operators, partial sequence domi-
nance (PSD), and a fast insertion algorithm (FI) consider-
ing time/sequence-dependent setup times. The resulting al-
gorithm, called ALNS/TPF, is shown as Algorithm 1.

187

Algorithm 1 Overview of ALNS/TPF
1: Generate an initial solution SI3;
2: Set SI as the current and the best solution: S ← SI ,
S∗ ← SI ;

3: repeat
4: Choose destroy, repair operators Di, Ri based on

weights;
5: S′ ← Ri(Di(S));
6: Update tabu attributes of all removed and inserted

orders;
7: Produce compound solution Sc from S and S′;
8: if f(Sc) > f(S′) then
9: S′ ← Sc;

10: if SA accepts S′ then
11: S ← S′;
12: if f(S) > f(S∗) then
13: S∗ ← S;
14: Update the weights of operators;
15: until Terminal condition is met;
16: return S∗;

Tabu Search Hybridization
Although ALNS has been widely successful (Thomas and
Schaus 2018), a main drawback is that its search efficiency
can flounder due to re-visiting recent solutions. As noted ear-
lier, Žulj, Kramer, and Schneider (2018) proposed the first
hybridization of ALNS and TS. However, since ALNS and
TS are used in separate stages, this hybridization does not
change the short-term cycling nature of ALNS.

In contrast, we propose a tight integration of ALNS with
TS. We declare a removal tabu attribute and an insertion tabu
attribute for each order. Whenever an order oi is inserted into
the current solution, the removal of oi is forbidden for θ iter-
ations; whenever an order oj is removed from the current
solution, its reinsertion is forbidden for θ′ iterations (Al-
gorithm 1, Line 6). For the values of θ and θ′, we follow
Cordeau and Laporte (2005) and set both to

√
n/2, where n

is the number of orders. We compare the two tabu types and
the two ALNS–TS hybridizations in the experiments.

Randomized Generic Neighbourhood Operators
In order to ensure the ALNS is suitable for a diverse range
of problem instances, we use five generic removal operators
and five generic insertion operators, and introduce a simple
but effective randomization strategy to diverse the search.
These operators are adapted from Pisinger and Ropke (2007)
and Demir, Bektaş, and Laporte (2012) to fit our problem,
while the randomization strategy is new.

The five removal operators are: min revenue (orders with
lower revenue are removed first); min unit revenue (orders
with lower unit revenue are removed first: the unit revenue
is the order’s revenue divided by its processing time); max
setup time (orders with longer setup time are removed first);

3We sort the orders by an ascending order of start times of their
time windows and we attempt to start each order as early as possi-
ble under all the constraints.

max opportunity (for the problems where orders have mul-
tiple time windows, orders with more time windows are re-
moved first: the rationale of this operator is that these or-
ders can be scheduled in other time windows easily); and
max conflict (orders with higher conflict degree are removed
first). The conflict degree of the time window twi is:

cdi =

∑
twj∈TW,i6=j TimeSpan(twi, twj)

ei + di − bi
(5)

where TW is the set of all the time windows and the func-
tion TimeSpan calculates the time span that two time win-
dows overlap with each other.

The five insertion operators are: max revenue; max
unit revenue; min setup time (due to the time/sequence-
dependency, the accurate setup time cannot be calculated
until the order is inserted in the solution; therefore for this
operator, the average setup time of orders is calculated and
used to rank the orders); min opportunity; and min conflict.

Standard ALNS ranks the orders according to the heuris-
tic values of the operators: e.g., for the min revenue removal
operator, the revenue is regarded as the heuristic value h,
the orders are ranked in an ascending order of h, and the
orders with lower revenue are removed. In order to diverse
the search, we add randomness to the heuristic values of the
selected operators: h ← h × (1 + r), where r is a ran-
dom value in [0, 1]. Here we differ from the common ap-
proach of selecting orders randomly according to a proba-
bility that depends on h, because we want to add limited
randomness while keeping emphasis on following h. Our
approach thus introduces a random component without ne-
glecting the heuristic.

Partial Sequence Dominance
Besides solution cycling, a further drawback of ALNS is
that it evaluates a new solution depending on the quality
of the whole solution sequence. Hence, during the search
process, solutions with some good parts are rejected due
to the low quality of the whole sequence – thus neglect-
ing potentially valuable in-process information. Due to the
time-dependency and sequence-dependency, the quality of a
solution is influenced significantly by its partial sequences.
Inspired by genetic algorithms, we propose the partial se-
quence dominance (PSD) heuristic: when a new solution
is produced, we partition it into multiple partial sequences.
We compare each partial sequence of the new solution with
the corresponding partial sequence of the current solution.
The partial sequence with higher total revenue (i.e., objec-
tive function value) is stored in a temporary solution called
the compound solution (Algorithm 1, line 7). The detailed
process of constructing a compound solution from two solu-
tions is shown in Algorithm 2.

