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Abstract

Optimal cost partitioning of classical planning heuristics has
been shown to lead to excellent heuristic values but is often
prohibitively expensive to compute. Lagrangian decomposi-
tion and Lagrangian relaxation are classical tools in math-
ematical programming that apply to optimization problems
with a special block structure. We analyze the application of
Lagrangian decomposition to cost partitioning in the context
of operator-counting heuristics and interpret Lagrangian mul-
tipliers as cost functions for the combined heuristics. This
allows us to view the computation of an optimal cost parti-
tioning as an iterative process that can be seeded with any
cost partitioning and improves over time. We derive an any-
time algorithm to compute an optimal non-negative cost par-
titioning of abstraction heuristics without involving an LP
solver. In each iteration, the computation reduces to indepen-
dent shortest path problems in all abstractions. Finally, we
discuss the extension to general cost functions.

Introduction
In optimal planning with heuristic search, high-quality ad-
missible heuristics are required to solve hard tasks. When
individual heuristics cannot achieve a sufficiently high qual-
ity, multiple heuristics can be combined with cost partition-
ing (Katz and Domshlak 2007; Yang et al. 2008; Katz and
Domshlak 2010). It allows us to additively combine several
admissible heuristics by splitting up the original cost func-
tion and evaluating the heuristics under reduced costs.

Katz and Domshlak (2010) show that computing the best
way of partitioning the cost among explicit-state abstrac-
tion heuristics is polynomial in the size of the abstract state
spaces. Allowing general cost functions can increase the
quality of the combined heuristic even further (Pommeren-
ing et al. 2015) while the computation remains polynomial.
Pommerening (2017) points out that abstractions based on
small projections using only up to three variables already
produce near-perfect heuristic values in a lot of cases. The
high quality of these heuristic values is unfortunately offset
by a high computation time that has prevented their use in
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practice so far. While computing the optimal cost partition-
ing is polynomial in these cases, it requires solving a large
linear program (LP) that scales with the number of transi-
tions in the abstract state spaces.

Operator-counting heuristics (Pommerening et al. 2014)
offer an alternative way to additively combine admissi-
ble heuristics. Abstraction heuristics can be expressed as
operator-counting heuristics and their combination in one
LP computes their optimal cost partitioning. The operator-
counting LP is dual to the LP computing the optimal cost
partitioning but it can be expressed in a more compact form
(Pommerening, Helmert, and Bonet 2017). However, even in
compact form the LPs are too large to make their computa-
tion worthwhile in practice for a large number of heuristics.

We apply a classical tool from mathematical program-
ming called Lagrangian decomposition to operator-counting
heuristics. This technique exploits a block structure in an
LP that can easily be introduced in operator-counting LPs.
The resulting LP can be seen as maximizing the sum of
smaller independent subproblems over a set of parameters,
called Lagrangian multipliers. We show that in the context
of operator-counting, the Lagrangian multipliers correspond
to cost functions for each subproblem and the subproblems
correspond to the individual heuristics that are combined in
the operator-counting framework. This is a way of proving
that the combination of operator-counting heuristics com-
putes their optimal cost partitioning. Additionally, this view
of cost partitioning gives us access to other methods of solv-
ing the problem rather than solving the monolithic LP.

We consider subgradient optimization as a way to opti-
mize the cost partitioning. This is an iterative process that
evaluates all subproblems on the current cost partitioning
and computes an update to their cost functions based on a
subgradient. We present an algorithm based on it for the case
of non-negative cost partitioning of abstraction heuristics. In
this setting, the subgradient has a clear interpretation and
can be computed by solving shortest path problems in the
abstractions under different cost functions. Keeping track of
the best cost partitioning seen so far turns this into an any-
time algorithm that can be used to improve any suboptimal
cost partitioning.
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We also discuss how this algorithm could be extended to
general cost partitioning that is not restricted to non-negative
costs. In this general setting, higher heuristic values can be
achieved but computing a subgradient is more complicated.

Lagrangian Relaxation and Decomposition
Lagrangian relaxation (Geoffrion 1974) is a classical tech-
nique in mathematical programming that allows structured
relaxations to be constructed for optimization problems.
Consider the following mathematical program P :

min c>x subject to
Ax ≥ b (1)
x ∈ X (2)

where we have split the set of constraints into two sets: the
so-called complicating constraints (1) and some other easy
constraints (2) that define the feasible region x ∈ X. La-
grangian relaxation builds on the assumption that optimizing
an arbitrary linear function over the set X is (significantly)
easier than optimizing it over the feasible set of the original
problem P . The Lagrangian approach relaxes the compli-
cating constraints (1) into the objective function, with some
non-negative multipliers λ ∈ Rm≥0 (where m is the number
of complicating constraints), called Lagrangian multipliers.
This yields the Lagrangian function:

L(x, λ) = c>x+ λ>(b−Ax)

For any choice of λ ∈ Rm≥0, the Lagrangian subproblem

φ(λ) = minL(x, λ) subject to x ∈ X
is a relaxation of P , and its optimal value φ(λ) gives a lower
bound on the optimal value of P . In general, different values
of λ give different lower bounds, so the task becomes to find
the λ yielding the best possible lower bound, i.e., solving the
Lagrangian dual:

φ∗ = maxφ(λ) subject to λ ∈ Rm≥0

The Lagrangian dual function φ(λ) is a continuous con-
cave function, that can be optimized by any nondifferen-
tiable optimization algorithm, like the subgradient method
which we describe in the next section.

