
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Subset-Saturated Cost
Partitioning for Optimal Classical Planning

Jendrik Seipp, Malte Helmert
University of Basel
Basel, Switzerland

{jendrik.seipp,malte.helmert}@unibas.ch

Abstract

Cost partitioning is a method for admissibly adding multi-
ple heuristics for state-space search. Saturated cost partition-
ing considers the given heuristics in sequence, assigning to
each heuristic the minimum fraction of remaining costs that
it needs to preserve its estimates for all states. We generalize
saturated cost partitioning by allowing to preserve the heuris-
tic values of only a subset of states and show that this often
leads to stronger heuristics.

Introduction
Solving challenging search problems optimally often re-
quires using multiple heuristics (e.g., Holte et al. 2006). One
way to combine heuristics is to use the maximum over their
estimates. However, this only selects the single most accu-
rate heuristic for each state. Cost partitioning is a general
way to make adding multiple heuristics admissible by dis-
tributing the cost of each action among the heuristics.

The literature contains many cost partitioning algorithms
(e.g., Haslum, Bonet, and Geffner 2005; Haslum et al. 2007;
Katz and Domshlak 2008; 2010; Pommerening, Röger,
and Helmert 2013). Recent experiments (Seipp, Keller,
and Helmert 2017a) suggest that saturated cost partition-
ing (Seipp and Helmert 2014; 2018) is the cost partition-
ing method of choice for the benchmark set of the Inter-
national Planning Competitions (IPC). Saturated cost par-
titioning operates on a cost function c and a sequence of
heuristics H. Beginning with the first heuristic h in the se-
quence, it computes the minimum cost function c′ that h
needs to preserve its estimates under c for all states. It then
allocates this cost function c′ to h and iterates by partition-
ing the remaining cost function c− c′ among the remaining
heuristics in the sequence in the same way.

Choosing a cost function that preserves the heuristic value
of all states is a very conservative choice that strongly favors
heuristics that occur early inH. The second and later heuris-
tics in H only get to use costs that are of no possible utility
for the earlier heuristics in the sequence. Consequently, the
order of H strongly affects heuristic quality. Previous work
acknowledges this by maximizing over multiple saturated

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cost partitionings derived from different orders (e.g., Seipp,
Keller, and Helmert 2017b).

Preserving the heuristic values of all states is often waste-
ful. For example, if we can afford to compute a dedicated
cost partitioning for each state s encountered during search,
there is no need to preserve any heuristic values besides
h(s). In this paper, we generalize saturated cost partitioning
to preserve the heuristic values of a subset of states, which
can be the set of all states (as in previous work), a single
state, or anything in between. We then consider the theoret-
ical and computational properties of this generalization for
the case of abstraction heuristics.

It turns out that such “subset-saturated” cost partition-
ings have a more complex structure than in the case where
the heuristic values of all states are preserved. In particular,
previous results on the existence of unique minimal satu-
rated cost partitionings do not hold in the generalized set-
ting. Instead, minimal saturated cost partitionings for sub-
sets of states form a Pareto frontier with no obvious “best”
cost function, leaving a large design space for algorithms
that compute suitable cost functions.

We therefore conduct a more general study of cost parti-
tioning methods involving trade-offs between computation
time and the sets of states whose heuristic values are pre-
served. Our experiments show that a planning system us-
ing the new cost partitioning algorithms compares favorably
with earlier cost partitioning algorithms and other state-of-
the-art planning systems on the IPC benchmark suite.

Transition Systems
Cost partitioning can be applied to any collection of heuris-
tics for state-space search, and therefore our definitions are
not specific to classical planning. We first define transition
systems, which are also known as state spaces.
Definition 1. Transition Systems.
A transition system T is a directed, labeled graph defined by
a finite set of states S(T), a finite set of labels L(T), a set of

labeled transitions s `−→ s′ with s, s′ ∈ S(T) and ` ∈ L(T),
an initial state s0(T), and a set S?(T) of goal states.

The objective in state-space search is to find paths from
the initial state to a goal state.
Definition 2. Paths and Goal Paths.
Let T be a transition system. A path from s ∈ S(T) to s′ ∈

391

S(T) is a sequence of transitions from T (T) of the form

π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉, where s0 = s and
sn = s′. The length of π, denoted by |π|, is n. The empty
path (of length 0) is permitted if s = s′. A goal path from
s ∈ S(T) is a path from s to any goal state s′ ∈ S?(T).