A challenge for PSD is that one order can appear in dif-
ferent partial sequences of the current solution and the new
solution. Thus one order might be processed twice in the
compound solution. To maintain the feasibility, all the repet-
itive orders in the compound solution are removed. After we
remove the duplicates, we update the start time of all the
orders to start them as early as possible. If the repaired com-
pound solution is better than the new solution, it is accepted.

188

Algorithm 2 Process of constructing a compound solution
1: Input: Current solution S, New solution S′, the length

(i.e., the number of orders) of partial sequences l;
2: Let Sc be the compound solution: Sc ← ∅;
3: Let Sp and S′p be the partial sequence in the current and

the new solution respectively: Sp ← ∅, S′p ← ∅;
4: Set counter ← 1
5: for i← 1, i ≤ |S|, i++ do
6: Put the ith order oi of S in the partial sequence Sp;
7: if |Sp| = l ∨ i = |S| then
8: for j ← counter, j ≤ |S′|, j++ do
9: if oj + dj < end time of the last order in Sp

then
10: Put oj in the partial sequence S′p;
11: counter ← counter + 1;
12: if f(Sp) > f(S′p) then
13: Add Sp into Sc;
14: else
15: Add S′p into Sc;
16: Sp ← ∅, S′p ← ∅;
17: Remove duplicates in Sc and update the start time of

orders.
18: return Sc;

Fast Insertion Algorithm
Our last innovation is a fast insertion algorithm, which first
evaluates and ranks all the possible insertion positions, by
an insertion position ordering (IPO) heuristic. Then the fea-
sibility and the cost of the positions are rapidly determined
by a concept called time slack. The insertion algorithm is
used in the repairing process when we insert orders back to
the solution (Algorithm 1, Line 5). The detailed process of
the fast insertion algorithm is shown in Algorithm 3.

In the IPO heuristic, for every candidate order, we cal-
culate all possible insertion positions by comparing its
time window with the current solution. Due to the time-
dependency and sequence-dependency, the difference of
setup times in different insertion positions can be large. We
calculate the possible setup time for each position and insert
the order into the positions following an ascending order of
possible setup times. The rationale is that it is better to use
time for processing instead of setup.

For the time-dependent setup time case, because we can-
not know the start time until we insert the order into the
solution sequence, we cannot know the exact setup time.
Therefore, we use the time at the middle of the windows
to compute an approximate setup time. This value is used to
rank the possible positions. On a time-dependent Earth ob-
servation scheduling problem benchmark, the error of this
approximation of the setup time is less than 15%.

We set all the orders to start as early as possible. There-
fore when inserting one order into the current solution, it
is possible to create more space for the candidate order by
postponing some orders in the solution. In order to deter-
mine how much one order can be postponed, we adopt an
idea from Verbeeck, Vansteenwegen, and Aghezzaf (2017)

Algorithm 3 Fast insertion algorithm
1: Input: Destroyed solution SD, Set of unscheduled or-

ders B;
2: Let S′ be the repaired solution: S′ ← SD;
3: Sort the orders in B by the selected insertion operator;
4: for each candidate order oc in B do
5: for each scheduled order o in SD do
6: if bc < the end time of o < ec then
7: Add the position after o in position list PL;
8: Sort the positions in PL by the ascending setup

time;
9: for each position in PL do

10: Let op and os be the preceding and succeeding
orders of the position respectively;

11: Let pp and ps be the current start time of op and
os;

12: Calculate earliest start time pe of oc according to
pp;

13: Calculate earliest start time p′e of os according
to pe;

14: if p′e − ps < time slack of os then
15: Insert oc at the current position in S′;
16: Update the start time and time slack of or-

ders;
17: break
18: return repaired solution S′;

and propose the time slack and the due time slack heuristics.
First, the time slack is defined as the maximum amount of
time an order can be postponed before the solution becomes
infeasible. The time slack of each order depends on the latest
start time of its succeeding order. Thus it is calculated from
the last order to the first one in a back-propagation man-
ner. The due time slack is defined for the problem with late
penalty (i.e., the order receives some penalty because of end-
ing after its due time). It is the maximum amount of time an
order can be postponed without adding penalty to any order.

These heuristics facilitate determining the feasibility and
the cost of one insertion only by comparing the time needed
with the corresponding slack. Insertions with higher cost are
considered later. When an order is inserted, the start times
of all its succeeding orders are updated until one whose start
time does not change.

Algorithmic Analysis
The proposed ALNS/TPF algorithm consists of four novel
features, as just described. In order to understand how to
effectively use the features, we first analyze them individu-
ally. Then in Table 1, for each new feature, we compare the
algorithm without this feature against the full algorithm to
understand its performance.

