
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

On the Pathological Search Behavior of Distributed Greedy Best-First Search

Ryo Kuroiwa, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract

Although A* search can be efficiently parallelized using
methods such as Hash-Distributed A* (HDA*), distributed
parallelization of Greedy Best First Search (GBFS), a sub-
optimal search which often finds solutions much faster than
A*, has received little attention. We show that surprisingly,
HDGBFS, an adaptation of HDA* to GBFS, often performs
significantly worse than sequential GBFS. We analyze and
explain this performance degradation, and propose a novel
method for distributed parallelization of GBFS, which signif-
icantly outperforms HDGBFS.

1 Introduction
Greedy Best First Search (GBFS) (Doran and Michie 1966)
is a heuristic search algorithm which is widely used for
quickly finding solutions to difficult graph search problems.
GBFS is a best-first search strategy similar to A* (Hart,
Nilsson, and Raphael 1968), but unlike A*, which selects
nodes for expansion according to the evaluation function
f(n) = g(n)+h(n), where g(n) is the cost to reach n from
the start node and h(n) is an estimate of the cost to reach the
closest goal node from n, GBFS selects nodes for expansion
according to f(n) = h(n). Thus, GBFS relies entirely on
the heuristic estimate h(n), and although it often finds solu-
tions faster than A*, GBFS is a satisficing search algorithm
which may return suboptimal solutions. GBFS is widely
used for satisficing planning (Richter and Westphal 2010;
Xie, Müller, and Holte 2014; Asai and Fukunaga 2017).

Since best-first search strategies such as A* and GBFS
may require vast amounts of time and memory to solve
difficult problems, parallelization is necessary to efficiently
exploit available resources. In particular, parallelization of
best-first search across multiple machines is important be-
cause for many problems, the bottleneck for best-first search
is RAM – best-first search terminates with failure when the
available RAM is exhausted. By using the aggregate RAM
on multiple machines, a distributed parallel best-first search
can solve some problem instances which are not solvable on
a single machine.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For optimal (admissible) search, an effective method for
parallel distributed search is Hash-Distributed A* (HDA*)
(Kishimoto, Fukunaga, and Botea 2013), in which each pro-
cess executes A* with its own local OPEN/CLOSED lists,
and all expanded nodes are sent (assigned) to its unique
owner, according to a global hash function. HDA* has been
shown to scale effectively to over two thousand processes.

Previous work on non-admissible best-first search has fo-
cused on multi-core (single machine) parallelizations, in-
cluding the Weighted A* (Pohl 1970) variant of Parallel
Best-Nblock First (PBNF) (Burns et al. 2010), and an im-
plementation of K-Best First Search (KBFS) (Felner, Kraus,
and Korf 2003) on a multi-core machine (Vidal, Bordeaux,
and Hamadi 2010). To our knowledge, parallel GBFS vari-
ants which are suited for both multi-core and multi-machine
clusters have not previously been evaluated in-depth.

In this paper, we first evaluate Hash Distributed GBFS
(HDGBFS), a straightforward adaptation of HDA* to
GBFS, and show that it performs much worse than GBFS
on many instances. We show that unlike HDA*, which be-
haves similarly to A*, HDGBFS behaves very differently
from GBFS, searching many regions which are not ex-
plored at all by GBFS. We propose LG, a novel variant of
HDGBFS which seeks to avoid this performance degrada-
tion by forcing each processor to explore highly promising
paths locally instead of always sending nodes to their hash-
assigned owner. We show that LG significantly outperforms
HDGBFS and is competitive with and complementary to a
parallel greedy portfolio.

2 Experimental Analysis of HDGBFS
HDA* is a parallelization of A* which distributes work
among n processors according to a global hash function.
Each process i has local OPENi and CLOSEDi lists, and
asynchronously executes a cycle in which s, the lowest f -
value state in OPENi is expanded. Then, for every suc-
cessor s’ of s, H(s′), the global hash value of s′ is com-
puted, and s′ is sent to process j = H(s′) mod n and put in
OPENj . In order to guarantee optimality, when a process
i finds a solution, search continues until a termination pro-
tocol determines that there exists no state with the cost less
than that of i.

255

10−1 100 101 unsolved

search time in GBFS

10−1

100

101

102

unsolved

se
ar

ch
ti

m
e

in
P

ar
al

le
l

G
B

F
S 1/1

1/2

1/4

1/8

1/16

HD

LG

100 103 106 unsolved

#expansions in GBFS

100

103

106

unsolved

#
ex

p
an

si
o

n
s

in
P

ar
al

le
l

G
B

F
S 1x

10x

100x

1000x

HD

LG

Figure 1: Search time and #expansions in GBFS/hlmc vs.
HDGBFS/hlmc (HD) and LG/hlmc (LG). 5min, 128GB for
GBFS, 8GB/core for HD and LG.

Hash-based work distribution can be directly applied to
GBFS. In Hash Distributed GBFS (HDGBFS), process i se-
lects the minimal h-value state fromOPENi for expansion.
Unlike HDA*, HDGBFS does not guarantee optimality, so
it terminates immediately when a solution is found.

We evaluated the performance of HDGBFS by compar-
ing its performance with GBFS. As with standard HDA*,
we used the Zobrist hash function (Zobrist 1970) to assign
states to processors. We used a FIFO (First In First Out)
tie-breaking policy. All of our algorithms were implemented
using C++11 and OpenMPI 3.1.1. We used the MPI Bsend
(buffer size 1GB/process), MPI Iprob and MPI Recv func-
tions for communications. We used 20 benchmark domains
from the satisficing track of IPC-11 and IPC-14 (20 in-
stances/domain). Domains with conditional effects were ex-
cluded. For the domains with overlaps in IPC-11 and IPC-
14, the IPC-14 version was used.