Note that Lagrangian relaxation can take advantage of
special block structures in P . For example, if the opti-
mization problem decomposes into independent blocks af-
ter relaxing the complicating constraints, those blocks can
be solved independently for any choice of λ. Interestingly,
a modeling manipulation, called Lagrangian decomposi-
tion (Guignard and Kim 1987), allows the method to be ap-
plied also to the case in which the original problem has no
obvious complicating constraints, but rather a set of linking
variables. Let us consider a linear program P ′ of the form:

min c>x subject to
A1x+B1y1 ≥ b1
· · ·
Akx+Bkyk ≥ bk
x, y1, . . . , yk ≥ 0

Note that the model would decompose into k independent
blocks if we could get rid of the shared variables x. The ba-
sic idea of Lagrangian decomposition is to create additional
copies (xi) of the shared variables x, one for each block, and
then impose that all those copies take the same value in all
blocks. The reformulation reads:

min c>x subject to
A1x1 +B1y1 ≥ b1
· · ·
Akxk +Bkyk ≥ bk
x = x1

· · ·
x = xk

x, x1, . . . , xk, y1, . . . , yk ≥ 0

Clearly, this is equivalent to the original problem P ′. Now,
we can directly apply the Lagrangian relaxation technique
to the reformulated problem, by dualizing the equality con-
straints x = xi with dual multipliers λi ∈ Rm. The La-
grangian function reads:

L(x, x1, . . . , xk, λ1, . . . , λk) =

(c−
k∑
i=1

λi)
>x+

k∑
i=1

λ>i xi

and, for a given λ, it can be minimized by solving k + 1
independent subproblems. The first has the special structure:

φ0(λ) = min (c−
k∑
i=1

λi)
>x subject to x ≥ 0

and it is always either optimal with objective value zero or
unbounded. In other words, the first block defines the im-
plicit set of constraints on the multipliers λ:

k∑
i=1

λi ≤ c

The other k subproblems all have the same structure:

φi(λi) = minλ>i xi subject to
Aixi +Biyi ≥ bi
xi, yi ≥ 0

The value of our original problem P ′ then is

φ∗ = max

k∑
i=1

φi(λi) subject to
k∑
i=1

λi ≤ c.

Subgradient methods
The subgradient method (Shor 1985) is an extension to
the gradient method for differentiable optimization to the
nondifferentiable case. Given a continuous nondifferentiable
concave function φ(λ) and a convex set Ω, the subgradient
method can, under mild conditions (Anstreicher and Wolsey
2009), solve the problem

maxφ(λ) subject to λ ∈ Ω.
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The function to be maximized φ need only be known
through a black box oracle that, given a point λ ∈ Ω, re-
turns the function value φ(λ) and a subgradient g ∈ ∂φ(λ),
where ∂φ(λ) denotes the subdifferential of φ at λ. Then, the
subgradient algorithm is a simple iterative procedure, that,
starting from an initial point λ(0) ∈ Ω, uses the simple up-
date formula:

λ(t+1) = PΩ

(
λ(t) + η(t)g(t)

)
where η(t) > 0 is the step length at iteration t, g(t) is a

subgradient of φ at λ(t), and PΩ(·) denotes the projection
on Ω. Under mild assumptions on the step length sequence
η, the method converges to an optimal solution, e.g. with
limt→∞ η(t) = 0,

∑
t η(t) = ∞,

∑
t η(t)2 < ∞, and

bounded ‖g‖ (Anstreicher and Wolsey 2009). Clearly, the
method is a viable choice if it is relatively inexpensive to (a)
compute a subgradient g at an arbitrary point λ ∈ Ω and (b)
project a point onto Ω.

Consider the case where φ(λ) is the Lagrangian subprob-
lem we got by Lagrangian decomposition in the previous
section. The subproblems φi are independent, so concatenat-
ing subgradients of φi gives a subgradient of φ. A subgradi-
ent g of φi at λ0 is a vector that satisfies φi(λ0) − φi(λ) ≥
g(λ0 − λ) for all λ.1 Let x∗i be an optimal solution of sub-
problem φi(λ0). Then φi(λ0) = x∗i λ0. Since x∗i is a (not
necessarily optimal) solution of φi(λ), we have φi(λ) ≤
x∗i λ. Thus φi(λ0) − φi(λ) ≥ x∗i λ0 − x∗i λ = x∗i (λ0 − λ)
and x∗i is a subgradient of φi at λ0. In other words, the opti-
mal solutions of the subproblems φi are subgradients.

Subgradient methods are not very practical for obtaining
high accuracy: they require Θ(1/ε2) iterations to get to an
absolute error ε (Frangioni, Gendron, and Gorgone 2017).
On the one hand this is the best possible complexity for opti-
mizing a function only through a black box, but on the other
hand it cannot compete with other more sophisticated algo-
rithms, like Bundle methods (Hiriart-Urruty and Lemaréchal
1993) or center methods (du Merle, Goffin, and Vial 1998).
Still, their convergence rate does not depend on the number
of variables, so they are a promising option to get approxi-
mate bounds for large scale optimization problems in short
computing times.

