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Abstract

We describe a new algorithm for generating pattern collec-
tions for pattern database heuristics in optimal classical plan-
ning. The algorithm uses the counterexample-guided abstrac-
tion refinement (CEGAR) principle to guide the pattern selec-
tion process. Our experimental evaluation shows that a single
run of the CEGAR algorithm can compute informative pat-
tern collections in a fairly short time. Using multiple CEGAR
algorithm runs, we can compute much larger pattern collec-
tions, still in shorter time than existing approaches, which
leads to a planner that outperforms the state-of-the-art pattern
selection methods by a significant margin.

Introduction
Heuristics based on pattern databases (PDBs) have origi-
nally been introduced for solving the 15-puzzle (Culberson
and Schaeffer 1998). Since then, they were successfully used
for various other combinatorial problems and also adapted
for domain-independent planning (e.g., Edelkamp 2001;
2002), where they are primarily used in an A∗ search to op-
timally solve classical planning tasks.

One inherent problem with PDBs is that they grow expo-
nentially in the number of variables included in their pat-
terns. Consequently, single PDB heuristics are usually not
enough to produce strong heuristics. Instead, existing PDB-
based techniques make use of pattern collections, possi-
bly exploiting independence between patterns. One such ex-
ample is the canonical PDB (CPDB) heuristic (Haslum et
al. 2007) that sums PDB heuristic values whenever this is
known to be admissible and computes their maximum oth-
erwise. More recently, cost-partitioning (CP) heuristics fur-
ther pushed the performance of classical planners by allow-
ing to admissibly combine arbitrary heuristics, and in partic-
ular abstraction heuristics such as PDBs, structural patterns
or Cartesian abstractions (e.g., Katz and Domshlak 2010;
Pommerening, Röger, and Helmert 2013; Seipp, Keller, and
Helmert 2017a; Seipp and Helmert 2018).

Besides the question of how to combine PDB heuristics,
the most important question is how to select “good” pattern
collections. The first work in planning that considered this
problem cast it as an optimization problem that aimed at
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maximizing the mean heuristic value of a greedy zero-one
cost partitioning heuristic over the PDBs induced by the col-
lection (Edelkamp 2006). Greedy zero-one cost partitioning
considers the PDBs in some order and attributes the full cost
of each operator to the first PDB affected by that operator,
treating it as zero-cost for all other PDBs. To solve the opti-
mization problem, Edelkamp used a genetic algorithm.

Haslum et al. (2007) used hill-climbing (HC) in the space
of pattern collections to minimize the number of expansions
of a heuristic search using the CPDB heuristic for the given
pattern collections, based on a model of IDA∗ runtime by
Korf et al. (2001). Franco et al. (2017) recently revisited
the problem in an approach called complementary PDB cre-
ation (CPC) that modifies the genetic algorithm of Edelkamp
to minimize a sampling-based estimate of search tree size
(Chen 1992; Lelis, Zilles, and Holte 2013).

In this work we suggest another approach for pattern se-
lection. Our main motivation is the observation that both HC
for optimizing CPDB heuristics and CPC are rather slow ap-
proaches that require a time limit to stop optimization and
switch to search. In contrast, we want to devise a fast method
for generating pattern collections.

To this end, we use the counterexample-guided abstrac-
tion refinement (CEGAR) principle (Clarke et al. 2000),
which has successfully been used in the context of abstrac-
tion heuristics for classical planning for the case of Cartesian
abstractions (Seipp and Helmert 2018). CEGAR for gener-
ating PDBs iteratively refines a pattern collection by only in-
troducing variables relevant to the collection. Since patterns
cannot grow indefinitely, the algorithm terminates quickly
while being able to generate reasonably good collections.