We used the Landmark Count (LMC) heuristic (Hoff-
mann, Porteous, and Sebastia 2004). hlmc can be computed
quickly and allows a much faster node generation rate than
other heuristics such as hff (Hoffmann and Nebel 2001), so
HDGBFS with hlmc is a more interesting platform to eval-
uate parallel implementation issues than HDGBFS with a
slower heuristic like hff . Results for hff are qualitatively

100 103 106 unsolved

#expansions in GBFS

100

103

106

unsolved

#
ex

p
an

si
o

n
s

in
p

ar
al

le
l

se
ar

ch

1x

10x

100x

1000x

HD

LG

Figure 2: #expansions in GBFS/hff vs. HDGBFS/hff (HD)
and LG/hff (LG). 5min, 128GB for GBFS, 8GB/core for HD
and LG.

similar to those of hlmc ; we show node expansion compari-
son for hff in Fig. 2.

We ran HDGBFS on a machine with 16 cores (Xeon E5-
2650 v2 2.60 GHz server with 128GB RAM), and compared
vs. GBFS on the same machine. We use a wall-clock time
limit of 5 min and a 128GB total RAM usage limit for both
GBFS and HDGBFS, i.e., we compare GBFS with 128GB
vs. HDGBFS with 8GB RAM/core (128GB total).

Fig. 1 compares HDGBFS vs. GBFS with respect to
search time and the number of nodes expanded. Each blue
point represents 1 instance. Instances which are unsolved
by a method are shown with search time and the number of
nodes expanded as “unsolved”. Instances solved within 0.1
seconds are shown with 0.1 seconds. Although HDGBFS
achieves speedups vs. GBFS on some instances, there are
many instances where HDGBFS is much slower than GBFS,
and in most cases, HDGBFS expands many more nodes
than GBFS. In particular, note that there are many instances
which are solved very quickly (1-10 seconds, < 103 expan-
sions) by GBFS on which HDGBFS either fails or requires
dramatically more search effort.

Table 1 evaluates parallel efficiency per domain. Spe-
cific domains where HDGBFS performed poorly include
nomystery, parcprinter, maintenance, openstacks,
thoughtful, and visitall. In maintenance, all 10 instances
solved by GBFS (and not by HDGBFS) were solved by
GBFS in <2 seconds and 150 expansions. On the other
hand, HDGBFS achieves super-linear (more than 16 times)
speedup and negative search overhead on parcpritner,
pegsol, and transport. These results suggest that HDGBFS
behaves very differently from GBFS on some instances.

In total, HDGBFS failed to solve 22/272 instances solved
by GBFS, and has lower overall coverage than GBFS, even
if we count the 18 instances solved by HDGBFS but not by
GBFS. Although HDGBFS achieves speedup on some in-
stances, there are many cases of severe performance degra-
dation on many instances which are easily solved by GBFS.

256

HDGBFS LE LG
base + - spd so + - spd so + - spd so

elevators 7 1 0 1.76 3.08 1 0 8.32 0.75 2 0 10.14 0.77
nomystery 13 1 2 0.00 6553.98 2 2 0.07 103.01 4 0 1.22 0.09
parcprinter 14 2 4 20.56 -0.54 1 0 44.66 -0.66 0 0 15.93 -0.39
pegsol 20 0 0 38.70 -0.81 0 0 92.14 -0.95 0 0 45.66 -0.90
scanalyzer 20 0 0 0.37 0.06 0 0 0.28 -0.28 0 0 0.26 -0.12
sokoban 9 5 0 1.91 4.47 5 0 3.73 1.27 5 0 2.18 3.28
tidybot 19 0 0 5.30 1.73 0 1 7.26 1.17 0 0 9.13 0.77
woodworking 4 5 0 10.45 0.19 3 0 10.61 0.14 4 0 16.51 -0.29
barman 20 0 0 13.43 -0.07 0 0 12.51 -0.07 0 0 6.41 0.77
floortile 1 1 0 1.42 2.64 1 0 2.03 1.41 1 0 1.56 2.04
ged 20 0 0 2.83 0.62 0 0 3.17 0.54 0 0 2.23 1.19
hiking 20 0 0 7.35 0.27 0 0 2.97 2.24 0 0 3.02 2.09
maintenance 14 0 10 0.82 12.99 1 7 0.79 10.00 1 0 0.40 10.25
openstacks 20 0 3 3.90 0.78 0 0 3.87 1.09 0 0 5.68 0.00
tetris 20 0 0 12.18 -0.32 0 0 11.87 -0.32 0 0 12.01 -0.28
thoughtful 15 3 3 5.28 0.29 3 1 3.06 0.32 2 4 4.98 0.31
transport 16 0 0 20.42 -0.49 0 0 16.77 -0.49 0 0 18.30 -0.50
visitall 20 0 0 0.09 103.50 0 0 0.86 9.15 0 0 1.14 6.93
total 272 18 22 - - 17 11 - - 19 4 - -

Table 1: Coverage, speedup, and search overhead of
parallel GBFS per domain. Speedup (spd) is defined
as time(GBFS)/time(Parallel GBFS). Search Over-
head (so) is defined as (#expansions(Parallel GBFS)-
#expansions(GBFS))/#expansions(GBFS). spd/so in each
domain is computed from the sum of time/#expansions
on instances solved by both GBFS and Parallel GBFS.
Coverage is shown as follows: ‘base’ is the number of
instances solved by GBFS, ‘+’ is the number of instances
solved by Parallel GBFS but not solved by GBFS, and ‘-’ is
the number of instances solved by GBFS but not solved by
Parallel GBFS.