The benchmark instances we use are from Cesaret, Oğuz,
and Salman (2012) for the OAS problem due to their vary-
ing characteristics. We only test the larger instances with 25,
50 and 100 orders. Two main parameters were used to gen-
erate these instances. The first parameter, τ , influences the
length of time windows: when τ is larger, the time windows

189

Table 1: The first two columns show the average solution quality and CPU time of the full algorithm, and then, for variants
with each of the algorithmic features removed, the percentage of increase in gap (IG, lower is better) and increase in time (IT,
lower is better) are given. The naming convention is that we include the first letters of the features that are activated. ALNS/TP
(No IPO) refers to the full algorithm without IPO (i.e., it only has the time slack strategy in the fast insertion algorithm), and
ALNS/TP (Liu et al.) refers to the algorithm without the time slack strategy. Here, the time slack strategy is replaced by the
strategy from Liu et al. (2017). The first three rows report the average values of all 250 instances with the same number of
orders, and the others report the average values of all 150 instances with the same value of τ and R.

Instances ALNS/TPF ALNS/PF ALNS-TS ALNS/TF ALNS/TP (No IPO) ALNS/TP (Liu et al.)

Quality/% Time/s IG/% IT/% IG/% IT/% IG/% IT/% IG/% IT/% IQ% IT%

n = 25 3.62 1.43 3.78 7.85 6.56 4.02 0.30 -11.05 33.36 -21.28 33.92 19.12
n = 50 4.43 6.78 5.36 22.75 10.32 19.33 4.10 -8.40 46.48 -14.86 30.23 35.62
n = 100 3.25 36.90 9.50 35.28 12.74 29.56 17.88 -3.46 91.79 -9.98 41.35 44.13
τ = 0.1 0.64 11.66 11.33 62.57 21.52 61.81 0.62 -4.45 240.96 39.08 133.47 96.20
τ = 0.3 1.17 17.48 14.51 48.24 29.03 41.00 5.07 3.30 192.60 -4.91 110.19 58.24
τ = 0.5 2.60 20.34 11.11 24.28 21.10 16.36 7.83 -3.63 111.90 -25.64 65.23 28.24
τ = 0.7 6.12 15.82 5.53 16.76 8.03 10.75 6.86 -7.44 39.99 -27.89 26.94 19.70
τ = 0.9 8.30 9.90 3.16 11.30 3.88 10.50 7.18 -15.17 15.02 -24.38 12.24 13.60
R = 0.1 3.05 15.32 6.10 9.21 10.62 3.60 5.14 -3.64 44.66 -27.26 55.21 59.74
R = 0.3 3.82 17.13 5.11 17.68 9.07 16.94 6.52 -0.33 45.25 -23.18 38.67 44.61
R = 0.5 4.09 18.32 4.87 25.85 9.06 24.70 5.96 -6.12 48.20 -22.52 32.85 30.36
R = 0.7 3.98 13.53 6.57 54.84 10.21 45.57 7.43 -7.10 62.91 6.57 27.12 38.07
R = 0.9 3.89 10.90 7.45 71.96 10.10 57.78 8.67 -6.07 73.03 27.94 23.75 37.62

are smaller; the second parameter, R, influences the range
that the random end time and due time of time windows are
distributed: when R is larger, the end times spread broadly,
so the overlap of time windows gets smaller. Both parame-
ters have five values: 0.1, 0.3, 0.5, 0.7, 0.9. Ten random in-
stances are generated for each parameter setting, giving 750
instances in total.

Tabu Search and Randomness
In the last section we proposed two types of tabu heuris-
tics, the insertion tabu and the removal tabu. The first type
is more common in over-subscribed problems (Bianchessi
et al. 2007; Cordeau, Laporte, and Mercier 2001; Cordeau
and Laporte 2005; Prins et al. 2007). The only removal tabu
we found in the literature is from Rogers, Howe, and Whit-
ley (2006). However, their strategy is for updating an infea-
sible solution by inserting orders first and then removing or-
ders. Therefore, their removal tabu is used in the intermedi-
ate solution (i.e., the infeasible solution) while ours is used
in the repaired solution (i.e., the feasible solution).

We observe an interesting fact that for the OAS problem,
the performance of the insertion/removal tabu and random-
ness correlates with the proportion of orders that can be ful-
filled, which we call the completion ratio. To understand the
correlation, we run experiments on the benchmark instances.
The instances from Cesaret, Oğuz, and Salman (2012) have
a relatively high completion ratio. Therefore we also gen-
erate three new sets of instances with varying completion
ratios. The average results of the percentage of instances
where the algorithm with a certain heuristic achieves the best
solution are shown in Table 2.

