
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Error-Tolerant Anytime Approach to
Plan Recognition Using a Particle Filter

Jean Massardi, Mathieu Gravel, Éric Beaudry
Department of Computer Science
Université du Québec à Montréal

{massardi.jean,gravel.mathieu.3}@courrier.uqam.ca, beaudry.eric@uqam.ca

Abstract

Classical plan recognition approaches require restrictive
assumptions and are generally off-line. However, many
real-world plan recognition applications must deal with
real-time constraints, noisy information, temporal rela-
tions in actions, agent preferences, and so on. Many ex-
isting approaches have tried to relax assumptions, but
none can deal with the above-cited needs. This paper
proposes an extension of previous works on plan recog-
nition based on plan tree grammar. Our anytime top-
down approach uses a particle filter. This approach man-
ages to give a quick reliable solution to the plan recogni-
tion problem while dealing with noisy observations and
without reducing the expressiveness of plan libraries.
Empirical results on simulated problems show the ef-
ficiency of our approach.

Introduction
Plan recognition consists of deducing goals and plans fol-
lowed by an observed agent. It is an essential component for
some intelligent systems interacting with other agents. Ex-
amples of plan recognition applications are found in video
games (Albrecht, Zukerman, and Nicholson 1998)(Kabanza
et al. 2010), detection of hostile behaviors (Geib and
Goldman 2001), human-robot interactions (Kelley et al.
2008) and smart-home environments (Bouchard, Giroux,
and Bouzouane 2006).

Many existing approaches to plan recognition require a
plan library. A plan library is a collection of symbols and
rules. Symbols represent goals, sub-goals and actions, while
rules represent logical links between these symbols. Plan
recognition techniques over plan libraries usually use ab-
ductive reasoning in order to infer the plan of an observed
agent. In the case of hierarchical plans, abductive reason-
ing is sometimes called the bottom-up approach (Geib and
Goldman 2009) (Raghavan and Mooney 2011).

These approaches suffer from several limitations. Firstly,
there is a multiplicity of formalisms used to describe a plan
library, such as Context Free Grammar (CFG) (Pynadath
and Wellman 2000), the Abstract Hidden Markov Memory
Model (AHMMM) (Bui 2003), Bayesian Logic Programs

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Raghavan and Mooney 2011) or even a plan as fully or-
dered sequences of actions (Zhuo 2017). These formalisms
have different expressivity and different solving algorithms.
In the last decade, CFG describing Hierarchical Task Net-
works (HTN) from Geib and Goldman (2009) was one of the
most used frameworks. Secondly, abductive reasoning over
plan recognition problems are inherently heavy in calculus,
being at least NP-Hard in a fully observable setting (Vilain
1991) and semi-decidable in general (Behnke, Höller, and
Biundo 2015). This leads to difficulties in obtaining real-
time results. Finally, although most of the library-based plan
recognition algorithms could theoretically support noisy and
missing observations, the calculus cost required makes them
impractical for real-life applications (Bisson, Larochelle,
and Kabanza 2015; Geib and Goldman 2009; Kabanza et
al. 2013).

In this paper, we focus on plan recognition with noisy ob-
servations, where the observed agent is neither cooperative
nor hostile with the observant. This case is known as key-
hole context (Carberry 2001). To solve this family of plan
recognition problems, we propose a new algorithm based on
a particle filter.

In the next sections, we present a few previous works
on plan recognition, especially on plan library based tech-
niques. Then we discuss the definition of a plan library as
well as a decision model and the different types of noisy ob-
servations encountered in plan recognition. We also present
a general overview of discrete particle filters. We then de-
scribe our algorithm for plan recognition based on a particle
filter. Finally, we present experimental results showing ac-
curacy and noise tolerance of our approach.

Previous Work
Generally speaking, plan recognition is the opposite task of
planning (Sukthankar et al. 2014). While a planning prob-
lem focuses on producing a plan – e.g., a partially or fully
ordered sequence of actions – plan recognition aims to find
the goals of an observed agent, based on its actions. In a typ-
ical plan recognition problem, the observations correspond
to low-level actions performed by the observed agent. Plan
recognition can be done in several contexts, single agent,
multi-agent, with or without interaction between the obser-
vant and observed agent, with perfect observability or with
noises, etc. We focus on single agent plan recognition and

284

suppose no interaction between the observant and observed
agent.