2.1 Communications Overhead and HDGBFS
One factor responsible for the poor performance of
HDGBFS is communications overhead. HDGBFS sends all
generated nodes to their owner, where they are evaluated and
then placed in the owner’s OPEN list. If node evaluation is
relatively expensive, nodes may be stuck in the owner’s re-
ceive buffer for a long time before being evaluated, or the
receive buffer may overflow. In the openstacks domain
(large # of successors/node), HDGBFS crashed on several
instances due to overflowing the 1GB MPI Bsend buffer.

To address this issue, we implemented LE (Local Eval-
uation), which evaluates nodes at the processor where they
are generated, rather than at the receiver (owner) node as in
HDGBFS. Each process avoids unnecessary evaluation by
performing duplicate detection using its own CLOSED list
before the evaluation. Although this may seem like a minor
implementation detail, in some domains such as visitall,
shifting the cost of evaluation to the generating processor
prevents the bottleneck described above. This significantly
improves performance on parcprinter, openstacks, and
visitall as shown in Table 1. However, overall, LE still per-
forms poorly on some domains compared to GBFS.

We also tried other methods for improving communica-
tions overhead, including packing multiple states per mes-
sage (Kishimoto, Fukunaga, and Botea 2013) and abstract
Zobrist hashing (Jinnai and Fukunaga 2017), but failed to
get significant overall improvements.

To evaluate the extent to which communications could be
responsible for performance degradation in HDGBFS, we
consider an ideal model which eliminates all communica-
tions overhead related issues. KGBFS is a deterministic, se-
quential adaptation of k-best first search (KBFS) (Felner,
Kraus, and Korf 2003) to GBFS. At each iteration, KGBFS

removes k nodes with the minimal h-value from OPEN, and
inserts their successors into OPEN.

Under the 3 following conditions, HDGBFS with n pro-
cesses expands states in the same order as KGBFS with
k = n. (1) All processes are synchronized so that they all
perform each local expansion simultaneously. (2) The hash
function H used by HDGBFS is ideal, such that at each ex-
pansion step, the node with the (global) i-th smallest h-value
is in OPENi. (3) Communications are instantaneous.

The expansions are synchronized across all processors
(assumption 1), and at each step, the node with the global i-
th smallest h-value is expanded by the i-th process (assump-
tion 2), and their successors are instantaneously sent to their
owner processes so that they are available for expansion in
the next step (assumption 3). Thus, although the OPEN list is
distributed, the global behavior of this algorithm is identical
to that of KGBFS with k = n

We evaluated KGBFS with k = 16, and there were 3 in-
stances in thoughtful, 1 instance in maintenance, and 1
instance in nomystery which were solved by GBFS within
1 second with #expansions < 100 (the nomystery main-
tenance instances), and #expansions < 1000 (thoughtful),
but were not solved by KGBFS within a 5 minute time limit
– even with an idealized communications model, KGBFS
often performs much worse than GBFS.

Thus, we have shown that although communications re-
lated overheads are partially responsible for the poor per-
formance of HDGBFS, there appears to be a deeper issue
responsible for the poor performance of HDGBFS.

3 GBFS vs. HDGBFS Search Behavior
As shown in the previous section, there are some domains
where HDGBFS expands 10 - 10000 times as many nodes
as GBFS, resulting in severe performance degradation. Al-
though communications overhead is partially related, it does
not fully explain why the problem occurs.

In HDA*, three causes of search overhead have been iden-
tified (Jinnai and Fukunaga 2017): 1) Band Effect: The ex-
pansion order of HDA* differs from that of A* due to f -
value imbalance among processors; 2) Burst Effect: HDA*
expands states with high f -value because OPEN lists are
empty at the beginning of the search; and 3) Node reex-
pansions. In HDGBFS, h-value imbalance like Band Ef-
fect and expansion of states with high h-value like Burst
Effect are possible. Node reexpansion is irrelevant because
HDGBFS does not reexpand states. A* with a consistent
heuristic never expands any state with f > f∗, but in HDA*,
the band and burst effects sometimes increase expansion
of states with f = f∗ and cause expansion of states with
f > f∗. However, the burst effect is a brief, temporary phe-
nomenon (Jinnai and Fukunaga 2017) and cannot explain
very large search overhead on difficult problems.

To test whether the band effect can be observed in
HDGBFS, we plotted the node expansion orders of GBFS
vs. HDGBFS for barman-p1-11-4-15 and maintenance-
1-3-060-180-5-001 in Fig. 3.