Interpretation in the Operator-Counting
Framework

Operator-counting heuristics (Pommerening et al. 2014) are
a class of heuristics that can be expressed in a certain mathe-
matical form. They are defined as the objective value of a lin-
ear program which uses variables counto that count how of-
ten an operator o is used (so-called operator-counting vari-
ables) and some auxiliary variables yi that are not shared
between constraints and can have different interpretations in

1Technically, this would be a supergradient, since we are max-
imizing the concave function φ instead of minimizing a convex
function. The term subgradient is still commonly used in this case,
just like “hill-climbing” is used for minimization problems.

different constraints:

min cost>count subject to
A1count +B1y1 ≥ b1
· · ·
Akcount +Bkyk ≥ bk
count, y1, . . . , yk ≥ 0

To represent an admissible heuristic, every constraint
Aicount +Biyi ≥ bi must have a solution for every plan π,
where counto matches the number of times operator o is used
in π. If a constraint has this property, it represents a neces-
sary property of all plans and is called an operator-counting
constraint. The LP minimizes the cost of a selection of oper-
ators that satisfy all specified necessary properties of plans.
While this selection is not necessarily a plan, its cost is a
lower bound since all plans (including optimal ones) must
satisfy the constraints.

Different heuristics can be expressed as operator-counting
constraints (Pommerening et al. 2014). For example, the
constraint

∑
o∈L counto ≥ 1 expresses that a set of op-

erators L is a disjunctive action landmark. An abstraction
heuristic is defined as the cost of a shortest path in an ab-
straction of the planning task. After removing dead states, it
can be expressed with constraints that balance the incoming
and outgoing flow of each abstract state s using auxiliary
variables yt for each abstract transition:∑
t∈in(s)

yt −
∑

t∈out(s)

yt = ∆s for all abstract states s

∑
t labeled with o

yt = counto for all operators o

where in(s) and out(s) are the sets of incoming and outgoing
transitions of s and ∆s is −1, 1, or 0 depending on whether
s is the abstraction of the current state, a goal state, both, or
neither. Note that all of these equations for one abstraction
together form a single operator-counting constraint that uses
additional variables yt for each transition.

While individual heuristics can be expressed with indi-
vidual operator-counting constraints, we can use constraints
from multiple heuristics in the same LP. This forces solu-
tions to respect properties of all heuristics simultaneously,
i.e., with the same number of of times an operator is used in
each heuristic. For example, using shortest path constraints
from multiple abstractions forces the solution to be a selec-
tion of operators that can be used as a path in all abstractions.
Such a solution has at least the value of the maximum over
all heuristics but it can have a higher value. In fact, Pom-
merening et al. (2015) prove that this combination always
computes an optimal cost partitioning over the participating
heuristics h1, . . . , hk, where the heuristic hi is defined as the
solution of the following LP:

min cost>count subject to
Aicount +Biyi ≥ bi
count, yi ≥ 0

In general, a cost partitioning (Katz and Domshlak 2007;
Yang et al. 2008; Katz and Domshlak 2010) is a distribution
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of the operator costs among k heuristic computations such
that

∑k
i=1 costi ≤ cost. If the sub-heuristics are admissible,

the sum of their estimates (under the modified cost) is an ad-
missible estimate under the original cost function. We distin-
guish general cost partitioning where costi can be negative
from non-negative cost partitioning. A cost partitioning is
optimal if it maximizes the sum of estimates.

We now apply Lagrangian decomposition to operator-
counting heuristics. First, we have to duplicate variables
to induce the block structure that Lagrangian relaxation re-
quires. In our case, we only duplicate the operator-counting
variables since the additional variables yi are not shared
among operator-counting constraints:

min cost>count subject to
A1count1 +B1y1 ≥ b1
· · ·
Akcountk +Bkyk ≥ bk
count = count1
· · ·
count = countk

count, count1, . . . , countk, y1, . . . , yk ≥ 0

We relax each constraint count = counti with an unre-
stricted multiplier we call costi. The Lagrangian function is:

L(count, count1, . . . , countk, cost1, . . . , costk)

= (cost−
k∑
i=1

costi)>count +

k∑
i=1

cost>i counti.

Again, for fixed values of the multipliers costi, the La-
grangian function can be evaluated by solving k+1 indepen-
dent subproblems. As described before, the first subproblem
has the special structure

min (cost−
k∑
i=1

costi)>count subject to count ≥ 0

which implicitly defines a constraint on the multipliers that
matches the cost partitioning constraint

∑k
i=1 costi ≤ cost.

The remaining k subproblems all have the same structure:

min cost>i counti subject to
Aicounti +Biyi ≥ bi
counti, yi ≥ 0.

This is exactly the definition of the heuristic hi that uses the
single operator-counting constraint Aicount +Biyi ≥ bi.