We can divide plan recognition techniques into two fam-
ilies: inverse planning techniques and plan library tech-
niques. Inverse planning techniques (Ramırez and Geffner
2009) use planners as a way to produce plans for the differ-
ent possible goals and compare these plans with the actual
actions of the observed agent. The closer a plan is to the
sequence of observed actions, the more probable the under-
lying goal is to be the one the observed agent wants to per-
form. These techniques require a description of the problem
as a complete planning domain. Plan library techniques rely
on the plan description as a collection of behavior related to
executing a goal. In this paper, we focus on the HTN plan
definition of plan library as proposed by Geib and Goldman
(2009). This formalism describes plan library as a plan tree
grammar, which can be seen as a hierarchical, partially or-
dered AND/OR tree. It allows for expressing multiple inter-
leaving goals, hierarchy in goals and actions, loops in exe-
cution and can handle several constraint definitions between
actions.

The main inference mechanism for plan recognition over
plan tree grammars is weighted Bayesian reasoning over
a set of valid hypotheses. The main problem consists in
finding a way to generate and maintain this set. Geib and
Goldman (2009) proposed two types of solutions, top-down
approaches and bottom-up approaches, both relying on
Bayesian weighted models. Top-down approaches consist
in generating all possible outcomes using the plan library,
i.e., all possible plans, then pruning this set of hypotheses
using the observations. Geib and Goldman argue that this
method is not completely feasible due to the high number of
hypotheses needed at the initial generation. Bottom-up ap-
proaches consist in navigating in plan trees from the leaf to
the roots. Hypotheses are generated based on observations,
therefore only valid hypotheses are maintained. Generating
only valid hypotheses based on constraints is a non-trivial
task. These two approaches are calculus-heavy because the
generation of hypotheses leads to combinatorial explosion.

Several solutions have been proposed to reduce the cal-
culus cost of bottom-up approaches. Yappr (Geib, Maraist,
and Goldman 2008) uses Plan Frontier Fragment Grammars
(PFFG) to maintain only plan tree frontiers and not complete
plan trees. ELIXIR (Geib 2009) uses Combinatory Catego-
rial Grammar (CCG) to delay the commitment to plan hy-
potheses. SLIM (Mirsky and Gal 2016) proposes a hybrid
top-down/bottom-up approach by limiting the depth of goal
recognition in the bottom-up part, thereby limiting the over-
all runtime. Doplar (Kabanza et al. 2013) proposes an any-
time algorithm by controlling the exploration space using
bounds on goal probabilities rather than focusing on com-
puting the exact underlying probabilities.

Some recent works have focused on decision models for
plan recognition. The decision model corresponds to the
preferences of the observed agent over some executions
rather than others. For example, if the observed agent wants
to satisfy the goal Make a beverage, an adult might prefer
to make tea and a child might prefer chocolate. With SLIM
(Mirsky and Gal 2016), the authors proposed to describe the

decision model as a probability repartition over production
rules. Bisson, Larochelle, and Kabanza (2015) use a Recur-
sive Neural Network (RNN) to learn this decision model
and use the resulting network directly as a plan recognition
method. With HARE, Zhuo proposes to represent both the
plan library and the decision model as a matrix of rating
scores (Zhuo 2017).

Most of the previous works presented in this paper can
theoretically handle some kind of noises, but at a high cal-
culus cost. In most cases, this is performed by maintaining
non-valid hypotheses which could be ruled out in the case of
perfect observability. In the case of non-perfect observabil-
ity, the bottom-up approach loses its advantages compared
to top-down approaches, since invalid hypotheses have to be
generated. Another approach proposed by Vattam and Aha
(2015) consists in using a similarity metric. In their work,
the authors use Action Sequence Graphs to represent their
plan library.

Problem Definition
We describe a plan library as defined by Geib and Goldman
(2009).

Definition 1. A plan library (PL) is a tuple PL =
(A,NT,G, P) where:
• A is a finite set of terminal symbols;
• NT is a finite set of non-terminal symbols;
• G ⊂ NT is the set of goals;
• P is a set of production rules in the form α → S, σ, with
α ∈ NT , S a set of symbols fromA∪NT and σ a partial
order of S.