In the case of barman-p1-11-4-15, where HDGBFS
was successful (speedup=13.43, so=-0.07), the expansion

257

0 5000 10000

0

2500

5000

7500

10000

G
B

F
S

ex
p

an
si

o
n

or
d

er

barman-p1-11-4-15

y = x

0 5000 10000
HDGBFS expansion order

0

2500

5000

7500

10000

G
B

F
S

ex
p

an
si

o
n

or
d

er

maintenance-1-3-060-180-5-001

y = x

Figure 3: GBFS/hlmc with 10000 expansion limit (but
search was continued after a goal was found) vs.
HDGBFS/hlmc (5min, 4 processes) expansion order. Nodes
expanded by HDGBFS but not expanded by GBFS after
10000 expansions are plotted at y = 10000.

orders of HDGBFS and GBFS are similar, and something re-
sembling a band effect could be observed. On the other hand,
on maintenance-1-3-060-180-5-001, where HDGBFS
fails (not solved after 5 min.), most of the points are at
y=10000, i.e., HDGBFS ends up searching an entirely dif-
ferent region of the search space than GBFS.

Thus, the previously identified sources of search overhead
in HDA* are not sufficient to explain the large search over-
head observed for HDGBFS in cases such as maintenance-
1-3-060-180-5-001 – another explanation based on the
search behavior of GBFS is necessary.

We analyzed part of the maintenance-1-3-060-180-5-
001 search space. GBFS finds the goal after 40 expansions –
at every step, the h-value of the best successor is an improve-
ment over the parent, and choosing the lowest h-value with
FIFO tie-breaking leads directly to the goal, so the search
simply follows a straight path from the start state to the goal.
The first 151 states expanded by HDGBFS (4 processes) is
shown in Fig. 3. Unlike GBFS, HDGBFS explores multiple
regions of the space in parallel, and although HDGBFS ini-
tially follows a straight path, after the 75th node expansion,
the search explodes. The search space continues to expand
after #152 (not shown due to space). Most of the nodes af-
ter #100 have the same h-value of 1, i.e., HDGBFS enters a

Figure 4: The first 151 nodes expanded by HDGBFS (4
processes) on maintenance-1-3-060-180-5-001. Node
IDs=expansion order, edges represent parent-successors.

plateau region. Thus, HDGBFS clearly searches the search
space in a different way than GBFS, and causing HDGBFS
to fail to solve a very easy problem within the 5-min limit.

Since HDGBFS and GBFS frequently explore entirely
different regions of the search space, analysis of HDGBFS
search overhead based on expansion order, which was an ef-
fective tool for HDA* (Jinnai and Fukunaga 2017), is too
coarse-grained – we need a different tool for quantitatively
comparing the search behaviors of parallel GBFS.

3.1 Benches and HDGBFS/KGBFS
Next, we theoretically and empirically investigate the cause
of this search overhead by applying the recently proposed
notions of high-water marks and benches (Wilt and Ruml
2014; Heusner, Keller, and Helmert 2017). Definitions and
properties of the high-water marks and benches are from
(Heusner, Keller, and Helmert 2017).

A state space S = 〈sI , S∗, succ, cost〉 is defined by an
initial state sI , a set of goal states S∗, a successor func-
tion succ, and a cost function cost(s, s′), s′ ∈ succ(s).
For state space S, S is the minimal set of states which
satisfy sI ∈ S, S∗ ⊆ S, succ(s) ⊆ S (∀s ∈ S). We
call ρ = 〈s0, ...sn〉, a path from s0 to sn when si ∈
succ(si−1) (∀i = 1, ..., n). We represent the set of so-
lutions from s, i.e. {〈s0, ..., sn〉|si ∈ succ(si−1) (∀i =
1, ..., n), s0 = s, sn ∈ S∗} as P (s). The cost of path ρ,
cost(ρ) =

∑n−1
i=0 cost(si, si+1). A state space topology

〈S, h〉 is a tuple consisting of a state space and a heuristic
function h : S → R+

0 , where h(s), the heuristic value of
state s is an estimate of the cost to reach a goal state from s.

The high-water mark of a state space topology is defined
as follows:

Definition 1 Let 〈S, h〉 be a state space topology, and let
s ∈ S be a state. The high-water mark of s is defined as

258

hwh(s) :=

{
minρ∈P (s)(maxs′∈ρ h(s

′)) if P (s) 6= ∅
∞ otherwise

The high water-mark of a set of states S′ ⊆ S is

hwh(S
′) := min

s∈S′
hwh(s)

A high-water mark bench is defined as follows:

Definition 2 Let 〈S, h〉 be a state space topology with set of
states S, and let S′ ⊆ S. The high-water mark bench Bh(S′)
of S′ is a 3-tuple 〈I,B,E〉 with B ⊆ S, I ⊆ B, and E ⊆
B. Bh(S′) is defined as follows: if S′ contains a goal state,
then Bh(S′) = 〈∅, ∅, ∅〉.

Otherwise, let all states s ∈ S with h(s) ≤
hwh(S

′), hwh(s) ≥ hwh(S
′), and s /∈ S∗ be the bench

state candidate set, and define the bench states B as the
set of all states that can be reached from some state in S′
on some path that only includes states from the candidate
set; the set of bench entry states as I = S′ ∩ B; and the
set of bench exit states as E = {s ∈ B|hwh(succ(s)) <
hwh(S

′) or succ(s)∩S∗ 6= ∅}. The high-water mark of the
bench states B of a bench Bh is abbreviated to hwh(Bh),
and s ∈ Bh means s ∈ B(Bh).

For brevity, we use “bench” to mean a high-water mark
bench.

After GBFS expands a bench exit state, no more states in
that bench will be expanded. GBFS first explores Bh({sI}).
After expanding bench exit state s, GBFS continues to ex-
pand only the states in Bh(succ(s)), until it exits that bench.
This is repeated until a goal is found. Thus, GBFS explores
1 bench at a time until a goal state is found. A bench path is
the sequence of benches explored by GBFS from Bh({sI})
to a goal.