Putting all parts together, we see that applying Lagrangian
decomposition to the operator-counting LP yields the La-
grangian dual function φ(cost1, . . . , costk) that has a value
of
∑k
i=1 hi(costi) if the cost functions costi form a general

cost partitioning and becomes unbounded if they do not.
Optimizing the values of the multipliers, i.e., computing

the optimal value of the Lagrangian dual function φ∗ =
maxφ(cost1, . . . , costk), computes an optimal cost parti-
tioning of the heuristics hi. The Lagrangian multipliers di-
rectly correspond to cost functions for each subproblem.

This is not too surprising, as Pommerening et al. (2015) al-
ready used a similar argument to prove the connection of op-
erator counting and cost partitioning. However, they did not
draw the connection to Lagrangian decomposition which al-
lows us to use subgradient optimization to compute optimal
cost partitionings. We specialize the subgradient optimiza-
tion algorithm for this use case (using planning notation):

1. Let cost(1)
i for 1 ≤ i ≤ k be a cost partitioning, i.e., cost

functions that satisfy
∑k
i=1 cost(1)

i ≤ cost. Then repeat
the following steps for t = 1, 2, . . . .

2. Compute hi(cost(t)i ) for all 1 ≤ i ≤ k. Every optimizing
solution count∗(t)i is a subgradient of hi at cost(t)i .

3. Follow the subgradient for a step with length η(t), i.e., set
c
(t+1)
i = cost(t)i + η(t)count∗(t)i for 1 ≤ i ≤ k.

4. Project the resulting cost functions to the space of cost
partitionings, i.e., set cost(t+1) = PΩ(c

(t+1)
1 , . . . , c

(t+1)
k ),

where Ω = {〈c1, . . . , ck〉 ∈ Rk|O| |
∑k
i=1 ci ≤ cost}.

We will discuss the implementation of PΩ later.
Intuitively, this means that we start from any cost parti-

tioning and then – step by step – adjust the costs in a certain
direction until we end up in an optimal cost partitioning. The
direction in which the costs are adjusted for each operator o
depends on how important it is for an optimal solution for
each of the component heuristics under the current cost par-
titioning. For simplicity assume there are just two heuris-
tics: if the operator is used the same number of times in both
heuristics, its cost needs no adjustment; if it is used more in
h1 then it makes sense to give it a higher cost in h1; other-
wise it should get a higher cost in h2.

At any iteration, the process can be stopped and the best
cost partitioning we have observed so far yields a lower
bound to the optimal cost partitioning. Since we can start
from any cost partitioning, this method can also be seen as a
way to improve suboptimal cost partitioning methods.

Cost Partitioning of Abstraction Heuristics
Let us consider a special case of the general algorithm above
where the heuristics hi are abstractions. In that case, the
heuristic value under any cost function is the cost of an op-
timal plan in the abstract state space and an optimizing so-
lution of the operator-counting variables is the number of
times each operator occurs in this plan. This leads to an al-
gorithm for computing the optimal cost partitioning of ab-
straction heuristics that does not involve an LP solver:

1. Let cost(1)
i for 1 ≤ i ≤ k be a cost partitioning and repeat

the following steps for t = 1, 2, . . .

2. Compute an optimal plan π(t)
i under cost function cost(t)i

for each abstraction αi and let occurrences(o, π(t)
i ) be the

number of occurrences of o in π(t)
i . The vector of these

numbers for all operators is a subgradient of hαi at cost(t)i .
3. Follow the subgradient for a step with length η(t), i.e., set
c
(t+1)
i (o) = cost(t)i (o) + η(t)occurrences(o, π(t)

i ).
4. Project the cost functions to cost partitionings.
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Projecting to Cost Partitionings
The above methods rely on a projection to the space Ω of
general cost partitionings. Such a projection is easy to define
in principle. We start from cost functions cost′1, . . . , cost′k
that do not form a cost partitioning. We are looking for
new cost functions cost1, . . . , costk that respect the cost par-
titioning constraint

∑k
i=1 costi ≤ cost and minimize the

Euclidean distance to (cost′1, . . . , cost′k). We can consider
each operator o individually since the choices for each of
them are independent. For o to satisfy the cost partition-
ing constraint, the sum of its cost has to be reduced by
ro = max{0,

∑k
i=1 cost′i(o)−cost(o)}. If we use ∆i,o as the

value for which costi(o) = cost′i(o) −∆i,o, then satisfying
the cost partitioning constraint can be rephrased as distribut-
ing ro among all operators:

∑k
i=1 ∆i,o ≥ ro The problem is

to find ∆i,o that minimize the Euclidean distance, i.e., mini-
mizing

∑k
i=1(cost′i(o)− costi(o))2 =

∑k
i=1 ∆2

i,o. The sum
of squares is minimized if the elements all have the same
size, so setting ∆i,o = ro/k is the desired projection.

Projecting cost functions like this will quickly lead to neg-
ative operator costs in some abstractions. This can be prob-
lematic if subproblems can become unbounded under nega-
tive cost functions. For example, if an abstraction contains a
cycle of transitions with negative total cost on a path from
the abstract initial state to an abstract goal state, there is no
shortest path in the abstract task. We can construct arbitrar-
ily cheap plans by repeating the cycle often enough. The
heuristic value is defined as−∞ in this case, thus the heuris-
tic remains admissible. However, we can no longer extract a
subgradient from the optimal solution.