In an experimental study we first evaluate the CEGAR al-
gorithm to generate a single disjoint pattern collection, with
the rationale that disjoint pattern collections are “close to
additive”, which can be leveraged by CP techniques like
saturated cost partitioning (SCP) (Seipp and Helmert 2014;
Seipp, Keller, and Helmert 2017b). In a second step, we fur-
ther restrict the CEGAR algorithm to generate single pat-
terns and run it multiple times to form a larger pattern col-
lection. We discuss how to ensure that CEGAR runs produce
diverse patterns, which is crucial to the success of cost par-
titioning. The resulting approach significantly outperforms
the state of the art in pattern selection.
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Background
Classical planning. We consider planning tasks with SAS+-
style representations (Bäckström and Nebel 1995; Helmert
2009). A task is a 4-tuple Π = 〈V,O, s0, s?〉. V is a finite
set of variables v, each with a finite domain dom(v). Partial
states s are defined on a subset vars(s) ⊆ V of variables and
map each v ∈ vars(s) to a value in its domain, written s[v].
If vars(s) = V , s is called a state. Partial states s and s′ are
consistent if s[v] = s′[v] for all v ∈ vars(s) ∩ vars(s′). O
is a finite set of operators o = 〈pre(o), eff(o), c(o)〉, where
pre(o) and eff(o) are partial states called precondition and
effect, and c(o) ∈ R+

0 is called the cost of o. s0 is the initial
state and s? is a partial state called the goal.

A planning task induces a transition system which has a
transition from state s to state t labeled with o if o is applica-
ble in s, i.e., pre(o) and s are consistent, and t is the succes-
sor state of s and o, i.e., t[v] = eff(o) for all v ∈ vars(eff(o))
and t[v] = s[v] for all v /∈ vars(eff(o)). The objective of
classical planning is to find a plan, i.e., a sequence of oper-
ators π = 〈o1, . . . , on〉, where each oi is successively appli-
cable starting from s0 and which leads to a state consistent
with s?. The cost of such a plan is

∑n
i=1 c(oi). We deal with

optimal planning, where the objective is to find plans of min-
imal cost or to prove that no plan exists.
PDBs and Combination Techniques. To solve planning
tasks optimally, we use the A∗ algorithm (Hart, Nilsson,
and Raphael 1968) with an admissible heuristic. A heuris-
tic h maps states s to numerical estimates of h∗(s), the
optimal solution cost from s. A heuristic is admissible if
h(s) ≤ h∗(s) and perfect if h(s) = h∗(s) for all states.
We consider abstraction heuristics and in particular pattern
database (PDB) heuristics. A PDB heuristic hP is induced
by a pattern P ⊆ V of the variables V of a planning task
Π. It is defined as the perfect heuristic for Π|P , which is the
task Π projected onto P . Π|P can be computed by removing
all occurrences of variables v /∈ P from Π.

To combine multiple patterns, we use two techniques. The
first is the canonical PDB (CPDB) heuristic (Haslum et al.
2007), which is based on a simple sufficient, but not neces-
sary additivity criterion for PDBs. Two PDBs P,Q are ad-
ditive if there exist no variables v ∈ P,w ∈ Q such that
v, w ∈ vars(eff(o)) for any operator o. The CPDB heuristic
for a collection of patterns C sums the heuristic values of
PDBs induced by patterns of maximal additive subsets of C
and takes the maximum over the resulting values.

The second technique is saturated cost partitioning (SCP)
(Seipp and Helmert 2013), which has been successfully used
for Cartesian abstractions and PDB heuristics (Seipp, Keller,
and Helmert 2017a). Like greedy zero-one cost partitioning,
SCP greedily distributes the costs among the heuristics in a
given order, but in a more intelligent way that avoids using
up costs that do not contribute to the heuristic value.

Disjoint Pattern Collections with CEGAR
The first pattern generation algorithm we propose computes
a disjoint pattern collection, i.e., a set of patterns where no
two patterns in the set share a state variable. Disjoint collec-
tions are a compromise between single patterns (which of-

Algorithm 1 CEGAR for pattern collection generation.
Input: Planning task Π; subset of state variables Blacklist
Output: Pattern collection C

1: function CEGAR(Π, Blacklist)
2: C ← {{v} | v ∈ vars(s?)} // with s? the goal of Π
3: Plans← {} // maps patterns to abstract plans
4: while TIME() < MAXTIME do
5: for P ∈ C s.t. Plans[P ] is undefined do
6: Plans[P ]← COMPUTEPLAN(Π, P )
7: // COMPUTEPLAN exits early if no abstract

plan exists
8: Flaws← {〈P, v〉 | P ∈ C,

v ∈ FINDFLAWS(Π,Plans[P ],Blacklist)}
9: // FINDFLAWS exits early if concrete plan found

10: if Flaws = ∅ then
11: break
12: 〈C,Blacklist〉 ← REFINE(C,Flaws,Blacklist)
13: return C