According to these results, the insertion tabu works better
than the removal tabu when the completion ratio is lower,
while the removal tabu works better than the insertion tabu
when the completion ratio is higher. These results can be ex-
plained as follows. For insertion tabu, when the completion

Table 2: Percentage of instances where the algorithm with a
certain heuristic achieves the best solution

Completion ratio Tabu type Randomness type

Insertion Removal Insertion Removal

< 50% 87.86 61.07 88.67 57.20
> 50% 58.40 79.07 66.93 68.80

ratio is low, a large number of orders cannot be included in
the solution. The insertion tabu which excludes some bad
orders improves the search efficiency. However, when the
completion ratio is high, only a small number of orders can-
not be included in the solution. The insertion tabu reduces
the search space too much. For the removal tabu, the ef-
fect is opposite. When the completion ratio is low, only a
small number of orders can be scheduled, and the removal
tabu which includes some orders in the solution reduces the
number of solutions that can be explored. However, when
the completion ratio is high, a large number of orders can be
included in the solution. The insertion tabu which includes
some good orders in the solution improves the search effi-
ciency. Similar as the tabu types, the insertion randomness
works better than the removal randomness when a small pro-
portion of orders can be scheduled, while the removal ran-
domness works better than the insertion randomness when a
large proportion of orders can be scheduled.

Since all the instances from Cesaret, Oğuz, and
Salman (2012) have a relatively high completion ratio, the
combination of removal tabu, removal randomness and in-
sertion randomness without insertion tabu works best on av-
erage. We use this combination in the following experiments
and we refer to it as the TS strategy.

We test the performance of the TS strategy as follows.
We first test whether it helps to reduce the probability of re-
visiting recent solutions. According to our experiment, for
OAS instances with 100 orders, the average percentage of it-

190

erations re-visiting a recent solution is 26% without TS and
16% with TS. This proves that TS works well on reducing
the short-term cycling of ALNS. Then, we compare the al-
gorithm without the TS strategy (ALNS/PF) with the full
ALNS/TPF algorithm. Table 1, column ALNS/PF, shows
that without TS, all the gaps are increased. TS contributes
to the solution quality, and it works better when the instance
grows in size. It also shows better performance when τ is
smaller, i.e., when the time window gets longer, because the
TS strategy helps the algorithm to explore more solutions in
the solution space. TS also reduces the CPU time much by
forbidding useless removal of orders from the solution.

We further compare our tight hybridization with the two-
stage hybridization of ALNS and TS (ALNS-TS). The full
ALNS/TPF is run 1000n iterations, where n is the number
of orders. In ALNS-TS, TS is run for 15n iterations after ev-
ery 100n iterations of ALNS. In each TS iteration, 10 new
neighbourhoods by our removal and insertion operators are
examined to find the best local move. The whole process is
run four times, hence for 1000n neighbourhood moves in
total. Recently visited solutions are inserted in a tabu list
for
√
n/2 iterations. From column ALNS-TS in the table,

it is obvious that the two-stage strategy uses more time and
produces worse solutions. The gap increases when the in-
stance gets larger and τ is smaller. We also observe that
the two-stage hybridization works less well than even the
standalone ALNS, by comparing ALNS-TS with ALNS/PF.
When ALNS and TS share a total number of iterations, the
standalone ALNS performs better than the two-stage hy-
bridization of them. This shows that ALNS has a higher
search efficiency than TS does for this problem.

Partial sequence dominance
Next we study the PSD heuristic. Exploratory experiments
have shown us that it is difficult to determine the length of
the partial sequence a priori. If it is too long, the good qual-
ity of partial sequences can be neglected and PSD becomes
useless; if it is too short, the setup time between the last or-
der of the previous partial sequence and the first order of the
following partial sequence may be too long so that the com-
pound solution wastes much time, because the setup time
between two partial sequences is not optimized by the al-
gorithm. We propose a dynamic strategy to determine the
length. It should be as short as possible as long as the in-
crease brought by the setup time between partial sequences
is smaller than the time saved by PSD. Let l be the number
of orders in the partial sequences as follows:

l ≥
savg − scuravg

scuravg − scomavg + dcuravg − dcomavg

(6)

where savg is the average setup of all the orders, scuravg and
scomavg are the average setup in the current solution and the
compound solution respectively, and dcuravg and dcomavg are the
average processing time in the current solution and the com-
pound solution respectively. In Eq. (6), the numerator is
the loss by the random setup time between two partial se-
quences. The denominator is the gain of one order by PSD.

First, to test the performance of the dynamic strategy, we
compare it with different static lengths. The result is shown

-3 1 5 9 13 17 21 25 29 33 37 41 45 49

4.34

4.41

4.48

4.55

4.62

4.69

S
o

lu
ti

o
n

 q
u

al
it

y
 (

%
)

Length of the partial sequence (static)

 Static length

 Dynamic length

Figure 1: Effect of different partial sequence lengths. The
solution quality refers to the average gap to the upper bounds
by Cesaret, Oğuz, and Salman (2012).

in Figure 1. While the dynamic length strategy does not
dominate on every instance, on average the length given by
Eq. (6) is better than any static lengths.