A partial order σ is in the form (i, j), which means that
the ith action Si has to be executed before the jth action Sj

in order to complete the task α.
This definition corresponds to a multiset partially ordered

Context Free Grammar (CFG). It is similar to HTN plan-
ning formalism, without the concepts of preconditions and
effects. Terminal symbols correspond to low-level actions.
Using this formalism, plans can be described as plan trees,
where the goal is the root of the tree and low-level actions
are the leaves.

Figure 1: Example of a simple plan library

Figure 1 presents a simple plan library for two root goals
and describes the actions needed to make a cup of tea or

285

a cold chocolate drink. Rectangles indicate permutable ac-
tions. In this example, for Tea making the terminal actions
Get tea, Get mug and the non-terminal action Boil water
can be performed in any order, but all of them have to be
performed before doing Fill mug. Boil water can also be
decomposed into terminal actions. Choco making can be
decomposed using the same logic.

In this example, the underlying plan library is:
A = {Get teakettle, Fill with water, Get tea,

Get mug, Fill mug, Get milk, Get choco }
NT = {Boil water, Tea making, Choco making}
G = {Tea making, Choco making}
P = {Tea making → Boil water, Get tea, Get mug,

Fill mug, σ = {(1, 4), (2, 4), (3, 4)}
{Choco making → Get milk, Get choco, Get mug,

Fill mug, σ = {(1, 4), (2, 4), (3, 4)}
{Boil water → Get teakettle, Fill with water, σ =

{(1, 2)}}
For our plan library to handle noisy information and pref-

erences over plan execution, we propose to add two more
elements, the decision model and the noise function.

Decision Model
In SLIM, Mirsky and Gal declare the decision model (DM)
as a part of the production rules. Since a plan library repre-
sents a method to achieve a goal, regardless of the operator,
and a decision model (DM) represents the preferences for a
single agent, we propose to separate the two definitions.

Definition 2. A Decision Model DM over a Plan
Library PL is a probability distribution in the form
DM : NT × P → [0, 1], with the constraint ∀nt ∈
NT,

∑
p∈P

DM(nt, p) = 1.

Here we describe a Decision Model as a probability dis-
tribution over rules.

For simplicity of usage, we also add prior probability dis-
tribution over goals in the decision model. To do so, we add a
primitive symbol inNT and corresponding production rules
to generate goal and multi-goal setting, as well as the prob-
ability distribution of these rules in the function DM .

Taking Figure 1 as an example, we have two distinct goals
Tea making and Choco making in G, we add a symbol
in NT Goals and two production rules in P in the form
Goals→ Tea making and Goals→ Choco making. The
symbol Goals is not an element of G. The probability dis-
tribution of these two rules describes the prior probability of
each goal.

Noise Function
Generally speaking, noise in plan recognition can be classi-
fied by three types: (1) missing observation, when the obser-
vant misses actions done by the observed agent, (2) misla-
beled observation, when one observation is mixed with an-
other, (3) extraneous actions, when actions that are not part
of the plan are observed.

We propose to describe noise using a single expression as
the following.

Definition 3. A noise function N over a Plan Library is
a probability distribution in the form N : A × (A+ ∅)p →
[0, 1], with the constraint ∀a ∈ A,

∑
o∈(A+∅)p

N(a, o) = 1

and p ∈ N.
This function can produce four different kinds of behav-

ior, corresponding to the three kinds of noise described ear-
lier and the case where the action is correctly observed:
• a → a | a ∈ A, case where the action is correctly ob-

served.
• a→ ∅ | a ∈ A, missing observation.
• a→ b | a, b ∈ A, mislabeled action.
• a → B | B ∈ Ap extraneous action. In this case, the cor-

rect observation can be part of B, but it is not necessary.
While this noise function can describe complex situations

and is a probability distribution rather easy to use, the learn-
ing of this function can be a real challenge. As interesting as
this problem is, it is not within the scope of this article. We
show later that with an estimated noise function we can still
obtain exploitable results.

With definitions 2 and 3, we introduce the extended plan
library.

Definition 4. An Extended Plan Library is a tuple
EPL = (PL,DM,N) where:
• PL is a plan library;
• DM is a decision model;
• N is a noise function.

Finally, we define a plan recognition problem as the fol-
lowing:

Definition 5. A plan recognition problem is a tuple P =
(EPL,O) where:
• EPL is an extended plan library.
• O is a sequence of observations O = 〈o1, o2, ..., on〉

where oi ∈ A .