Algorithm 2 REFINE of CEGAR.
1: function REFINE(C,Flaws,Blacklist)
2: 〈P, v〉 ← SELECTFLAWUNIFORMLY(Flaws)
3: if v ∈ P ′ for some P ′ ∈ C with P ′ 6= P then
4: C ′ ← (C \ {P, P ′}) ∪ {P ∪ P ′}
5: else
6: C ′ ← (C \ {P}) ∪ {P ∪ {v}}
7: if RESPECTSSIZELIMITS(C ′) then
8: return 〈C ′,Blacklist〉
9: else

10: return 〈C,Blacklist ∪ {v}〉

ten do not lead to good heuristics) and arbitrary collections
(which form a much more complex space to search in).

We follow the CEGAR principle to guide pattern selec-
tion. Algorithm 1 shows pseudo-code for the main proce-
dure, which receives two arguments: the planning task Π
and a set of “blacklisted” state variables Blacklist. For now,
assume that the empty set is passed into Blacklist. We will
consider variations in the following section.

The algorithm keeps track of the current (disjoint) pat-
tern collection C, which is initialized to a set of singleton
patterns, one for each goal variable of Π (line 2), as in the
HC algorithm by Haslum et al. (2007). Variable Plans keeps
track of an optimal abstract plan for each pattern P in the
collection. Note that we only compute one abstract plan for
each pattern throughout the algorithm (lines 5–7).

In each iteration of the main loop, we look for flaws of
the abstract plans, i.e., reasons why the abstract plans for the
patterns in C do not solve Π. Flaws are computed separately
for each pattern in C (line 8). Each flaw is represented as a
pair 〈P, v〉 where P ∈ C is a pattern and v /∈ P is a variable
such that the absence of v from P causes a violation of a
precondition or goal condition in the abstract plan for P . We
then use these flaws to refine the pattern collection (line 12).
The CEGAR loop continues until a time limit is reached (us-
ing parameter MAXTIME; line 4) or no more flaws exist.
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Computing Abstract Plans. COMPUTEPLAN(Π, P ) oper-
ates the abstract planning task Π|P . We refer to Rovner,
Sievers, and Helmert (2019) for pseudo-code. The function
first checks if Π|P is solvable. If not, CEGAR terminates
immediately because this proves that Π is also unsolvable.
Otherwise, we compute an optimal abstract plan. We con-
sider two kinds of abstract plans, with the choice between
the two kinds controlled by an algorithm parameter.

The first kind is a regular plan, i.e., the usual form of
plan for a planning task, represented as a sequence of op-
erator labels. This is a highly committing form of abstract
plan. Projections of planning tasks tend to have many par-
allel state transitions (multiple transitions between the same
pair of states labeled by different operators), and at the ab-
stract level there is no way to decide which of these is more
likely to lead to a successful plan in the concrete state space.

Therefore, as an alternative kind of abstract plan we con-
sider wildcard plans, where we commit to a single sequence
of abstract states, but leave the choice of which exact oper-
ators to apply in each step open. Mathematically, we repre-
sent wildcard plans as a sequence of steps, where each step
corresponds to one abstract state transition and is associated
with all minimum-cost operators that induce this state tran-
sition. The operators within each step are represented as a
sequence with uniformly random order. (The order matters
for function FINDFLAWS, described below.)

Besides the form of abstract plan, an important decision
is which abstract plan to compute because there are often
many different optimal abstract plans to choose from, even
with the less committing wildcard plans. To compute an op-
timal abstract plan, we first compute the perfect heuristic for
the projection (i.e., the pattern database for P ), which will
be needed anyway. We then extract a plan by performing the
equivalent of an A∗ search in the abstract space that consid-
ers the successors of every state in uniformly random order
and breaks ties when expanding nodes in favor of low h∗-
values primarily and using FIFO secondarily.