We then can test the performance of PSD by compar-
ing the algorithm without PSD (ALNS/TF) with ALNS/TPF.
According to Table 1, PSD does not show obvious improve-
ments when the instance is small. However, when the in-
stance grows in size, the improvement by PSD also grows
significantly. This is because more partial sequences can be
ignored in the long solution sequence. PSD also works bet-
ter when τ and R are larger. Because when τ is larger, the
time window is shorter, and whenR is larger, the overlap de-
gree of orders is smaller. If the time window is long and the
overlap degree is high, one order can exist in different par-
tial sequences in the current solution and the new solution
respectively. Therefore there can be many repetitive orders
in the compound solution, reducing its quality.

Fast Insertion Algorithm
The fast insertion algorithm contains two new ideas: the IPO
heuristic and the time slack strategy. We study each in turn.

IPO finds the best insertion for an order without look-
ahead, which would increase the complexity of the algo-
rithm substantially. When inserting an order with IPO, the
optimal no-lookahead insertion position is one that incurs
the least setup time. This is because the revenue and the pro-
cessing time of the order are fixed and the total scheduling
horizon is limited, and so the optimal insertion is the one that
inserts the order successfully (i.e., receives the revenue) as
well as maximizes the remaining scheduling space for fol-
lowing orders. IPO guarantees that if an order can be in-
serted, the increased setup time is minimal.

The algorithm without IPO (ALNS/TP (no IPO)) is com-
pared with ALNS/TPF in Table 1. IPO works significantly
better when τ is smaller, because when the time window is
longer, the number of possible insertion positions also gets
larger and IPO can compare these insertion positions. IPO
also works better when R is larger, because in this case, the
orders in the current solutions have similar time windows.
The candidate order to be inserted can neighbour more or-
ders in the solution, resulting in a larger number of possible
insertion positions. An extra sorting process is needed for
IPO, which increases the CPU time.

Second, to test the performance of the time slack strategy,
we compare it with the backward/forward time slack strat-

191

egy of Liu et al. (2017). Both the strategies have the same
time complexity O(n), but ours creates much more space in
the schedule by considering postponing all the possible or-
ders in the solution, while Liu et al.’s method only creates
limited space by moving two orders.

In Table 1, column ALNS/TP (Liu et al.), shows that our
time slack strategy uses less time and has higher solution
quality. The time slack strategy works better when τ and R
are smaller. When τ is smaller, the time window is longer
and the time slack strategy can make more use of the long
time window. When R is smaller, the overlap of orders is
larger, so the number of orders that can be postponed gets
larger. In this case, the time slack strategy works much better
than the simple strategy which moves only two orders.

To sum up, from the algorithmic analysis, we derive the
following conclusions: (1) the effectiveness of different tabu
types and randomness correlates with the completion ratio:
the insertion tabu and randomness work well when the com-
pletion ratio is low, while the removal tabu and randomness
work well when the completion ratio is high; (2) our tight
hybridization of ALNS and TS works better than the two-
stage hybridization; (3) the dynamic PSD length works bet-
ter than any static lengths, and PSD works better when the
instance grows in size, which proves that it helps to com-
bine parts of different solutions, when the solution sequence
gets long; (4) IPO contributes most to the solution quality,
but also consumes more time; and (5) the time slack strategy
works well in terms of solution quality and time complexity.

Comparison with State-of-the-Art Methods
In this section, our complete ALNS/TPF algorithm is com-
pared with state-of-the-art methods on two different do-
mains. We choose two representative problems, the agile
Earth observation satellite scheduling problem (AEOSS)
and the order acceptance and scheduling (OAS) problem.
Furthermore, we compare the proposed algorithm with IBM
ILOG CP Optimizer (CPO) (Laborie et al. 2018) on a re-
laxed OAS problem. The datasets used and the source code
of the algorithm are available at http://doi.org/10.4121/uuid:
1ad913e4-2518-44c3-b497-fb106cf84e05.

AEOSS Problem
We consider the AEOSS problem defined by Liu et
al. (2017). The transition time between two adjacent obser-
vations oi and oj is calculated by: t + |A(pi) − A(pj)|/v,
where t is constant time for stabilizing the satellite, func-
tion A calculates the angle of the satellite, and v is the satel-
lite transition velocity. The scheduling horizon is 24 hours,
which means there are multiple time windows for each ob-
servation order. The orders are generated according to a uni-
form random distribution over two geographical regions:
China and the whole world. For the Chinese area distribu-
tion mode, fifteen instances are designed and the number
of orders contained in these instances changes from 50 to
400 with an increment of 25. For the worldwide distribu-
tion mode, twelve instances are designed and the number of
orders contained in these instances changes from 50 to 600
with an increment of 50.