So far, we have not introduced a notion of (label or path)
cost. This does not mean that we consider the unit-cost set-
ting but rather that cost functions must be provided in addi-
tion to the transition system. This separation makes it eas-
ier to consider the same transition system with varying cost
functions, which is a key concept for cost partitioning.

Definition 3. Cost Functions.
A cost function for transition system T is a function cost :
L(T) → R ∪ {−∞,∞}. A cost function cost is finite if
−∞ < cost(`) < ∞ for all labels `. It is non-negative if
cost(`) ≥ 0 for all labels `.

We write C(T) for the set of all cost functions for T and
C≥0(T) for the set of non-negative cost functions for T .

We speak of general cost functions when we want to
emphasize that a cost function is not required to be non-
negative or finite. Allowing infinite costs in cost functions
goes beyond previous work and is necessary to cleanly state
some of our formal results. Negative costs were already con-
sidered in previous work (Pommerening et al. 2015).

Allowing infinities means that we must take care in arith-
metic expressions that involve both +∞ and −∞. We will
consider two different kinds of addition. Left addition is de-
noted by the regular summation operators + (infix) and

∑
(prefix) and handles infinities as∞+x =∞ and−∞+x =
−∞ for all x, including x ∈ {∞,−∞}. In particular, sums
involving both kinds of infinities evaluate to the leftmost in-
finite value in the sum. This operation is associative, but not
commutative. We will use left addition to combine multiple
heuristic estimates within cost partitioning.

Path addition is denoted by the operators⊕ (infix) and
⊕

(prefix) and handles infinities as x ⊕ y = ∞ iff x = ∞ or
y = ∞, and x ⊕ (−∞) = −∞⊕ x = −∞ for all x 6= ∞.
In other words, sums involving mixed infinities evaluate to
+∞. This operation is associative and commutative. Path
addition is used to combine the costs of multiple transitions
along a path. We will interpret transitions of cost−∞ as “in-
finitely cheap” and transitions of cost∞ as “non-existent”,
which explains why −∞⊕∞ =∞: a path that uses a non-
existent transition cannot really be used and therefore has
infinite cost even if it uses an infinitely cheap transition. Of
course, this is just an intuitive interpretation. The formal rea-
son for these definitions is that they allow the usual theorems
on properties of heuristics and cost partitioning to generalize
to cases involving infinite costs.

With finite values, both kinds of summation follow the
usual rules of addition. Note that both operations behave
identically when at least one of the two operands is finite.
In fact, in sums involving two operands, the only difference
is that −∞+∞ = −∞, while −∞⊕∞ =∞.

Definition 4. Weighted Transition Systems.
A weighted transition system is a pair 〈T , cost〉 where T is
a transition system and cost is a cost function for T .

As usual, we extend cost functions from labels to paths.

Definition 5. Cost of a Path.
The cost of a path π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉 in a
weighted transition system 〈T , cost〉 is defined as cost(π) =⊕n

i=1 cost(`i).

Note that by our definition of path addition (
⊕

), the cost
of any path including a label of cost∞ is∞, even if the path
also includes labels of cost −∞.

We can now define the notion of optimal paths.

Definition 6. Goal Distances and Optimal Paths.
The goal distance of a state s ∈ S(T) in a weighted tran-
sition system 〈T , cost〉 is defined as infπ∈Π?(T ,s) cost(π),
where Π?(T , s) is the set of goal paths from s in T . (The
infimum of the empty set is∞.)

We write h∗T (cost, s) for the goal distance of s in 〈T , cost〉
and omit T from the notation where the transition system
does not matter or is clear from context.

A goal path π from s is optimal under the given cost func-
tion if cost(π) = h∗T (cost, s).

We define the goal distances as an infimum rather than a
minimum because it is possible that no minimum exists if
there are negative-cost cycles in the transition system.