The objective of plan recognition is, using these defini-
tions, to find P (G|O) for goal recognition, or P (Plan|O)
for plan recognition. We define by Plan the sequence of
symbols representing observed and non-observed actions of
an agent.

Particle Filter
A particle filter, also known as Sequential Monte-Carlo
(Cappé, Godsill, and Moulines 2007), is a class of sampling
algorithms used to compute probabilities for Markov pro-
cesses. They are non-complete and anytime, capable of pro-
ducing fast results, but with no guarantee of validity. This
class of algorithm relies on a genetic approach using a pop-
ulation of simulation called particles. At each step in the
process, particles are filtered using incoming observations.
To maintain the quality of prediction, the total number of
particles is maintained by resampling.

Formaly speaking, we consider the following Markov
Process Xt|Xt−1 = xt ∼ P (xt|xt−1) with the observa-
tion Yt|Xt = yt ∼ P (yt|xt). The objective is to estimate

286

the probability distribution P (xt|y0, ..., yt). If we generate
N random variables p from X0, an estimator of P is given
by Equation (1).

P̂ (xt|y0, ..., yt) =
1

N

n∑
i=1

δpi
k
(xk) (1)

In this equation, δ is the Dirac measure.
Generally speaking, a particle filter approach has 4 steps:

1. Initialization. Create a population of simulations at state
t = 0.

2. Transition. Advance the particle population at state t =
t+ 1 and compute their new output.

3. Filtering. At observation, remove particles having out-
puts not corresponding with the observations.

4. Resampling. Generate a new particle population by ran-
domly choosing surviving particles from the filtering step.
Return to step 2.
Like many sampling algorithms, particle filters depend on

the number of samples. The more particles, the better the ac-
curacy will be. On many problems, this accuracy will reach
a plateau over a certain number of particles. This number
depends on the problem.

Particle Filter Algorithm over Plan Trees
We propose to use a particle filter because, in plan recogni-
tion, even though there is a large number of plans hypothe-
ses, only a small subset has a significant probability of be-
ing true. Therefore, the objective is to generate only a small
number of hypotheses while limiting the computational cost
of each one of them.

To do so, we propose to use partial plan trees as par-
ticles. Partial plan trees can be generated using a top-
down approach rather than a bottom-up one. Top-down se-
quence generations are comparatively lighter in calculus
than bottom-up approaches (Geib and Goldman 2009).

We represent a particle p as a tuple p = (G,T,ENO)
with:
• G is a goal or a set of goals;
• T is a partial plan tree for G;
• ENO corresponds to the Expected Next Observation. It

is the last computed low-level action using a top-down
approach to expand T .

Expected Next Observation Generation
As previously stated, we use plan trees as particles. To repre-
sent the elements in these plan trees, we use Symbol Nodes.
A Symbol Node is a tuple SN = (s, C, r, f) with
s the underlying symbol from NT ∪ A, C the list of
child Symbol Nodes of SN , r a production rule of s,
and f a boolean representing the current status of the
Symbol Node, finished or not. A node is finished if (1) ev-
ery symbol S in r exist in C; and (2) every c in C is finished.
The root of a plan tree is a Symbol Node with s ∈ G.

We will use the 2 following functions, described as fol-
lows:

1. RNC(P, S). This function describes a random selection
using the probability distribution P over a set of elements
S.

2. VALIDSYM(r, C). This function uses the constraints of
the production rule r over the set C of Symbol Nodes
to return a valid symbol, or ⊥ if no such symbol exists. A
valid symbol has to satisfy two conditions: (1) it is not fin-
ished (f = false); and (2) all constraints have to be satis-
fied. This symbol is chosen non-deterministically over all
possible valid symbols.

Algorithm 1 Expand Tree
1: function Expand(SN = (s, C, r, f), EPL)
2: if s ∈ A then
3: f ← True
4: return RNC(N, s)
5: end if
6: c← VALIDSYM (R,C)
7: if c ∈ C then
8: return Expand(C(c))
9: end if

10: if c = ⊥ then
11: return ∅
12: end if
13: C(c)←(c, ∅, RNC(DM, c), False)
14: result← Expand(C(c))
15: if For all s in r, C(s).f = True then
16: f = True
17: end if
18: return result
19: end function

Algorithm 1 is the recursive algorithm used to expand a
plan tree and emit a symbol. There are two cases. Firstly, if
the Symbol Node is terminal, the function returns its un-
derlying symbol with noise, and its status changes to fin-
ished (F = True). Secondly, the function Expand is ap-
plied to the tree and returns a valid symbol from its children.
If all the symbols from R exist and are finished in C, the
Symbol Node changes its status to finished. If there is no
valid symbol, the algorithm returns ∅.