With a perfect heuristic, this can be implemented effi-
ciently as an enforced hill-climbing search (Hoffmann and
Nebel 2001) using h∗ as the heuristic and pruning all states
whose f -value does not equal h∗(s0). To faithfully capture
A∗ tie-breaking, we make one minor modification to the en-
forced hill-climbing algorithm: when expanding a state with
an improving successor, we pick a best improving successor
(uniformly randomly from all best improving successors)
rather than the first improving successor. In planning tasks
without zero-cost operators, this can be simplified further,
as the breadth-first aspect of enforced hill-climbing is never
needed: every non-goal state has an improving successor.
Finding Flaws. Function FINDFLAWS(Π, π,Blacklist) at-
tempts to execute the abstract plan π (regular or wildcard)
in the concrete planning task Π and returns the (possibly
empty) set of flaws which prevented executing π. In this
context, a flaw is a state variable v of Π. We only discuss
wildcard plans: regular plans can be viewed as a special case
where every plan step consists of one operator. We again re-
fer to Rovner, Sievers, and Helmert (2019) for pseudo-code.

The third input besides the planning task and abstract
plan is a set of “blacklisted” state variables. Flaws involving

blacklisted state variables are ignored. The main idea behind
blacklists is to allow the CEGAR process to continue when
space limitations prevent addressing certain flaws, but they
can also be used for diversification of the generated patterns.
More on both uses of blacklists below.

We attempt to execute π using a simple greedy approach.
A wildcard plan step (= sequence of operators) is applicable
in state s of Π if any of its operators is applicable in s, where
preconditions on blacklisted variables are ignored. Apply-
ing the plan step means applying the first such applicable
operator in s, leading to the successor state s′. We execute
the plan steps in π in sequence until we hit an inapplicable
plan step or until all plan steps have been applied. In the for-
mer case, we collect all non-blacklisted variables in the fail-
ing plan step with violated preconditions and return these as
the flaws responsible for the failure of π. In the latter case,
the flaws are all non-blacklisted variables of Π with violated
goal conditions after executing π. If all goal conditions are
satisfied, π executed successfully. In this case we check if
it would also execute successfully with no blacklisted vari-
ables. If yes, π represents an optimal solution to Π, and we
exit without returning to the CEGAR loop. If no, we return
the empty set of flaws but continue the CEGAR loop. (Other
flaws may exist for other patterns in the collection.)

We remark that less greedy approaches are possible: we
might backtrack over the choice points in executing a wild-
card plan, or we might consider multiple abstract plans.
However, this is computationally much more challenging.
In particular, it is easy to see that it is NP-complete to test
if a given wildcard plan has an executable instantiation and
PSPACE-complete to test if there exists an optimal abstract
plan that is also a concrete plan.

Repairing a Flaw. The final ingredient of the CEGAR al-
gorithm is function REFINE(C,Flaws,Blacklist), shown in
Algorithm 2. Its task it is to address one of the identified
flaws, which is selected uniformly randomly (line 2).

Recall that a flaw in this context is a pair 〈P, v〉 such that
the plan for P could not be executed because of a violation
of a (pre- or goal) condition on variable v /∈ P . Such a flaw
can be addressed by adding v to P (line 6). However, if v
is already present in some other pattern P ′ ∈ C, we cannot
add it to P directly without violating the disjointness of C.
Therefore, in this case the suggested repair is to merge P
and P ′ into a single pattern (line 4).

In either case, the suggested repair might be impossi-
ble because the resulting pattern collection would exhaust
memory limits. We enforce a maximal number of abstract
states for each individual PDB and a maximal number of
abstract states across all pattern databases. If the new collec-
tion would violate either limit, we abstain from updating C
and instead eliminate the flaw by adding v to the blacklist.

Runtime Analysis. It is easy to see that, even without time
and memory limits, the CEGAR loop would eventually ter-
minate because each iteration replaces some pattern in C by
a larger pattern or adds a variable to the blacklist.

Formally, define the potential of pattern collection C and
blacklist B as pot(C,B) =

∑
P∈C |P | − |C| + |B|, i.e.,

the total number of variables in all patterns minus the num-
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ber of patterns plus the number of blacklisted variables. At
the beginning of the algorithm with all-singleton patterns,
we have pot(C,B) = |B| ≥ 0, and at all times we have
pot(C) ≤ 2|V| − 1, with the maximum reached if all vari-
ables are present in the collection, there is only a single pat-
tern, and all variables are blacklisted. Each iteration of the
loop increases the potential by 1 (by adding a variable to one
of the patterns, thus increasing

∑
P∈C |P |, by merging two

patterns, thus decreasing |C|, or by adding a variable to the
blacklist, thus increasing |B|). Therefore, the total number
of loop iterations is bounded by 2|V| − 1.