When there are multiple paths to goals (e.g., in domains
with symmetry), it is possible for a bench to have multiple
bench exit states leading to different benches, and hence,
there may be multiple bench paths from Bh({sI}) to goals.
However, from a bench b, sequential GBFS explores only the
first successor of b, according to the tie-breaking strategy, so
only 1 bench path is explored. Due to this property, sequen-
tial GBFS in effect prunes large regions of some symmetric
search spaces.

We extend and apply the notion of benches to analyze the
behavior of KGBFS as an idealized model for HDGBFS.
We first extend the notion of a bench. While GBFS ex-
plores bench Bh, it will never expand a state s with h(s) >
hwh(Bh), because while exploring Bh, there must be at least
1 state s′ in OPEN such that h(s′) ≤ hwh(Bh). On the other
hand, KGBFS simultaneously expands k states, so it is pos-
sible that it expands a state s with h(s) > hwh(Bh). Thus,
we relax the definition of bench state candidate set in Defi-
nition 2 to include states s s.t. h(s) > hwh(Bh).

When KGBFS expands s ∈ Bh, and thereafter expands
no more states in Bh, we say that KGBFS exited Bh by ex-
panding s. When KGBFS expands s ∈ Bh but does not exit
Bh, we say that KGBFS is searching Bh.

h=6

h=5

h=4

h=3

h=2

h=1

h=0

B

H

R

M

J

E

I

T

G

L

S

F

O

U

K

P

V W YX

A

Q

C D

N

Figure 5: Example state space topology and bench transi-
tion system. States which belong to the same bench are sur-
rounded by a color frame. The height of each state indicates
its h-value. sI = A, and V,W,X, Y ∈ S∗. Double circles
indicate bench exit states or goal states.

Unlike GBFS, KGBFS expands multiple states simulta-
neously, so it is possible to search multiple benches simul-
taneously. The notion of a crater is proposed with respect to
a bench, a set of states with a large high-water mark but low
h-value, and it is known that when GBFS enters a crater,
it must expand all states in the crater before expanding a
bench exit state (Heusner, Keller, and Helmert 2017). When
KGBFS searches multiple benches simultaneously, it is pos-
sible that it searches multiple craters before a bench exit state
is expanded.

For example in Fig. 3.1, GBFS expands 5 states in the
order 〈A,B,E,Q, V 〉, so the bench path is 〈Bh({A}),
Bh({B,C,D}), Bh({E}), Bh({Q})〉 (assuming a tie-
breaking policy where nodes on the left side of the figure
have higher priority). In contrast, KGBFS with k = 2 ex-
pands 15 states in the order 〈A, B, C, G, H, L, M, S, T,
F, I, R, N, W 〉, and Bh({A}), Bh({B,C,D}), Bh({E}),
Bh({G,H}), Bh({R}), Bh({N}). Thus, the search over-
head of KGBFSk=2 is 1.8, due to searching Bh({G,H}).
KGBFSk=2 must expand both craters in this bench and
never expands E, although E is only two states away from
a goal, V . With k = 3, KGBFSk=3 expands 2 more
benches, Bh({J}), which has 2 crater states, and Bh({P})
because KGBFSk=3 expands 3 bench exit states B,C,D si-
multaneously. Thus, since KGBFS expand more states si-
multaneously as k increases, it sometimes expands multi-
ple bench exit states and searches multiple benches simul-
taneously. Compared with GBFS, which searches only 1
bench path, KGBFS searches multiple bench paths, such as
〈Bh({G,H}),Bh({N})〉 and 〈Bh({J}),Bh({P})〉 in our
example. This is often very wasteful, except in cases when
KGBFS gets lucky and finds a shorter bench path than the
one found by GBFS. In addition, if an expanded bench has
many large craters with low h-value, such as Bh({G,H}) in
our example, KGBFS must expand many states before exit-

259

ing the bench. In other words, when some of the processes
in HDGBFS find such “difficult benches”, it is possible that
due to hash-based distribution of states in such benches to
all processes, all processes begin to search these benches,
ignoring the “easy benches” which quickly lead to a solu-
tion. Since expanding many bench exit states increases the
risk of searching “difficult benches”, KGBFS with large k
and HDGBFS with many processes are prone to incur large
search overheads.

Note that searching multiple benches sometimes results
in a reduction in expansions. Suppose that in Fig.3.1, we
add an edge directly connecting B a goal V and GBFS and
KGBFS search this search space with a tie-breaking policy
where nodes on the right side of the figure have higher prior-
ity. While GBFS expands 8 states, 〈A,D, J,O,U,K, P, Y 〉,
KGBFSk=3 expands 5 states, 〈A,D,C,B, V 〉. Cases like
this possibly account for the super-linear speedup of
HDGBFS in Table 1.

Experimental Verification We experimentally analyzed
the benches explored by these algorithms. Because of the
resource requirements for state space analysis, we selected
instances used for this experiment as follows: From the set
of all instances from the IPC-11 and IPC-14 optimal tracks
where GBFS expanded over 10 states, we chose 16 instances
for which S could be constructed within 5 minutes using
GBFS, and the number of states in S ≤ 10000 (same in-
stances listed in Table 2). This experiment uses the path-
independent hff heuristic since the hlmc heuristic value is
path-dependent, making the analysis of S difficult.