This algorithm is similar to the one used for top-down ap-
proaches and the one used to generate test sequences for plan
library based approach using this formalism. Here, we use it
as a particle generator. However, there are two fundamental
differences in the top-down approach from Geib and Gold-
man: (1) we develop the plan tree one node at a time in order
to limit both the size of the tree and the commitment of each
particle; and (2) we include the noise directly in this expan-
sion algorithm. We thus avoid dealing with noise outside of
the main inference algorithm. Dealing with noise inside tree
expansion means we can avoid maintaining a large number
of invalid hypotheses without sacrificing expressivity of the
model.

Initialization
We use a structure called Pop which contains all the parti-
cles. We declare Pop as a map using symbols s ∈ A as the

287

Initialization Transition Filtering Resampling Transition Filtering

Tea making
Choco making

Get teakettle
Get choco

Get mug
Get milk

Get teaTk =
C =

Mu =
Mi =

Te =

Tk

C

Mu

Mi

Te

Obs : Mu Obs : Tk

∅

Mu

Mu Tk

C

Mi

Te

Tk

Figure 2: Plan recognition process

key to a set of particles p. s correspond to the last expected
next observation of algorithm 1 produced. Algorithm 2 is
used to generate the initial population.

Algorithm 2 Initialization
1: function Init(size)
2: while Size(Pop) < size do
3: s← RNC(DM, goal)
4: T ←(s, ∅, RNC(DM, s), False)
5: ENO ← Expand(T)
6: p← (s, T,ENO)
7: Pop[ENO].insert(p)
8: end while
9: return Pop

10: end function

RNC(DM, goal) represents the random choice of goal
for the root of a plan tree using the prior probability in the
decision model, as described earlier.

Like every approach using a particle filter, the objective is
to maintain a population large enough to obtain acceptable
results and small enough to get these results quickly. The
larger the population, the better the results.

Filtering and Resampling

We use each new observation to filter the population of par-
ticles using the following algorithm.

In this algorithm, we do not present how we treat the par-
ticles when multiple symbols have been emited, in case of
extraneous action. To do so, ENO has to be changed to a
stack of symbol rather than a singleton.

To solve the goal recognition problem, i.e., find the most
probable goal, we count the number of corresponding par-
ticles present in the population map for each possible goal.
The most probable goal is the one with the highest number
of particles.

Algorithm 3 Filtering algorithm
1: function Filter(Pop, o ∈ A)
2: size← Size(Pop)
3: FilteredPop← Pop[o]
4: Clear(Pop)
5: while Size(newPopulation) < size do
6: p← random select(FilteredPop)
7: p.ENO ← Expand(p.T)
8: Pop[ENO]← insert(p)
9: end while

10: return ePopulation
11: end function

P (G|O) =
1

|Pop|
∑

p∈Pop

δp(p.G = G) (2)

In this version of the algorithm, we expand particles be-
fore filtering. Placing the expansion step before the filter-
ing step enabled us to use the same algorithm to anticipate
the next action of an observed agent. The probability of an
agent’s next action can be expressed as P (ot+1|ot). This ap-
proach can be easily modified to expand and filter at the
same time.

Using algorithm 1 and algorithm 3, we avoid generating
an exponential number of hypotheses which depend on the
number of observations. Observations are only used as a fil-
ter and not directly in plan tree generation.