In general, we have h∗(cost, s) ∈ R∪ {−∞,∞}, so goal
distances can be negative or infinite. If cost is non-negative,
then so is h∗. However, finite cost does not imply finite h∗:
h∗(cost, s) = −∞ can follow from cycles with negative fi-
nite cost and h∗(cost, s) =∞ from lack of goal paths.

In optimal classical planning, we are given a compact de-
scription of a transition system and a finite non-negative cost
function, and the objective is to find an optimal goal path for
the initial state or show that no such goal path exists.

Heuristics
Heuristics are functions that estimate goal distance (Pearl
1984). The literature usually defines heuristics as functions
of states, i.e., for a fixed cost function. We define them as
functions of cost functions and states so that we can intro-
duce the notion of cost partitioning cleanly.

Definition 7. Heuristics, Admissibility and Consistency.
A heuristic for a transition system T is a function h : C(T)×
S(T)→ R ∪ {−∞,∞}.

Heuristic h is admissible if h(cost, s) ≤ h∗T (cost, s) for
all cost ∈ C(T) and all s ∈ S(T).

Heuristic h is consistent if h(cost, s) ≤ cost(`) ⊕
h(cost, s′) for all cost ∈ C(T) and all s `−→ s′ ∈ T (T).

Heuristics are used in heuristic search algorithms like A∗

(Hart, Nilsson, and Raphael 1968) to find optimal goal paths.
These algorithms generally require admissible heuristics to
guarantee optimality of solutions, and consistency is usually
desirable to avoid extra work due to reopening of states.

Heuristics in the literature are usually defined for finite
non-negative cost functions. It is not necessarily obvious
how their definition and properties like admissibility gen-
eralize to arbitrary cost functions. In all cases where we

392

consider specific heuristics in this paper, these are abstrac-
tion heuristics (e.g., Edelkamp 2001; Helmert, Haslum, and
Hoffmann 2007; Katz and Domshlak 2008; 2010).

An abstraction heuristic for a transition system T is de-
fined by a transition system T ′ called the abstract tran-
sition system and a function α : S(T) → S(T ′) called
the abstraction function. The abstraction mapping must pre-
serve goal states and transitions; we refer to the literature
for details (Helmert, Haslum, and Hoffmann 2007). Heuris-
tic values are computed by mapping states of T (concrete
states) to states of T ′ (abstract states) and computing the
goal distance in the abstract transition system: h(cost, s) =
h∗T ′(cost, α(s)). We introduced h∗ for general cost func-
tions in Definition 6, so abstraction heuristics for general
cost functions are well-defined. Abstraction heuristics for fi-
nite non-negative cost functions are admissible and consis-
tent (e.g., Helmert, Haslum, and Hoffmann 2007). It is easy
to verify that admissibility and consistency generalize to ar-
bitrary cost functions (Seipp and Helmert 2019).

Note, however, that generalizing implementations of ab-
straction heuristics is more challenging than generalizing
their definition. For non-negative cost functions, abstract
goal distances can be computed with Dijkstra’s (1959) algo-
rithm, which can be implemented with worst-case runtime
O(N logN + M), where N = |S(T ′)| and M = |T (T ′)|
(Cormen, Leiserson, and Rivest 1990). For possibly negative
cost functions, no algorithms are known that substantially
outperform the Bellman-Ford algorithm (Bellman 1958) in
the worst case, whose worst-case runtime is O(NM).

If we consider a (not particularly large) abstract transition
system with N = 10000 states and at least N logN transi-
tions, this means that the Bellman-Ford algorithm is 10000
times slower than Dijkstra’s algorithm (ignoring the constant
factors hidden in the big-O notation). We will come back to
the question what this means for the practical use of abstrac-
tion heuristics with general cost functions later.

Cost Partitioning
Challenging state-space search problems often require using
multiple heuristics that capture different parts of the problem
(Holte et al. 2006). Cost partitioning (Katz and Domshlak
2008; 2010) is a general approach for combining multiple
admissible heuristics into a single admissible heuristic.

Definition 8. Cost Partitioning.
Let T be a transition system. A cost partitioning for a cost
function cost ∈ C(T) is a tuple 〈cost1, . . . , costn〉 ∈ C(T)n

whose sum is bounded by cost:
∑n
i=1 costi(`) ≤ cost(`) for

all ` ∈ L(T).
A cost partitioning algorithm for a transition system T

and a tuple of heuristics H = 〈h1, . . . , hn〉 takes a cost
function cost as its input and produces a cost partitioning
〈cost1, . . . , costn〉 for cost as its output. It induces the cost-
partitioned heuristic h(cost, s) =

∑n
i=1 hi(costi, s).