0 50 100 150 200 250 300 350 400 450
20

30

40

50

60

70

80

90

100
 ALNS/TPI quality

 ALNS quality

 ALNS/TPF quality

 ILS quality

 MIP quality

S
o

lu
ti

o
n

 q
u

a
li

ty
 (

%
)

10
0

10
1

10
2

10
3

C
P

U
 t

im
e
 (

s)

0 100 200 300 400 500 600
70

75

80

85

90

95

100

Number of orders

 ALNS/TPI time

 ALNS time

 ALNS/TPF time

 ILS time

 MIP time
10

-2

10
-1

10
0

10
1

10
2

10
3

S
o

lu
ti

o
n

 q
u

a
li

ty
 (

%
)

C
P

U
 t

im
e
 (

s)

0 30 60 90 120 150 180 210 240 270 300
55

60

65

70

75

80

85

90

95

S
o
lu

ti
o
n
 q

u
al

it
y
 (

%
)

CPU time (s)

 ALNS/TPF

 ILS

 ALNS/TPI

 ALNS

Figure 2: Comparison of algorithms on area distribution
(top) and worldwide (middle) and the anytime quality of dif-
ferent algorithms (bottom) for the AEOSS problem

We compare the proposed ALNS/TPF with our previous
algorithm called ALNS/TPI (He et al. 2018), the standard
state-of-the-art ALNS (Liu et al. 2017), the ILS algorithm
(Peng et al. 2018), and an MIP model (He et al. 2018). All al-
gorithms are on an Intel Core i5 3.20GHz CPU, 8GB mem-
ory, running Windows 7; only a single core is used. IBM
ILOG CPLEX version 12.8 is used for MIP solving. A time
limit of 3600s is set for MIP solving. The results for meta-
heuristics are the average of ten runs.

We compare the solution quality and the CPU time. The
solution quality is the percentage of the total revenue of
scheduled orders (i.e., the objective value) divided by the
total revenue of all the orders. In Figure 2 top (for Chi-
nese area) and middle (for worldwide), black solid lines
show the solution quality (left axis) and the blue dash lines
show the CPU time (right axis, log scale). The CPU time

192

refers to the time used by the MIP solver and the time corre-
sponding to 10,000 iterations by the meta-heuristics, show-
ing that the CPU time of the ALNS/TPF increases slowly
with the increasing number of orders. The solution qual-
ity is higher than that of ILS, ALNS/TPI and ALNS. As
expected, MIP can find optimal solutions for small-size in-
stances but performs badly when the instance size gets large.
For the three small instances with optimal solutions by MIP,
ALNS/TPF, ALNS/TPI and ILS also find the same optimal
solution. Among all the methods, the standard ALNS per-
forms the worst, consuming a long time to produce solu-
tions with the lowest quality. According to a paired t-test
between the quality of ALNS/TPF and ILS, the P-value is
1.08 × 10−5, indicating the improvement of the solution
quality by ALNS/TPF is significant. Finally, Figure 2 bot-
tom shows the anytime quality of different algorithms for
the instance with 600 tasks distributed worldwide (the MIP
solver found no feasible solution within the time limit).

OAS Problem
We also consider the OAS problem from Cesaret, Oğuz, and
Salman (2012). In this problem, the setup time between two
orders is sequence-dependent. The setup constraints are de-
fined as max{bj , pi + di} + sij ≤ pj . Each order has a
due time within in its time window: if an order oi ends
after its due time d̄i, it receives penalty ωiTi on its rev-
enue, where ωi is the penalty weight and Ti is the tardiness,
Ti = max{pi + di− d̄i, 0}. We use the same benchmark in-
stances as in the section with the initial algorithmic analysis
reported earlier.

The ALNS/TPF algorithm is compared with ILS (Silva,
Subramanian, and Pessoa 2018), TS (Cesaret, Oğuz, and
Salman 2012), GA, HH, and LOS (Nguyen 2016). The
MIP solver for OAS has been tested by Cesaret, Oğuz,
and Salman (2012). Our ALNS/TPF is run on Intel Core
i5 3.20GHz CPU with 8GB memory, using a single core.
Since we do not have the source code of other algorithms,
we compare our algorithm with the results published in the
references. Hence due to the different machines used, we do
not report detailed CPU time. On average, all the methods
have comparable performance in terms of CPU time. Ac-
cording to the data reported in the references, ILS uses most
time and LOS the least.