We abstain from giving precise runtime bounds for each
of the individual operations within the CEGAR loop because
this would require more implementation details. Even so, it
is clear that all operations can be implemented in time that
is polynomial in the representation size of Π and the bound
on the total number of abstract states.

Multiple CEGAR Runs
A single disjoint pattern collection often does not lead to
a strong heuristic. We therefore also consider running the
CEGAR algorithm multiple times, combining all generated
patterns into an overall (usually non-disjoint) collection.
Rovner, Sievers, and Helmert (2019) shows pseudo-code.

Let Π = 〈V,O, s0, s?〉 be the input task. With multiple
CEGAR runs, there is no need for a single run to compute
multiple patterns. Indeed, it may be desirable for each run to
produce a single pattern, so that it can complete as quickly
as possible and in particular avoid the costly merging of pat-
terns. Therefore, we perform each CEGAR run on a modi-
fied task derived from Π by restricting the goal to a single
variable. (This task behaves exactly like Π, but has a larger
set of goal states.) The only modification of the CEGAR al-
gorithm necessary is that we can no longer exit the planning
algorithm completely when CEGAR finds a solution for its
planning task (the “early exit” in FINDFLAWS) because that
solution might not solve the original planning task.

The overall algorithm works as follows. We compute a
random permutation of the goal variables, over which we it-
erate indefinitely in cyclic order until a time limit is reached.
Each iteration applies CEGAR to Π restricted to the current
goal and adds the resulting pattern to the overall collection of
patterns. (Note that CEGAR always returns a single pattern
on a single-goal task.) Despite the randomness in the CE-
GAR algorithm, with many CEGAR runs we may of course
produce the same pattern multiple times. Therefore, we al-
low setting a stagnation time limit: if no new pattern is added
to the collection for a certain time, the algorithm terminates.

For further diversification of patterns, we also consider
algorithm variants where the calls to CEGAR pass in a ran-
dom blacklist. Let V ′ = V \ vars(s?). If random black-
listing is enabled, in each CEGAR run we select a number
K ∈ {0, . . . , |V| − 1} uniformly randomly and then select
a blacklist of K state variables, chosen uniformly randomly
from V ′. (If K > |V ′|, we select all variables in V ′.)

We consider two algorithm variants with blacklisting. In
both variants, blacklisting is initially disabled. In the first
variant, it is enabled after a given amount of time. In the

second, it is enabled when the stagnation limit triggers, i.e.,
at the point when stagnation would normally terminate the
algorithm. In this setting, we reset the stagnation timer when
blacklisting is enabled and terminate the algorithm when
stagnation triggers a second time.

Experiments
We implemented both CEGAR algorithms in Fast Down-
ward (Helmert 2006). We limited pattern construction time
to 100s and the number of states to 1M for individual PDBs
and 10M for all PDBs.

We include a simple randomized baseline for the CEGAR
algorithm, which we call (single) randomized causal graph
(sRCG). It computes a single pattern by performing a ran-
dom walk on the causal graph, starting from a random goal
variable, and adding each variable visited by the walk. Since
the CEGAR algorithm only ever adds variables to a pattern
that are connected to the existing pattern in the causal graph,
sRCG can be viewed as a “blind” variant of the CEGAR al-
gorithm not guided by flaws. Analogously to how the multi-
ple CEGAR algorithm works, mRCG repeatedly runs sRCG
to compute a pattern and thus serves as a blind variant of
the multiple CEGAR algorithm. As a state-of-the-art ap-
proach for computing a single pattern, we also implemented
the Gamer (G) algorithm (Kissmann and Edelkamp 2011) to
compute a PDB with at most 10M states (time limit 900s).

As state-of-the-art pattern collection generation tech-
niques, we consider the following three variants: the sys-
tematic generation of patterns (Pommerening, Röger, and
Helmert 2013) up to size 2 (SYS), the HC algorithm as im-
plemented in Fast Downward (Sievers, Ortlieb, and Helmert
2012), and the CPC algorithm. We run both HC and CPC
with a 100s time limit like our method, and also with a
900s time limit which is commonly used in the literature
(for CPC, the resulting configuration is identical to CPC-E
in the work of Franco et al., 2017), indicated by appending
1 or 9 to the algorithm name.