The reason why this can lead to a problem is that each
subproblem implicitly defines a constraint hi(costi) > −∞
on the Lagrangian multipliers costi. For example, in ab-
straction heuristics, the constraint prohibits all cost functions
that induce a cycle with negative total cost in the abstrac-
tion. Ideally, we would like to project to the space Ω′ =
{〈cost1, . . . , costk〉 ∈ Ω | hi(costi) > −∞ for 1 ≤ i ≤ k}.
For abstraction heuristics, this would amount to distributing
the cost changes in a way that not only reduces the total cost
of each operator by ro but also reduces the cost of each cycle
Z by at most aZ =

∑
o∈Z cost′i(o). The projection to Ω′ is

a solution to the following problem:

min

k∑
i=1

∆2
i,o subject to

k∑
i=1

∆i,o ≥ ro for all operators o

∑
o∈Z

∆i,o ≤ aZ for all 1 ≤ i ≤ k and all
cycles Z in abstraction i

This projection is a quadratic optimization problem with
an exponential number of constraints. In this form, we can-
not solve it efficiently. We leave finding a general projec-
tion method for future work and discuss some possible ap-
proaches to this problem at the end of the paper.

For now, we focus on the traditional non-negative cost
partitioning, where costs are restricted to non-negative num-
bers. Here, projection is more straight-forward. The projec-
tion has to satisfy the additional constraint ∆i,o ≤ cost′i(o)
for all subproblems i and operators o. We still have to dis-
tribute cost differences as evenly as possible but now certain
operators might not be able to lower their cost by ro/k.

We compute the projection for o by repeating the follow-
ing steps until ro = 0:

1. Compute ∆ = ro
|{i|cost′i(o)>0}|

2. Reduce cost′i(o) by min{cost′i(o),∆} for every abstrac-
tion i

3. Recompute r0 with the updated cost′ values
The first step tries to distribute the necessary cost as

evenly as possible among all operators that still have pos-
itive costs. The second step ensures that no cost is reduced
below 0. If ro = 0 for all operators o, cost′ is a non-negative
cost partitioning and we can use it for the desired projection.
Theorem 1. The cost partitioning computed by the proce-
dure above minimizes the Euclidean distance to the set of all
non-negative cost partitionings.

Proof sketch. Let A0 be the set of indices i for which
cost′i(o) = 0 after the procedure terminated and A>0 =
{1, . . . , k} \A0 be the set where the operator’s cost remains
positive. Let ci denote the value of cost′i(o) before the pro-
cedure started. Let ∆i be the total amount by which cost′i(o)
has been reduced by the procedure.

For i, j ∈ A>0, ∆i = ∆j (*) because every iteration
reduced the cost by ∆, as computed in step 1. For i ∈ A>0

and j ∈ A0, ∆i ≥ ∆j = cj (**). We need to show that
these values minimize S :=

∑k
i=1 ∆2

i under the additional
constraint that costs stay non-negative, i.e., ∆i ≤ ci for all i.
Due to this constraint, for i ∈ A0 the value for ∆i cannot be
increased. If it is decreased for some i ∈ A0 then the value
for one or more j ∈ A>0 must be increased. Due to (**),
this would increase S. Only modifying elements ofA>0 also
would increase S due to (*).

Example
Figure 1 shows an example of the subgradient algorithm that
optimizes a cost partitioning among two abstractions α1 and
α2 in five steps. The top of the figure shows the abstract
transition systems of the two abstractions. There are three
operators , , and that all have a cost of 1. The
cost partitioning is initialized to the uniform cost partition-
ing which assigns each operator a cost of 0.5 in each abstrac-
tion because all operators are relevant to both abstractions.

We use η(t) = 1/t for the step length at iteration t, which
guarantees convergence to an optimal solution.

In the first iteration, both abstractions have a shortest plan
of cost 1. In α1 there are three possible shortest plans and
we assume the algorithm discovered 〈 , 〉. In α2 there
is only one choice: 〈 , 〉.

With step length η(1) = 1, the cost of is increased by
1 in both abstractions, while the cost of is only increased
in α1 and that of only in α2. The resulting cost functions
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Πα1 : 1 2 3

Πα2 : a b c d

α1 α2

t

1 cost 0.5 0.5 0.5 0.5 0.5 0.5
π/cost(π) 〈 , 〉/1 〈 , 〉/1
count∗ 1 0 1 1 1 0
cost′ 1.5 0.5 1.5 1.5 1.5 0.5

2 cost 0.5 0 1 0.5 1 0
π/cost(π) 〈 , 〉/1 〈 , , 〉/1
count∗ 0 1 1 2 0 1
cost′ 0.5 0.5 1.5 1.5 1 0.5

3 cost 0 0.25 1 1 0.75 0
π/cost(π) 〈 , 〉/1 〈 , 〉/1.75
count∗ 1 0 1 1 1 0
cost′ 0.3̄ 0.25 1.3̄ 1.3̄ 1.083̄ 0