Table 3 reports the gaps to the upper bounds by Cesaret,
Oğuz, and Salman (2012). Regarding the gaps, TS, GA, HH
and LOS only reported rounded-down integer values. But
it is still obvious that ALNS/TPF produces the best solu-
tions on nearly all the instances. According to a paired t-
test between the quality of ALNS/TPF and ILS, the P-value
is 2.69 × 10−4. Therefore, the improvement by ALNS/TPF
is significant. Additionally, we observe that ALNS/TPF can
find much better solutions when τ and R are small.

Comparison with CP Optimizer
Finally, we compare ALNS/TPF with CPO, which is widely
used in scheduling problems and shown to be very effective
for this class of problems (Laborie et al. 2018). CPO has
a global constraint propagator for setup constraints. How-
ever, it does not support time-dependent constraints of the

Table 3: Results for the OAS problem, 100 orders
n=100 Gap(%)

τ R TS GA HH LOS ILS ALNS/TPF

0.10 0.10 2 2 3 2 0.95 0.53
0.30 2 2 3 2 0.74 0.54
0.50 1 1 1 1 0.37 0.07
0.70 0 0 0 0 0.04 0.00
0.90 0 0 0 0 0.01 0.00

0.30 0.10 3 3 6 2 1.40 0.88
0.30 3 2 5 3 1.38 1.16
0.50 2 2 4 2 1.17 0.96
0.70 2 1 2 1 0.44 0.15
0.90 1 0 1 0 0.25 0.01

0.50 0.10 4 4 8 4 2.26 1.83
0.30 4 4 7 3 2.32 2.11
0.50 4 4 7 3 2.40 2.33
0.70 3 2 5 2 1.61 1.20
0.90 2 1 3 1 1.16 0.77

0.70 0.10 5 5 9 4 3.13 2.40
0.30 7 5 9 5 3.86 3.85
0.50 6 6 10 5 4.25 4.39
0.70 7 6 9 5 6.17 5.04
0.90 8 6 9 5 6.60 5.40

0.90 0.10 9 7 11 6 7.02 5.47
0.30 15 10 14 9 11.83 8.71
0.50 16 12 16 11 14.06 11.07
0.70 16 12 16 11 12.75 11.16
0.90 16 12 15 11 13.23 11.23

Avg. 6 4 7 4 3.98 3.25

AEOSS problem and the ‘max’ term in the setup constraints
of the OAS problem. It is possible to build a constraint pro-
gramming model that reasons only locally on direct neigh-
bours of jobs. However, such a model turned out to be too
slow to be acceptable.

To compare ALNS/TPF against CPO with global con-
straints, we relax the setup constraint of the OAS problem as
pi+di+sij ≤ pj . Consequently, both algorithms may return
better, but infeasible solutions to the original problem. We
set a time limit of ten minutes for each instance. The aver-
age total revenue and runtime of ALNS/TPF are 1047.5 and
48.31s, while those of CPO are 1045.35 and 480.84s. Over-
all, ALNS/TPF outperforms CPO on 23 out of 25 instances
tested. It is clear that ALNS/TPF produces better solutions
using less time compared with CPO.

Conclusion
We studied an important class of over-subscribed schedul-
ing problems characterised by time-dependency and/or
sequence-dependency with time windows. We developed a
novel hybridization of adaptive large neighbourhood search
(ALNS) and tabu search (TS). We further introduced ran-
domized generic neighbourhood operators, a partial se-
quence dominance heuristic and a fast insertion strategy to
the ALNS-TS hybridization. Algorithmic analysis finds that:
(1) there exists a correlation between the completion ratio
and the tabu and randomness types: the insertion tabu and
randomness work well when the completion ratio is low,
while the removal tabu and randomness work well when the

193

completion ratio is high; (2) the partial sequence dominance
heuristic performs better when the problem instance grows
in size, indicating that it helps to combine parts of different
solutions, when the solution sequence gets long; (3) the fast
insertion strategy contributes most to the performance, but
also consumes the most time compared with other features.

Extensive empirical results on two domains demonstrated
that, compared with the state-of-the-art approaches, our
ALNS/TPF produces solutions with higher quality in less
time. Our work proves that tight ALNS and TS hybridization
is an efficient method for this class of scheduling problem.

Our next steps are to further evaluate the heuristics in this
work, and to understand the effect of ALNS and TS hy-
bridization and the new algorithmic features on other real-
world problem domains in this class.

Acknowledgments
This work was supported by the China Scholarship Council
(Grant No. 201703170269), and a China Hunan Postgradu-
ate Research Innovating Project (Grant No. CX2018B020).
We gratefully thank the ICAPS 2019 reviewers for their
valuable comments.