Figure 2 presents an example of population filtering over
the plan library introduced by Figure 1. The problem here is
to identify what beverage an observed agent is making, tea
or chocolate. We focus only on the filtering aspect, and not
on the generation of the expected next observation, for each
particle. We suppose no noise and a prior probability of 1/3
for Tea making and 2/3 for Choco making. At the Ini-
tialisation stage, there is no observation made yet, we ran-
domly choose goals and create particles corresponding to
these goals. In the first transition, we expand the trees and

288

generate the first expected next observations (in this exam-
ple, there are five possible next observations: Tk, C, Mu,
Mi and Te). These particles are sorted depending on their
expected next observation. These two stages correspond to
Algorithm 2. When an observation is made (here, it is Mu),
the particles are filtered. We keep only particles where the
expected next observation correspond to the observation. At
the resampling stage, the surviving particles are duplicated
to maintain the population size. The particles are then mu-
tated again at the second transition stage and sorted again by
their new expected next observation. These three stages, Fil-
tering, Resampling and Transition, correspond to Algortihm
3. At the last filtering stage, we observe Tk, the only surviv-
ing particles are from Tea making, therefore, it is the goal
behind these two observations.

Experiments
We implemented our proposed approach in C++. For
PHATT and SLIM, we use the public Python implementa-
tion from Mirsky. Experiments are made on a PC with an
Intel Core i7-6600U 2.6 GHz CPU and 2 GB of RAM. The
tests aimed to: (1) verify the accuracy of this new algorithm;
(2) compare its speed to other state-of-the-art approaches;
and (3) assess its tolerance to noisy observations.

We use a simulated plan library similar to DOPLAR (Ka-
banza et al. 2013) and SLIM (Mirsky and Gal 2016). This
simulated domain is a randomly generated domain with 100
low-level actions, 5 goals, a depth of 4, a branching factor
of 3 for AND rules and a branching factor of 2 for OR rules.
We consider equi-probability for every rule and the iden-
tity function for the noise function. With these settings, the
length of a plan is nine actions. We add a 33% probability
of ordering constraint between any pair of symbols in all the
production rules.

Accuracy with Full Observability
The first set of experiments aims to assess the accuracy of
the particle filter approach. We ran our algorithm on 100 in-
stances of simulated plan libraries. For each instance, we
performed the tests using different population sizes.

Figure 3 presents the average accuracy of the goal recog-
nition algorithm as a percentage (i.e, how often the algo-
rithm returns the true goal) over the percentage of plan com-
pletion for 50, 100, 250 and 500 particles. We also exper-
imented with 750 and 1,000 particles, and the results were
nearly identical to 500 particles. This demonstrates that in-
creasing the number of particles beyond 500 does not im-
prove precision in goal recognition nor decrease the percent-
age of plan completion needed to identify the goal. At any
percentage of plan completion, the average accuracy of goal
recognition depends on the number of particles, the higher
the better, up to 500 particles. As the plan completion pro-
gresses, the average accuracy of goal recognition increases
from below 20% to nearly 60% for 50 particles and from
20% to 100% for 500 particles. For every particles number
chosen, the average percentage accuracy of goal recognition
reaches to a plateau at 30% of plan completion, meaning
the algorithm reaches a definitive conclusion about the rec-
ognized goal before the plan is achieved, about a third way

20 40 60 80 100
Scenario completion (in %)

0

20

40

60

80

100

Av
er

ag
e

co
rre

ct
ne

ss
 o

f g
oa

l r
ec

og
ni

tio
n

(in
 %

)

Particles size
500
250
100
50

Figure 3: Average rank of the correct goal by scenario com-
pletion with full observability

through its execution. We compared the performances with
SLIM and PHATT and we observed less than 1% differ-
ence using our particle filter with 500 particles. These results
show that this approach produces reliable results, even if it
is not a complete approach that can guarantee a result.

These results vary depending on several characteristics in
the plan libraries. For instance, with more goals, 10 instead
of 5, the convergence to a solution is reached between 10%
and 20% rather than 30%. Likewise, the fewer the number
of actions, the more ambiguous the problem. With 10 low-
level actions rather than 100, convergence is reached around
60% where maximum accuracy is at 80% rather than 100%.

Performances
We compare our approach to PHATT and SLIM approaches,
well-known complete approaches with a public distribution.