For each instance, we first ran GBFS, but instead of stop-
ping when a solution was found, we let GBFS run until the
OPEN list was empty, recording all nodes, edges, and h-
values in the state space S reachable by GBFS from the
start state. From S, we computed Bh({sI}), as well as all
benches induced by bench exit states s and Bh(succ(s)),
i.e., we computed the bench transition graph for S.

Then, we ran GBFS and KGBFS (for k=4, 16), and
HDGBFS (4, 16 processes) on these instances. We used S
and the bench transition graph to identify the bench associ-
ated with each state visited. Since HDGBFS behaves non-
deterministically due to its distributed nature, multi-process
implementation, we took the average of 3 runs in order to
stabilize the measurements.

The results are shown in Fig. 3.1. For KGBFS, on many
instances, as k increases, both the number of expansions as
well as the number of benches explored increases, consis-
tent with our analysis. HDGBFS also displays the same ten-
dency – as the number of processes increases, both the num-
ber of benches explored as well as nodes expanded tends
to increase. These results suggest that the severe perfor-
mance degradation of HDGBFS relative to GBFS that we
saw in Sec. 2 can be explained by the fundamental differ-
ence in bench exploration behavior of GBFS vs. HDGBFS.
Whereas GBFS is guaranteed to explore 1 bench at a time,
making progress as it transitions from one bench to another,
HDGBFS explores many benches simultaneously, resulting
in a significant amount of search overhead.

1 4 16

101

#
b

en
ch

es

KGBFS

1 4 16

101

HDGBFS

1 4 16
k

102

103

#
ex

p
an

si
o

n
s

1 4 16
#processes

102

103

Figure 6: The number of expanded benches and nodes in
KGBFS and HDGBFS (#processes=1 is GBFS). Each line
represents 1 instance (color=domain).

4 Improved, Distributed GBFS
So far, we have shown that hash-distributed parallelization
of GBFS can result in massive search overhead and slow-
down compared to GBFS. Our analysis in the previous sec-
tion showed that HDGBFS often fails to focus sufficiently
greedily on promising areas (c.f., the maintenance exam-
ple above), and ends up searching a much broader subset of
the search space (i.e., more benches) than GBFS.

We now propose LG (Locally Greedy HDGBFS), which
attempts to directly address this issue. In LG (Algorithm 1),
while OPEN and CLOSED are used similarly to the OPEN
and CLOSED lists in basic HDGBFS, each process has sl,
a “locally greedy state” which is used in order to force each
processor to locally explore highly promising paths. sl has a
higher priority than OPEN – sl is expanded before the best
node in OPEN if not NULL. As with LE (Sec. 2.1), LG eval-
uates nodes at the processor where they are generated. When
a processor generates a node s with h-value lower than the
lowest h-value of sli, s is assigned to sli. This causes nodes
which would be immediately expanded next by sequential
GBFS (highest priority according to h and tie-breaking pol-
icy) to be expanded next instead of sent to its hash-assigned
owner processor, and causes LG to greedily explore the path
locally without being distracted by search regions received
from other processors.

4.1 Experimental Evaluation
We compared LG with HDGBFS and GBFS, using the same
experimental setup as in Sec. 2. Fig. 1 compares parallel
GBFS vs. GBFS with respect to search time and the num-
ber of nodes expanded. Each colored point represents 1 in-
stance (blue=HDGBFS, tan=LG), and the x-axis represents
search time and #expansions for GBFS, allowing a 3-way
comparison of LG vs HDGBFS vs GBFS. Instances solved
by either GBFS or LG but not solved by the other are plotted

260

Algorithm 1 LG
1: for i← 1, ..., n do
2: hbest

i ←∞; sli ← NULL;OPENi, CLOSEDi ← ∅;

3: slH(sI) mod n ← {sI}; h
best
H(sI) mod n ← h(sI)

4: In parallel, on each process i execute 5-23.
5: loop
6: OPENi ← OPENi ∪ {s|s ∈ Received nodes \ CLOSEDi}
7: if sli 6= NULL orOPENi 6= ∅ then
8: if sli 6= NULL then
9: s← sli; sli ← NULL
10: else
11: s← argmins∈OPENi

h(s);OPENi ← OPENi \ {s}

12: if s ∈ S∗ then return solution path

13: if s 6∈ CLOSEDi then
14: CLOSEDi ← CLOSEDi ∪ {s}
15: cbest ← argminc∈succ(s)\CLOSEDi

h(c)

16: for c ∈ succ(s) \ CLOSEDi do
17: if c = cbest ∧ h(c) < hbest

i then
18: sli ← c; hbest

i ← h(c);
19: else if i = H(c) mod n then
20: OPENi ← OPENi ∪ {c}
21: else
22: Add c to the send buffer toH(c) mod n

23: Send nodes

GBFS HDGBFS LG
#e. #b. #e. #b. #e. #b.

nomystery-p01 16.00 10.00 243.33 39.67 151.00 28.33
nomystery-p11 37.00 10.00 273.00 22.00 224.00 21.67
nomystery-p12 1604.00 11.00 2224.67 29.67 1774.33 27.67
nomystery-p13 17.00 14.00 3028.00 21.33 299.33 30.67
parcprinter-p01 29.00 12.00 203.33 36.67 149.00 34.00
parcprinter-p02 39.00 11.00 126.67 41.33 148.00 35.00
parcprinter-p03 54.00 10.00 310.67 60.33 178.67 43.67
sokoban-p01 216.00 4.00 494.00 4.67 530.67 5.00
sokoban-p03 2059.00 11.00 4518.00 19.00 3892.67 21.00
sokoban-p12 432.00 3.00 3024.00 3.00 3053.67 3.00
hiking-ptesting-1-2-3 25.00 6.00 301.00 16.33 251.00 16.67
hiking-ptesting-1-2-4 250.00 9.00 1274.67 23.67 621.67 18.00
maintenance-1-3-010-010-2-001 57.00 4.00 133.33 17.67 95.67 11.33
maintenance-1-3-010-010-2-002 36.00 5.00 147.33 27.67 83.67 17.67
tetris-p02-4 20.00 5.00 101.67 18.00 87.67 22.33