References
Augenstein, S.; Estanislao, A.; Guere, E.; and Blaes, S. 2016.
Optimal scheduling of a constellation of earth-imaging satel-
lites, for maximal data throughput and efficient human man-
agement. In Proc. of the 26th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2016), 345–352.
Bianchessi, N.; Cordeau, J.-F.; Desrosiers, J.; Laporte, G.; and
Raymond, V. 2007. A heuristic for the multi-satellite, multi-
orbit and multi-user management of Earth observation satel-
lites. European Journal of Operational Research 177(2):750–
762.
Cesaret, B.; Oğuz, C.; and Salman, F. S. 2012. A tabu search
algorithm for order acceptance and scheduling. Computers &
Operations Research 39(6):1197–1205.
Cordeau, J.-F., and Laporte, G. 2005. Maximizing the value of
an earth observation satellite orbit. Journal of the Operational
Research Society 56(8):962–968.
Cordeau, J.-F.; Laporte, G.; and Mercier, A. 2001. A uni-
fied tabu search heuristic for vehicle routing problems with
time windows. Journal of the Operational Research Society
52(8):928–936.
Demir, E.; Bektaş, T.; and Laporte, G. 2012. An adaptive large
neighborhood search heuristic for the pollution-routing prob-
lem. European Journal of Operational Research 223(2):346–
359.
Glover, F. 1986. Future paths for integer programming and
links to artificial intelligence. Computers & Operations Re-
search 13(5):533–549.
Gunawan, A.; Lau, H. C.; and Vansteenwegen, P. 2016. Ori-
enteering problem: A survey of recent variants, solution ap-
proaches and applications. European Journal of Operational
Research 255(2):315–332.
He, L.; De Weerdt, M.; Yorke-Smith, N.; Liu, X.; and Chen,
Y. 2018. Tabu-based large neighbourhood search for time-
dependent multi-orbit agile satellite scheduling. In Proc. of the

ICAPS’18 Scheduling and Planning Applications Workshop,
45–52.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for scheduling. Constraints 23(2):210–
250.
Liu, X.; Laporte, G.; Chen, Y.; and He, R. 2017. An adap-
tive large neighborhood search metaheuristic for agile satellite
scheduling with time-dependent transition time. Computers &
Operations Research 86:41–53.
Nguyen, S.; Zhang, M.; and Tan, K. C. 2015. A dispatching rule
based genetic algorithm for order acceptance and scheduling.
In Proceedings of the 16th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2015), 433–440. ACM.
Nguyen, S. 2016. A learning and optimizing system for or-
der acceptance and scheduling. The International Journal of
Advanced Manufacturing Technology 86(5-8):2021–2036.
Oğuz, C.; Salman, F. S.; Yalçın, Z. B.; et al. 2010. Order accep-
tance and scheduling decisions in make-to-order systems. In-
ternational Journal of Production Economics 125(1):200–211.
Peng, G.; Vansteenwegen, P.; Liu, X.; Xing, L.; and Kong, X.
2018. An iterated local search algorithm for agile earth obser-
vation satellite scheduling problem. In Proc. of the 15th Con-
ference on Space Operations (SpaceOps 2018), 2311.
Pisinger, D., and Ropke, S. 2007. A general heuristic for
vehicle routing problems. Computers & Operations Research
34(8):2403–2435.
Prins, C.; Prodhon, C.; Ruiz, A.; Soriano, P.; and Wolfler Calvo,
R. 2007. Solving the capacitated location-routing problem by a
cooperative lagrangean relaxation-granular tabu search heuris-
tic. Transportation Science 41(4):470–483.
Rogers, M. F.; Howe, A. E.; and Whitley, D. 2006. Look-
ing for shortcuts: Infeasible search analysis for oversubscribed
scheduling problems. In Proc. of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS 2006),
314–323.
Ropke, S., and Pisinger, D. 2006. An adaptive large neighbor-
hood search heuristic for the pickup and delivery problem with
time windows. Transportation Science 40(4):455–472.
Silva, Y. L. T.; Subramanian, A.; and Pessoa, A. A. 2018. Exact
and heuristic algorithms for order acceptance and scheduling
with sequence-dependent setup times. Computers & Opera-
tions Research 90:142–160.
Slotnick, S. A. 2011. Order acceptance and scheduling: A tax-
onomy and review. European Journal of Operational Research
212(1):1–11.
Thomas, C., and Schaus, P. 2018. Revisiting the self-adaptive
large neighborhood search. In Proc. of the 15th International
Conference on the Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research (CPAIOR 2018),
557–566.
Verbeeck, C.; Vansteenwegen, P.; and Aghezzaf, E.-H. 2017.
The time-dependent orienteering problem with time windows:
a fast ant colony system. Annals of Operations Research 254(1-
2):481–505.
Žulj, I.; Kramer, S.; and Schneider, M. 2018. A hybrid of adap-
tive large neighborhood search and tabu search for the order-
batching problem. European Journal of Operational Research
264(2):653–664.

194