Note that according to our definition of left addition (
∑

),
the sum of multiple (positive or negative) infinite heuristic
estimates is the first infinite term.

Cost-partitioned heuristics derived from admissible (con-
sistent) component heuristics are admissible (consistent).

Cost partitioning forms the basis of most state-of-the-art
heuristics in optimal classical planning (e.g., Karpas and
Domshlak 2009; Helmert and Domshlak 2009; Pommeren-
ing, Röger, and Helmert 2013; Seipp and Helmert 2014;
Pommerening et al. 2015; Seipp, Keller, and Helmert 2017a;
Seipp 2017).

Katz and Domshlak (2008) studied cost partitioning in the
case where the overall cost function cost and component cost
functions costi are finite and non-negative. Pommerening et
al. (2015) generalized this by allowing negative costs in costi
(but not cost). It is easy to verify that the admissibility and
consistency results also apply to our more general definition
(Seipp and Helmert 2019).

It is possible to compute an optimal cost partitioning for
a given state (i.e., a cost partitioning resulting in the largest
possible heuristic value for the given state) in polynomial
time for abstraction (Katz and Domshlak 2008; 2010) and
landmark (Karpas and Domshlak 2009) heuristics. These re-
sults were initially proved for non-negative cost functions,
later generalized to possibly negative cost functions (Pom-
merening et al. 2015), and it is not difficult to further gen-
eralize them to handle infinite costs. However, the compu-
tation usually takes too much time and/or memory to be
feasible for challenging planning tasks (e.g., Pommerening,
Röger, and Helmert 2013; Seipp, Keller, and Helmert 2017b;
Seipp 2018).

Subset-Saturated Cost Partitioning
Saturated cost partitioning (Seipp and Helmert 2014; 2018)
is a greedy algorithm that quickly computes suboptimal cost
partitionings. It has been shown to perform significantly
better experimentally than other techniques such as opti-
mal cost partitioning, uniform cost partitioning, greedy zero-
one cost partitioning, and the canonical heuristic for pattern
databases (Seipp, Keller, and Helmert 2017a). Since we al-
ready described the algorithm in the introduction, we only
briefly recapitulate it here. We also provide a pseudo-code
definition of a generalized algorithm below (Definition 12).

Saturated cost partitioning works on a set of heuristics
processed sequentially. The cost function allocated to the
first heuristic is chosen in such a way that all heuristic val-
ues under this new cost function are identical to the heuristic
values under the original cost function. Among all cost func-
tions that satisfy this property, we select one where all label
costs are as low as possible. The leftover costs are then used
to recursively cost-partition the rest of the sequence.

Preserving the heuristic values of all states can be quite
wasteful. For example, some states might not be reachable
from the initial state, so that an algorithm like A∗ would
never consider their heuristic values. Instead of wasting
costs on uninteresting states, we may want to only preserve
the heuristic values of a subset of states in order to retain
a larger portion of the label costs for other heuristics. The
following two definitions formalize this idea.

Definition 9. Dominating Cost Functions.
Consider two cost functions cost and cost′ defined on the
same set of labels. We say that cost dominates cost′, in sym-
bols cost ≤ cost′, if cost(`) ≤ cost′(`) for all labels `.

393

In words, dominance is the usual elementwise partial or-
der on functions. This is a weak notion of dominance: cost ≤
cost′ does not imply that the two functions are different.

Definition 10. Saturated Cost Functions.
Consider a transition system T , a set of states S′ ⊆ S(T),
a heuristic h for T and a cost function cost ∈ C(T). A cost
function scf ∈ C(T) is saturated for S′, h and cost if

1. scf ≤ cost and
2. h(scf, s) = h(cost, s) for all states s ∈ S′.

A saturated cost function scf is minimal if no other satu-
rated cost function for S′, h and cost dominates it.

If scf is non-negative, it is minimal among non-negative
cost functions if no other non-negative saturated cost func-
tion for S′, h and cost dominates it.