We evaluate all techniques (except the single PDBs sRCG
and G) using the CPDB heuristic and the SCP heuristic, the
latter using general costs and greedy computation of hybrid-
optimized orders for 200s as in the work by Seipp (2017).
All planners are run on all benchmarks from the optimal
tracks of all IPCs, a set consisting of 1827 tasks across 65
domains. Each run is limited to 1800s and 3.5 GiB. Ex-
periments were run on Intel Xeon Silver 4114 CPUs, using
Downward Lab (Seipp et al. 2017). All randomized algo-
rithms were run 10 times, and the reported results are aver-
ages over these 10 runs. For all results reported below, the
technical report (Rovner, Sievers, and Helmert 2019) con-
tains additional per-domain results.1

Disjoint Pattern Collections
We first evaluate the basic CEGAR algorithm (Algorithm 1)
to generate a disjoint pattern collection, comparing using
a regular plan (regP) vs. computing wildcard plans (wcP).

1Implementation: https://doi.org/10.5281/zenodo.2628703,
dataset: https://doi.org/10.5281/zenodo.2628693, benchmarks:
http://doi.org/10.5281/zenodo.2616479.
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regP wcP SYS HC1 CPC1 HC9 CPC9 sRCG G
C

PD
B Coverage 854.7 853.8 769 935.5 951.7 953.4 975.7 758.8 839

C. time 0.35 0.27 0.06 1.77 103.56 2.38 910.65 0.07 5.49

SC
P Coverage 943.7 946.6 981 946.4 1033.5 965.4 1021.1

C. time 0.63 0.48 0.05 3.05 103.82 4.97 876.21

Table 1: Coverage (sum) and construction time (geometric
mean for tasks where all algorithms completed construc-
tion) of the single CEGAR algorithm (first two columns),
SYS, HC, and CPC, with the CPDB (top) and SCP (bottom)
heuristics, and sRCG and G (single PDB heuristic).

Table 1 shows aggregated coverage and runtime to con-
struct pattern collections (excluding time to compute the
SCP heuristic).

Considering coverage first, we observe that both of our
methods are clearly better than the pattern computed by the
simple randomized baseline (sRCG) and by Gamer. Using
the more powerful wildcard plans is slightly better with the
SCP heuristic but not with the CPDB heuristic. Comparing
the heuristics more generally, it is clear that SCP is stronger
than CPDBs in exploiting the same collection of PDBs, how-
ever the impact is different for different pattern selection
methods. HC, which optimizes its collection for CPDBs,
profits the least. With CPC, the improvement is large in par-
ticular when using a 100s limit, presumably because the col-
lections generated by CPC grow too large when using a 900s
limit. CEGAR profits even more from using the SCP heuris-
tic, increasing coverage by 89 and 92.8. The best improve-
ment from changing the heuristic is obtained with the SYS
method, which is, however, mainly due to the fact that it per-
forms very poorly (close to the randomized baseline) with
the CPDB heuristic.

Compared to SYS, HC and CPC, the single CEGAR al-
gorithm lags behind in coverage, but it constructs the pattern
collection much faster than HC and CPC, though not faster
than SYS. On average, CEGAR only reaches the 100s con-
struction time limit on 7.25 tasks and solves 162.35 tasks
during pattern construction.

Multiple CEGAR Runs
We now evaluate the multiple CEGAR algorithm. We again
compare regular against wildcard plans (regP, wcP) and
evaluate using the vanilla algorithm (v), terminating after
stagnation for 20s (s), using blacklisting after 75s (b), and
the combination of both, i.e., using blacklisting after the first
stagnation (sb). We restrict the evaluation to the stronger
SCP heuristic and use the best settings for HC (900s) and
CPC (100s).

Table 2 shows a domain comparison in terms of coverage
and includes aggregated coverage and construction time in
the two rightmost columns. Comparing our different meth-
ods, we observe that stagnation (s) only slightly helps in
terms of coverage, but greatly reduces construction time.
Blacklisting (b), on the other hand, increases coverage, so
the intended diversification works as expected. Combining
both (sb) results in the best performance. Comparing reg-

regP wcP mRCG SYS HC9 CPC1 total c. t.