4 cost 0 0.083̄ 1 1 0.916̄ 0
π/cost(π) 〈 , 〉/1 〈 , 〉/1.916̄
count∗ 1 0 1 1 1 0
cost′ 0.25 0.083̄ 1.25 1.25 1.16̄ 0

5 cost 0 0 1 1 1 0
π/cost(π) 〈 , , 〉/1 〈 , , 〉/2

Figure 1: Example for five steps of the subgradient method
with two abstractions α1 and α2. The transition systems of
α1 and α2 are shown at the top and the evolution of the cost
partitioning in the table below. All operators have the cost 1.

cost′ no longer satisfy the cost partitioning constraint and
have to be projected back into the space of non-negative cost
partitionings. For we reduce both costs by 1 and for the
other operators, we reduce both costs by 0.5.

Under the new cost functions, different plans are now op-
timal in both abstractions (〈 , 〉 and 〈 , , 〉).
Both plans still have a cost of 1, so our modification of the
cost functions did not increase the overall heuristic value yet.
We increase the cost of and in α1. They are both
used once and our step length is now η(2) = 0.5 so we in-
crease their cost by 0.5. In α2 we increase the cost of
by 0.5 as well but increase the cost of by 1 because it is
used twice.

After this step, the two shortest plans (〈 , 〉 and
〈 , 〉) have a total cost of 2.75 showing that our cost
partitioning improved. We update the costs of all used oper-
ators by η(3) = 0.3̄ and project back to a cost partitioning.

In the fourth step the shortest plans are the same as before
but the cost partitioning has improved again and has a total
value of 2.916̄. After updating the cost of all used operators
by η(4) = 0.25, we project to a cost partitioning again. This

time, the cost of cannot be reduced by the same amount
in α1 and α2, so in a first step its cost is reduced to 0 in α1

and by 0.125 to 1.0416̄ in α2. In a second step, we reduce it
by the remaining surplus to a cost of 1 in α2.

The final cost partitioning is optimal in this case and has
a heuristic value of 3. There are different shortest plans un-
der these cost functions but note that there are shortest plans
that use each operator the same number of times. This cor-
responds to an optimal solution of the operator-counting LP
where these numbers have to be the same because they are
represented by the same variable. From the perspective of
the subgradient method these plans are also interesting. They
increase the cost of each operator by the same amount in
each abstraction, which means the costs are projected back
to the value they started from. This shows that 0 is a subgra-
dient and we have reached an optimal value.

Experiments
We implemented the subgradient algorithm for abstraction
heuristics in the Fast Downward planning system (Helmert
2006). We used projections as our choice of abstractions and
explicitly construct their transition system in memory, prun-
ing all abstract states that are not reachable or have no path to
an abstract goal state. We implemented two methods to solve
the shortest path problems in the abstractions. One uses Di-
jkstra’s algorithm (Dijkstra 1959) on the abstract transition
system, the other solves the operator-counting heuristic for
the flow balance constraints of the abstract states. The num-
ber of abstract states in an abstraction never reached 105,
so using Dijkstra’s algorithm over, say, A∗ is no problem.
Since the abstractions contain no dead states, the LP with
flow balance constraints is equivalent to computing their
shortest path (Pommerening, Helmert, and Bonet 2017).
We compare this implementation to computing the optimal
non-negative cost partitioning as one monolithic operator-
counting LP using flow balance constraints of all abstrac-
tions. In all cases, we use CPLEX 12.8 to solve LPs. All
LPs are only constructed once and kept in memory. From
one iteration of the subgradient algorithm to the next, only
the objective function is changed. The experiments use all
planning tasks from optimal tracks of international planning
competitions (IPC 1998–2018) that do not have conditional
effects or axioms. We limit time to 300 s and memory to
2 GB for each instance.

We use the set of all projections to up to n variables (for
pattern sizes n ∈ {2, 3}) and limit the patterns to those that
are interesting (Pommerening, Röger, and Helmert 2013) in
the context of non-negative cost partitioning. For a pattern
size of 3 this is a large set of patterns that cannot be con-
structed for all planning tasks. However, we think this is
a good choice for evaluating the subgradient algorithm be-
cause the large number of abstractions make the optimal cost
partitioning hard to find.

The subgradient algorithm uses the step length η(t) =
1/t. We made this naı̈ve and straight-forward choice to es-
tablish a baseline and to not dilute the main message of the
paper. We leave the exploration of more advanced choices as
future work. In a first experiment, we start from the uniform
cost partitioning and look at how the best known heuristic
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Figure 2: Heuristic quality of uniform cost partitioning im-
proved using iterations of the subgradient method and mea-
sured as the geometric mean of the ratio hC(s)/hC

∗
(s).