Table 2: # of expanded nodes (#e.) and benches explored
(#b.) by GBFS/hff , HDGBFS/hff , and LG/hff on a set of
IPC optimal-track instances. This experiment uses the path-
independent hff heuristic since the hlmc heuristic value is
path-dependent.

as “unsolved”. Table 1 shows per-domain results for LG vs.
HDGBFS and LE.

In contrast to HDGBFS, for search time almost all of the
points for LG are below the 1/1 line, and for #expansions,
the LG points tend to be much closer to the 1× line than
the HDGBFS points, indicating that LG successfully signif-
icantly reduces the search overhead compared to HDGBFS.
Overall, LG coverage on the test instances is 287 (vs. 268
for HDGBFS and 272 for GBFS).

We re-emphasize that sequential GBFS uses 128GB RAM
with a single core, while HDGBFS and LG use 8GB/core
(total 128GB), so it is not surprising that with a sufficiently
long time limit, sequential GBFS has a higher coverage
than the parallel variants, as there is a tradeoff between
RAM/core and total expansion rate across cores when us-
ing a single multicore machine. On the other hand, there are
some instances such as in the thoughtful domain which are

103 105 107

#expansions in GBFS

0.00

0.25

0.50

0.75

1.00

sl
ra

ti
o

Figure 7: #expansions in GBFS/hlmc vs. the fraction of ex-
pansions from sl in LG/hlmc .

solved very quickly by GBFS but not solved by LG which
can not be explained by RAM fragmentation – improve-
ments on such instances is future work.

To compare the search behavior of LG vs. HDGBFS, Ta-
ble 2 shows the number of benches explored by HDGBFS
and LG (on average of 3 runs). LG tends to search fewer
benches than HDGBFS, suggesting that these two parallel
variants cover the search spaces in a different manner, and
that overall, the LG behaves more similarly to GBFS than
HDGBFS.

Next, we measure how often LG expands “locally greedy”
nodes from its sl, essentially behaving (locally) like GBFS.
In Fig. 7, the x-axis represents the #expansions by GBFS,
and the y-axis is the fraction of expansions from sl. Each
point represents a problem instance. When #expansions in
GBFS is small, LG tends to have high y-values, and when
#expansions in GBFS is large, the y-values for LG are very
close to 0. Thus, sl is used most frequently in instances
which are solved quickly by GBFS. Recall from Sec. 2
that HDGBFS often incurs massive search overhead in such
“GBFS-easy” problems, sometimes failing to solve the in-
stances. This shows that for such problems, LG significantly
improves upon HDGBFS by using sl to aggressively follow
a greedy path to a better h-value state on the local processor.

4.2 Comparison with a Parallel Portfolio
We have shown that LG succeeds in regaining some of
the greedy behavior of GBFS and significantly outperforms
HDGBFS. An alternative approach to utilizing many proces-
sors for search is a parallel portfolio, in which each proces-
sor independently performs a greedy search. PGBFS is a par-
allel portfolio which executes GBFS with the default (FIFO)
tie-breaking on processor 1, LIFO tie-breaking on processor
2, and randomized tie-breaking with different random seeds
on each of the other processors.

Fig. 8 compares search time for PGBFS on an Amazon
EC2 r4.16xlarge instance (64 cores, 488 GiB RAM) and
LG 64-cores on Amazon EC2 r4.xlarge instances (4 cores,
30.5GiB RAM × 16 machines). 16-core results are quali-

261

10−1 100 101 102 unsolved

search time in GBFS

10−1

100

101

102

unsolved
se

ar
ch

ti
m

e
in

p
ar

al
le

l
se

ar
ch 1/1

1/2

1/4

1/8

1/16

1/32

1/64

PGBFS

LG

10−1 100 101 102 unsolved

search time in PGBFS

10−1

100

101

102

unsolved

se
ar

ch
ti

m
e

in
L

G

1/1

1/2

1/4

1/8

1/16

1/32

1/64

Figure 8: Search time: GBFS/hlmc vs. PGBFS /hlmc (G) vs.
LG/hlmc (LG) on 64 processors (4 cores, 30.5GiB RAM ×
16 machines,), 30min. The baseline GBFS in the top figure
used a large machine with 488GiB RAM.

tatively similar (omitted due to space). The top figure com-
pares runtime vs. runtime by a baseline single-process GBFS
on the same machine as PGBFS . Many of the PGBFS points
are close to the 1/1 line – these correspond to the instances
which are solved by the portfolio component using FIFO tie-
breaking.

The bottom figure compares PGBFS and LG runtimes.
Overall, LG is competitive with PGBFS , and they are com-
plementary – LG performed well on instances where PGBFS
performed poorly, and vice versa.

Note that PGBFS fails to solve 3 instances due to RAM
exhaustion1. In several instances, LG exhausted RAM with
16 cores (64GB total), but successfully solved the instance
with 64 cores (488GiB total), indicating that LG can suc-
cessfully exploit the aggregate RAM of the system.