Table 1: Average runtime in seconds for PHATT, SLIM and
for a particle filter approach with 500 particles

Obs. 1 2 3 4 5 6 7 8 9
PHATT 0.25 0.35 0.57 0.87 1.23 1.71 2.58 4.61 9.88
SLIM 0.17 0.17 0.19 0.26 0.46 0.78 1.28 2.02 4.60
PF-500 0.011 0.019 0.027 0.035 0.043 0.051 0.059 0.067 0.075

Table 1 presents the average runtime for PHATT, SLIM
and our approach (PF-500). Since the number of hypothe-
ses generated by our approach is constant (500 particles),
and the approach is online, the runtime difference between
two observations is constant at 0.008 seconds, except for the
first observation at 0.011 seconds. We suppose this increase
is due to data structure initializations. This represents a vast
improvement in the average runtime compared to PHATT
and SLIM as these two approaches are complete bottom-up
approaches, meaning the number of hypotheses generated,
and thus the average runtime, increases exponentially over
the number of observations. We can see that for the first
observation our approach already has a lower average run-
time by order of magnitude (0.011 seconds) than PHATT
and SLIM (0.25 seconds and 0.17 seconds, respectively).

289

20 40 60 80 100
0

20

40

60

80

100

Av
er

ag
e

co
rre

ct
ne

ss

 o
f g

oa
l r

ec
og

ni
tio

n
(in

 %
)

PO-250

20 40 60 80 100
Scenario completion (in %)

0

20

40

60

80

100
PO-500

20 40 60 80 100
0

20

40

60

80

100
PO-1000

Noise %
0%
10%
20%
30%

Figure 4: Average rank of the correct goal by scenario completion for noisy information

The fact that our approach has a constant average runtime
regardless of the number of observations makes it very inter-
esting in the case of long plans (i.e, more than five actions)
and useful in real-world applications.

Accuracy with Noise
We then tested the robustness of our approach against noisy
information. To do so, we add a noise function to our sim-
ulated plan libraries. We set three different levels of noise
at 10%, 20%, and 30%. These percentages correspond to
the number of erroneous observations, regardless of the kind
of noise (missing, mislabeled, or extraneous). For this test,
the three types of noises have the same probability of occur-
rence.

We set the particle population to 250, 500, and 1,000 to
see if the population would impact the results the same way
as in a full observability context. We ran 100 tests for each
population size.

Figure 4 presents the average accuracy of goal recogni-
tion as a percentage over the plan completion for all the three
population sizes. For 250 particles in a full observability set-
ting, the average rank of correctly recognized goals reaches
a plateau at 30% of scenario completion, around 95% accu-
racy. This plateau is reached at the same percentage of sce-
nario completion regardless of the noise addition. The av-
erage rank of correctly recognized goals decreases linearly
with noise increasing to the lowest point of 65% of goals rec-
ognized correctly for 30% of noisy observations. Increasing
the number of particles to 500 did not lower the percent-
age of scenario completion required to reach the plateau for
the average rank of correctly recognized goals, however, the
value of this plateau is close to 100% of goals recognized
correctly in a full observability setting and decreases linearly
with noise introduction up to the lowest value of 70% with
30% of noisy observations. Increasing the number of parti-
cles to 1,000 only marginally improves the results. Accord-
ing to these results, a number of 500 particles is sufficient to
get optimal results in terms of percentage of scenario com-
pletion required to reach the plateau of correctly recognized
goals and in terms of average rank of correct goals recog-
nized with or without noise. Our approach is robust to noisy
observations as the performances decrease linearly with the
percentage of noise.

We also tried to account for difference in performance
based on the type of noise. We ran our approach at 20%
noise with four different settings: (1) only missing obser-
vations (M); (2) only mislabeled (ML); (3) only extraneous
(E); and (4) all of the previous ones equally distributed (A).

Table 2: Average correct goal recognition in percent at the
end of a plan for a particle filter with 500 particles

Noise Type 20% M 20% ML 20% E 20% A
PF-500 83 79 83 81

Table 2 shows the results. As we can see, the noise type
does not significantly impact the accuracy of our approach.

Conclusion and Discussion
We proposed a new approach to plan recognition over plan
libraries using a particle filter with a population of plan trees.
This is an anytime approach and does not limit the expres-
sivity of plan libraries as contextual grammar. This approach
also deals with noisy observations. We provide evidence of
its efficiency on simulated plan libraries.

As all plan library based techniques, this approach re-
quires complementary learning techniques to create and
maintain the plan library, as well as the decision model and
noise function.

In future works, we plan to work on concurrency as well
as temporal reasoning of low-level actions. Temporal infor-
mation can be used for two purposes: (1) provide comple-
mentary information to characterise low-level actions, which
can be used in order to improve the plan recognition per-
formances, (2) provide temporal information about when a
probable next observation will occur. The second point is
critical for temporal planning tasks.