Dashed lines ignore the domain ParcPrinter.

value changes with more iterations of the subgradient algo-
rithm. We measure the quality of a cost partitioning C as the
fraction hC(s)/hC

∗
(s) where hC(s) is the heuristic value

under C and hC
∗
(s) is the heuristic value under an optimal

non-negative cost partitioning. We aggregate the quality val-
ues for the initial states of all instances where we can com-
pute both hC and hC

∗
with the geometric mean. Figure 2

reports the aggregated heuristic quality after different num-
bers of iterations for the implementation that uses Dijkstra’s
algorithm for the subproblems. The quality increases quite
steeply with the first few iterations. After 100 iterations, the
quality already exceeds 89% for patterns of size 2 and 84%
for patterns of size 3. After 1000 iterations it exceeds 92%
and 89%. This is promising news showing that we get a large
part of the benefit from the subgradient method already af-
ter a small number of iterations. Unfortunately, further it-
erations suffer from diminishing returns and after reaching
roughly 90% accuracy, improvement slows down.

The heuristic error is worst in the domain ParcPrinter
which has operator costs on the order of 106. These high
costs show a problem of the subgradient method: the gradi-
ent only depends on the number of times an operator is used
in a cheapest plan and otherwise ignores the operator cost.
Optimal ParcPrinter plans are usually orders of magnitude
shorter than their cost and do not repeat operators. With a
step length of η(t) = 1/t this means that the cost function is
only modified by at most 1 in each step. If the initial uniform
cost partitioning is far from optimal, it takes many iterations
to move to a better one.

Uniform cost partitioning is easy to compute but not very
accurate. We also initialized the subgradient method with
other cost partitioning methods to see how the achieved

quality compares to the state of the art. In particular, we used
opportunistic uniform, greedy zero-one, and saturated cost
partitioning (Seipp, Keller, and Helmert 2017a). All of these
methods depend on an order of the abstractions and decide
how much of the remaining costs to allocate to an abstrac-
tion one at a time. We tried all methods with a random order
and one discovered by hill-climbing in the space of orders
for 100 seconds (Seipp, Keller, and Helmert 2017b).

Figure 3 shows the quality of each cost partitioning
method and how it can be improved with subgradient opti-
mization. With greedy zero-one partitioning, bad orders can
yield heuristic values of 0 which means the geometric mean
over the qualities is 0. Since this would hide information of
other tasks we use a heuristic value of 1 in such cases. We
can see that the quality achieved when starting from uniform
cost partitioning surpasses all tested cost partitioning meth-
ods in the first 200 iterations. and continues to improve af-
terwards. Additionally, starting from a better seed can lead
to even better quality and even saturated cost partitioning
with an improved order that already has a high quality can
be further improved in a small number of steps.

The heuristic values were almost identical for the im-
plementation that used an LP solver for its subproblems.
Small differences can be caused by selecting different op-
timal plans in the abstractions. Over all, these differences
seemed to cancel out and there was no systematic advantage
of one method over the other. The main difference between
the methods is their computation speed. Figure 4 shows that
computing the shortest path with a specialized algorithm is
between 10 and 200 times faster than using an LP solver.

We now compare the time it took to compute the optimal
cost partitioning to the time it took to approximate it with the
subgradient method. For the subgradient method, the time
scales more or less linearly with the number of iterations,
so the comparison relies on our desired level of accuracy.
Figure 5 shows the time it took to compute 200 iterations
which achieved accuracies of 90% and 88% for pattern sizes
2 and 3. For easy instances where the optimal cost partition-
ing can be computed in less than a second, the overhead of
200 subgradient iterations is too high and we observe some
solving times increasing slightly. Limiting the number of it-
erations of the subgradient method is a very naı̈ve stopping
condition. Our algorithm will perform 200 iterations even if
the uniform cost partitioning that we started from is already
optimal. A more informed stopping condition would proba-
bly help to improve the runtime of such small instances. On
larger instances, where the optimal cost partitioning is hard
to find, we can see the benefit of the subgradient method.

We also ran experiments finding a cost partitioning in ev-
ery state of the search. Due to the high number of projec-
tions and the difficulty of finding an optimal cost partition-
ing, only small tasks could be solved, where the subgra-
dient method did not improve performance. Better results
can probably be achieved by computing close-to-perfect
cost partitionings for some sample states before starting the
search and using those cost partitionings for all states. This
approach is similar to computing high-dimensional potential
heuristics but remains polynomial if we limit the number of
subgradient iterations.
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Figure 3: Heuristic quality of different suboptimal cost partitioning methods measured as the geometric mean of the ratio
hC(s)/hC

∗
(s). In each case, the horizontal line shows the quality of the cost partitioning method while the other line shows

how the quality improves with subgradient optimization. We only consider instances where all methods finished 10000 iterations
and the optimal cost partitioning could be computed.
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Figure 4: Time required to compute the heuristic value of the
initial state using 200 iterations of the subgradient method.
Grey lines mark factors of 10.
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Figure 5: Time required to compute the heuristic value of
the initial state using either 200 iterations of the subgradient
method or solving the monolithic cost partitioning LP.
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Future Work
We presented a general subgradient algorithm to improve
suboptimal cost partitionings and an initial instantiation with
straight-forward choices for the gradient, step length, and
stopping condition. More elaborate choices are possible and
there are many interesting directions to go from here.

We restricted our attention to non-negative cost partition-
ing. The extension to general costs relies on an efficient
method for projecting arbitrary cost functions into the space
of cost partitionings that do not induce negative cost cycles
in the abstractions. We discussed the requirements for such
a projection but have no efficient way of computing it yet.