We have evaluated portfolio variants which attempt to
partition the search near the root node as well as those
which perform hash-based duplicate detection, but none
have achieved better speedups than PGBFS .

This shows that HDGBFS-based approaches are comple-

1These instances were solved by the baseline single-process
(488GiB of RAM) GBFS with FIFO tie-breaking, but PGBFS

(which includes a GBFS+FIFO tie-breaking component) fails be-
cause each process in the portfolio is only allocated 7.625 GiB so
the FIFO component exhausts RAM before solving the instance.

mentary to a parallel greedy portfolio approach. Thus, a
promising direction for future work may be large-scale port-
folios which allocate some processors to HDGBFS-based
distributed parallel approaches such as LG, and other pro-
cessors to independent greedy searches as in PGBFS . Com-
parison with portfolios that exploit multiple heuristics and
multiple search strategies, as well as the use of HDGBFS
variants as components of large-scale portfolios are direc-
tions for future work.

5 Conclusion

This paper showed that hash-based work distribution, which
has been shown to be quite effective for parallelizing A* be-
cause of its simplicity, load balancing, and duplicate detec-
tion, can result in disastrous performance degradation when
straightforwardly applied to GBFS, a standard algorithm for
satisficing search.

We investigated the search overhead of HDGBFS and
showed that unlike GBFS, which explores a sequence of
benches (Heusner, Keller, and Helmert 2017), HDGBFS ex-
plores many benches simultaneously. Unlike HDA*, which
basically behaves similarly to A*, HDGBFS behaves very
differently from GBFS, so unlike parallelization of A*,
where the main issues were efficient duplicate detection and
reduction of communication and synchronization overheads,
our analysis shows that successful parallelization of GBFS
poses a nontrivial algorithmic challenge.

We proposed LG, which seeks to address the search over-
head of HDGBFS by forcing each processor to pursue highly
promising local paths locally rather than sending all nodes to
their hash-based owner process. We showed that LG signif-
icantly outperforms HDGBFS, and is competitive with and
complementary to a parallel portfolio consisting of indepen-
dent GBFS runs with different tie-breaking policies, so LG
represents a promising step towards efficient, distributed,
satisficing search. However, there is no theoretical guaran-
tee of performance degradation of LG, and LG actually fails
to solve some instances solved by GBFS. Investigating do-
mains where LG causes the pathological behavior and im-
proving parallel GBFS on those domains are future work.

A significant motivation for parallelizing search is to ex-
ploit large amounts of aggregate RAM in a cluster with
many machines in order to solve problems which cannot
be solved using one machine, so an effective, distributed
memory parallelization is necessary. We showed that LG can
scale fairly well with up to 64 cores (4 cores× 16 machines).
Future work will investigate further scaling of HDGBFS-
based approaches on larger systems. In a single machine,
multi-core environment, other approaches such as PBNF can
be used to parallelize satisficing search (Burns et al. 2010).

GBFS is an instance of Weighted A* (WA*) (Pohl 1970),
where wh = 1, wg = 0. Although HDA* has been shown
to be quite effective for admissible search using A* (WA*
with wh = wg), preliminary results indicate that as wh is
increased, HDA* will incur large search overhead, similar to
HDGBFS. An investigation of distributed WA* is a direction
for future work.

262

References
Asai, M., and Fukunaga, A. 2017. Exploration among and
within plateaus in greedy best-first search. In Proceedings of
the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsyl-
vania, USA, June 18-23, 2017., 11–19.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
first heuristic search for multicore machines. J. Artif. Intell.
Res. 39:689–743.
Doran, J., and Michie, D. 1966. Experiments with the graph
traverser program. In Proceedings of The Royal Society A:
Mathematical, Physical and Engineering Sciences, volume
294, 235–259.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: k-best-
first search. Ann. Math. Artif. Intell. 39(1-2):19–39.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Heusner, M.; Keller, T.; and Helmert, M. 2017. Under-
standing the search behaviour of greedy best-first search. In
Proceedings of the Tenth International Symposium on Com-
binatorial Search, SOCS 2017, 16-17 June 2017, Pittsburgh,
Pennsylvania, USA., 47–55.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation through Heuristic Search. J. Artif.
Intell. Res 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. 22:215–278.
Jinnai, Y., and Fukunaga, A. 2017. On hash-based work
distribution methods for parallel best-first search. J. Artif.
Intell. Res. 60:491–548.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artif. Intell. 195:222–248.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1:193–204.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. 39:127–177.
Vidal, V.; Bordeaux, L.; and Hamadi, Y. 2010. Adaptive k-
parallel best-first search: A simple but efficient algorithm for
multi-core domain-independent planning. In Proceedings
of the Third Annual Symposium on Combinatorial Search,
SOCS 2010, Stone Mountain, Atlanta, Georgia, USA, July
8-10, 2010, 100–107.
Wilt, C. M., and Ruml, W. 2014. Speedy versus greedy
search. In Proceedings of the Seventh Annual Symposium
on Combinatorial Search, SOCS 2014, Prague, Czech Re-
public, 15-17 August 2014., 184–192.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local explo-
ration to greedy best-first search in satisficing planning. In
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 2388–2394.

Zobrist, A. L. 1970. A new hashing method with applica-
tions for game playing. Technical report, Dept of CS, Univ.
of Wisconsin, Madison. Reprinted in International Com-
puter Chess Association Journal, 13(2):169-173, 1990.

263