Acknowledgments
This work was supported by Aging Gracefully across En-
vironments using Technology to Support Wellness, Engage-
ment and Long Life NCE Inc. (AGE-WELL NCE), a cana-
dian federal program. We would like to thank Amandine
Laffitte and Guillaume Gosset for their help.

290

References
Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game. User Modeling and User-Adapted Interaction
8(1-2):5–47.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the
complexity of htn plan verification and its implications for
plan recognition. In International Conference on Automated
Planning and Scheduling (ICAPS), 25–33.
Bisson, F.; Larochelle, H.; and Kabanza, F. 2015. Using a
recursive neural network to learn an agent’s decision model
for plan recognition. In International Joint Conference on
Artifical Intelligence (IJCAI), 918–924.
Bouchard, B.; Giroux, S.; and Bouzouane, A. 2006. A smart
home agent for plan recognition of cognitively-impaired pa-
tients. Journal of Computers 1(5):53–62.
Bui, H. H. 2003. A general model for online probabilis-
tic plan recognition. In International Joint Conference on
Artifical Intelligence (IJCAI), 1309–1315.
Cappé, O.; Godsill, S. J.; and Moulines, E. 2007. An
overview of existing methods and recent advances in se-
quential monte carlo. Institute of Electrical and Electronics
Engineers (IEEE) 95(5):899–924.
Carberry, S. 2001. Techniques for plan recognition. User
Modeling and User-Adapted Interaction 11(1-2):31–48.
Geib, C. W., and Goldman, R. P. 2001. Plan recognition in
intrusion detection systems. In DARPA Information Surviv-
ability Conference (ISC), volume 1, 46–55. IEEE.
Geib, C. W., and Goldman, R. P. 2009. A probabilistic plan
recognition algorithm based on plan tree grammars. Artifi-
cial Intelligence 173(11):1101 – 1132.
Geib, C. W.; Maraist, J.; and Goldman, R. P. 2008. A
new probabilistic plan recognition algorithm based on string
rewriting. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 91–98.
Geib, C. W. 2009. Delaying commitment in plan recog-
nition using combinatory categorial grammars. In Inter-
national Joint Conference on Artifical Intelligence (IJCAI),
1702–1707.
Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.;
and Irandoust, H. 2010. Opponent behaviour recognition
for real-time strategy games. AAAI workshop Plan, Activity,
and Intent Recognition (PAIR) 10(5).
Kabanza, F.; Filion, J.; Benaskeur, A. R.; and Irandoust, H.
2013. Controlling the hypothesis space in probabilistic plan
recognition. In International Joint Conference on Artifical
Intelligence (IJCAI), 2306–2312.
Kelley, R.; Tavakkoli, A.; King, C.; Nicolescu, M.; Nico-
lescu, M.; and Bebis, G. 2008. Understanding human in-
tentions via hidden markov models in autonomous mobile
robots. In ACM/IEEE International Conference on Human
Robot Interaction (HRI), 367–374.
Mirsky, R., and Gal, Y. 2016. Slim: Semi-lazy inference
mechanism for plan recognition. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 394–400.

Pynadath, D. V., and Wellman, M. P. 2000. Probabilis-
tic state-dependent grammars for plan recognition. In Un-
certainty in Artificial Intelligence (UAI), 507–514. Morgan
Kaufmann Publishers Inc.
Raghavan, S., and Mooney, R. J. 2011. Abductive plan
recognition by extending bayesian logic programs. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, 629–644. Springer.
Ramırez, M., and Geffner, H. 2009. Plan recognition as
planning. In International Joint Conference on Artifical In-
telligence (IJCAI), 1778–1783.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P. 2014. Plan, Activity, and Intent Recogni-
tion: Theory and practice. Newnes.
Vattam, S. S., and Aha, D. W. 2015. Case-based plan
recognition under imperfect observability. In International
Conference on Case-Based Reasoning (ICCBR), 381–395.
Springer.
Vilain, M. B. 1991. Deduction as parsing: Tractable clas-
sification in the kl-one framework. In Association for the
Advancement of Artificial Intelligence (AAAI), 464–470.
Zhuo, H. H. 2017. Human-aware plan recognition. In
Association for the Advancement of Artificial Intelligence
(AAAI), 3686–3693.

291