Instead of viewing the absence of negative cost cycles in
the abstractions as an implicit constraint on the Lagrangian
multipliers, we can also modify the definition of the heuris-
tic so it has a finite value for all cost functions. For example,
limiting the number of times each transition can be used,
will give a low finite heuristic value for cases where the cost
function induces a negative cycle. If the limit is high enough,
such cost partitionings are suboptimal and the subgradient
method will move away from them. The shortest path will
lead through the cycle making the gradient positive for the
operators in the cycle. This increases their cost eventually
getting rid off the negative cost cycle. However, with the ex-
tra constraints, the subproblems are no longer simple short-
est path problems. Additionally, introducing limits makes
the heuristic inadmissible. Dynamically raising the limits
would be an option but further complicates the method.

The second large problem we saw in the subgradient
method was that it does not consider the costs of operators
causing it to suffer in domains like ParcPrinter. Normalizing
the gradient and adjusting the step length function η accord-
ing to the average operator costs would be interesting. How-
ever, it is not immediately clear how vastly different operator
costs should be treated.

Finally, we did not explore choices for stopping condi-
tions yet. We only reported the quality and time after fixed
numbers of iterations but looking into the details, different
tasks reach their optimal value after very different numbers
of iterations. Additionally, the trade-off of heuristic accu-
racy and the time it takes to compute the heuristic value
is different in each domain. The question then becomes
whether to stop the heuristic computation with the current
value or to spend more time on improving it by finding a
better cost partitioning. Meta-reasoning like this is an active
area in the planning community (e.g., Domshlak, Karpas,
and Markovitch 2010; Tolpin et al. 2013; Barley, Franco,
and Riddle 2014; O’Ceallaigh and Ruml 2015).

Answers to these problems could also be found in the inte-
ger programming community where subgradient algorithms
have been the subject of intense research. Among other de-
velopments, improvements to the basic method are known
in the following areas:

• reduction in the zig-zagging behavior. The method can
make little progress if g(t+1) ≈ −g(t), or if the projec-
tion step moves the point almost back to where we started,
so that λ(t+1) ≈ λ(t). Deflection techniques (Camerini,
Fratta, and Maffioli 1975), where the direction is taken

as a convex combination of the current gradient and the
previous direction, can solve the first issue; and condi-
tional subgradient techniques (Larsson, Patriksson, and
Strömberg 1996), where the direction is projected to the
tangent cone of Ω at λ, can solve the second. Both meth-
ods can be combined to get a zig-zagging free subgradient
method (d’Antonio and Frangioni 2009).

• Improved step length update policies. A lot of com-
putational investigation has been devoted to developing
step length updates that not only converge in theory
but that perform reasonably well also in practice (e.g.,
Polyak 1969; Bahiense, Maculan, and Sagastizábal 2002;
Caprara, Fischetti, and Toth 1999).

• Improved update mechanisms. Instead of updating λ by
following the subgradient no matter what, the step is taken
only if it yields a sufficient improvement in the objective
value. Otherwise a new direction is computed (Barahona
and Anbil 2000; Bahiense, Maculan, and Sagastizábal
2002). This is similar to Bundle methods that distinguish
between so called serious steps and null steps.

• Preserved multipliers. Reusing multipliers can speed up
incremental computation and has an interesting analogy
in planning: Reusing a multiplier corresponds to reusing
a cost partitioning. A cost partitioning that is optimal
for one state can be suboptimal but still good for an-
other state, so the optimal partitioning does not have to
be computed in each state. Potential heuristics are dual to
operator-counting heuristics and typically not optimized
in every state. Seipp, Pommerening, and Helmert (2015)
use a diverse set of potential heuristics which can be
thought of as using several multipliers. They also found
that often a handful of cost partitionings (multipliers) are
sufficient to get optimal values in all states, so seeding the
method with previously used multipliers instead of start-
ing from a fixed seed sounds promising.

We refer to the recent computational study by Frangioni,
Gendron, and Gorgone (2017) for more details.

On the practical side, Lagrangian decomposition lends it-
self to parallelization as all subproblems are independent
and can trivially be solved in parallel. We ran all our ex-
periments in a single thread but parallelizing the algorithm
would be a small step with a potentially big speedup.

Conclusion
We applied Lagrangian decomposition to operator-counting
LPs and found that the Lagrangian multipliers directly cor-
respond to partitioned cost functions. Using the subgradi-
ent method, we can find suboptimal cost partitionings that
converge to optimal ones. In abstraction heuristics the sub-
gradient has a clear interpretation as the number of times
operators are used in a shortest plan.

We developed an algorithm that converges to the optimal
non-negative cost partitioning of abstraction heuristics and
can be computed without an LP solver. In practice, the al-
gorithm finds close-to-optimal solutions with a low number
of iterations and can often be computed orders of magnitude
faster than finding the optimal cost partitioning with an LP.
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The relationship of cost partitioning to subgradients opens
up a large field of techniques investigated by the operations
research community that can make cost partitioning more
practical. Investigating stopping conditions, gradient scaling
and deflection techniques sounds particularly promising.
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