v s b sb v s b sb

re
gP

v – 4 6 6 11 11 12 11 28 24 24 24 1055.1 46.32
s 4 – 9 7 10 9 12 11 28 24 24 24 1054.9 28.98
b 15 14 – 2 19 19 11 10 34 24 30 27 1080.1 46.34
sb 16 15 6 – 20 19 13 11 34 24 30 27 1081.1 37.43

w
cP

v 18 17 18 16 – 3 7 7 27 22 25 24 1063.2 51.81
s 17 16 18 17 2 – 7 8 27 22 25 25 1063.7 29.20
b 24 24 18 16 17 17 – 3 33 22 31 28 1085.0 51.80
sb 25 25 18 17 18 17 6 – 33 22 31 28 1087.2 39.65

mRCG 18 18 14 14 18 18 12 12 – 17 22 14 1018.7 10.07
SYS 20 20 19 19 20 20 18 18 26 – 15 20 981 0.05
HC9 21 20 15 15 19 19 13 13 26 17 – 17 965.4 5.00
CPC1 26 26 23 23 23 23 20 20 32 23 28 – 1033.5 103.85

Table 2: Domain comparison in terms of coverage of the
multiple CEGAR algorithm (8 variants), mRCG, SYS, HC,
and CPC with the SCP heuristic. An entry in row x and col-
umn y denotes the number of domains in which x solves
more tasks than y. It is bold if (x, y) ≥ (y, x). The two
rightmost columns show total coverage and pattern collec-
tion construction time (c. t.) of the algorithm in the row.

ular vs. wildcard plans, there is clear preference for wild-
card plans, which compare favorably on a per-domain basis
against the regular plan variant.

Compared against the previous results of using a single
CEGAR algorithm run with the SCP heuristic, shown in Ta-
ble 1, coverage is increased dramatically from the previous
best value of 946.60 to 1087.2 (wcP+sb). This comes at the
cost of an increased construction time, which is, however,
still much lower than that of CPC. Furthermore, in terms of
coverage, all of our methods outperforms the previous state-
of-the-art pattern generation techniques, and our best config-
uration (wcP+sb) solves 53.7 tasks more than the previous
best method CPC.

Comparison Against State of the Art
Finally, we also compare against two related state-of-the-art
planners. The first is CPC with symbolic PDBs (CPC-S-P of
Franco et al., 2017). The second is hSCP

hybrid-opt (Seipp, Keller,
and Helmert 2017a), a planner using the same SCP heuristic
as in this work, but computed over PDBs generated through
HC and SYS and Cartesian abstractions generated with a
CEGAR approach. As a modification of this planner, we in-
clude our best approach (multiple CEGAR, wcP+sb) to its
set of sources for computing abstractions. We remark that
CPC-S-P corresponds to Complementary2 (Franco, Lelis,
and Barley 2018), the runner-up of IPC 2018, and hSCP

hybrid-opt
corresponds to Scorpion (Seipp 2018), the planner from IPC
2018 performing best the largest number of domains, except
that both IPC planners additionally use the h2-based prepro-
cessor by Alcázar and Torralba (2015).

Table 3 shows aggregated coverage. Our best planner out-
performs the symbolic variant of CPC, which benefits from
much larger PDBs due to their succinct symbolic represen-
tation. We thus believe that our techniques could be useful
also in the context of symbolic PDBs. The planner hSCP

hybrid-opt
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best CPC-S-P hSCP
hybrid-opt hSCP

hybrid-opt+best

Coverage 1087.2 1073 1129.5 1138.8

Table 3: Coverage of our best method (best), CPC-S-P,
hSCP

hybrid-opt, and an extension of hSCP
hybrid-opt to also compute

PDBs by using our best method.

is stronger than our best planner, but combining it with our
best technique slightly improves its coverage even further.

Conclusions
We described a new algorithm for computing pattern collec-
tions using the CEGAR principle. We first evaluated using
a single such CEGAR run to compute disjoint pattern col-
lections, which already achieves promising results with very
short pattern construction time. By embedding the CEGAR
algorithm in an approach that repeatedly uses a CEGAR
run to generate a single pattern and diversifying these pat-
terns over different CEGAR runs, we obtained a fast method
for generating large pattern collections. Computing the SCP
heuristic over these PDBs resulted in state-of-the-art perfor-
mance in pattern selection.

In future work, we would like to investigate further means
of diversifying the resulting pattern collections. The ap-
proach could be extended to also include domain abstrac-
tions. Finally, instead of computing heuristics after the pat-
tern selection process, the two could be combined, devising
a heuristic construction method that interleaves pattern se-
lection with cost partitioning.
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