The definition generalizes our previous definition (Seipp
and Helmert 2014), which considered the special case S′ =
S(T). A saturated cost function may not exceed the given
cost function cost and must preserve the heuristic values of
all states in the given subset. Such a function always exists:
cost itself satisfies both properties.

It is less obvious whether minimal saturated cost functions
always exist and whether such minima are unique when they
exist. Cost functions can be incomparable, so that in general
the minimal saturated cost functions form a Pareto set.

The key step in saturated cost partitioning is to compute
a saturated cost function for a given cost function. We call a
function that performs this computation a saturator.

Definition 11. Saturators.
Consider a transition system T , a set of states S′ ⊆ S(T)
and a heuristic h for T .

A saturator for S′ and h is a partial function saturate :
C(T)→ C(T) such that whenever saturate(cost) is defined,
it is a saturated cost function for S′, h and cost.

A saturator is general if its domain of definition is C(T). It
is non-negative to general (NNG) if its domain of definition
is C≥0(T). It is non-negative if its domain of definition is
C≥0(T) and it only produces cost functions in C≥0(T).

Saturators have not previously been introduced in the lit-
erature: earlier work exploited results on the uniqueness of
minimal saturated cost functions to simply speak of “the”
minimal saturated cost function. These uniqueness results
do not hold in the more general setting we consider.

However, saturators implicitly exist in earlier work. The
paper that introduced saturated cost partitioning (Seipp and
Helmert 2014) only considered non-negative saturators. This
was later generalized to NNG saturators (Keller et al. 2016).
General saturators have not been previously considered in
the literature. In the following we assume that saturators are
general unless stated otherwise.

We can now formally define our generalization of satu-
rated cost partitioning. The main differences to earlier defi-
nitions (e.g., Seipp and Helmert 2018) are that we consider
general cost functions, parameterize the definition by a sat-
urator and allow saturators for subsets of states.

Definition 12. Subset-Saturated Cost Partitioning.
Consider a transition system T , a set of states S′ ⊆ S(T),

a non-empty sequence of heuristicsH = 〈h1, . . . , hn〉 for T
and a sequence Saturate = 〈saturate1, . . . , saturaten〉 such
that saturatei is a saturator for S′ and hi for all 1 ≤ i ≤ n.

The saturated cost partitioning 〈cost1, . . . , costn〉 of the
cost function cost induced by Saturate is defined as:

remain0 = cost
costi = saturatei(remaini−1) for all 1 ≤ i ≤ n

remaini = remaini−1 − costi for all 1 ≤ i ≤ n,
where the auxiliary cost functions remaini represent the re-
maining costs after processing the first i heuristics inH.

The subtraction in the definition of remaini follows the
rules of left addition and the definition a − b := a + (−b).
Hence, if remaini−1(`) is (positively or negatively) infi-
nite, then we always obtain remaini(`) = remaini−1(`).
In particular, when the leftover costs for a label are ∞, we
may allocate cost ∞ to all further cost functions because
∞−∞ =∞ under left addition.

It is easy to see that the saturated cost partitioning is in-
deed a cost partitioning (Definition 8), i.e.,

∑n
i=1 costi(`) ≤

cost(`) for all labels `. For labels ` with cost(`) = ∞
this holds trivially. For labels ` with cost(`) = −∞, we
must have remaini(`) = −∞ for all 0 ≤ i ≤ n because
−∞ − x = −∞ for all x. Hence we get costi(`) = −∞
for all 1 ≤ i ≤ n because costi is bounded by remaini−1

by the definition of saturated cost functions, which shows∑n
i=1 costi(`) = −∞ = cost(`). (This uses n ≥ 1.)
It remains to consider the case where cost(`) is finite. If

all costi(`) are finite or −∞, the cost partitioning property
is easy to show, so consider the case where costi(`) = ∞
for some 1 ≤ i ≤ n. Let i0 be the smallest index with this
property. Then we must have remaini−1(`) =∞. With finite
cost(`), this is only possible if costj(`) = −∞ for some
j < i0, which implies

∑n
i=1 costi(`) = −∞ < cost(`).

In addition to the set of heuristics, there are two major
choice points in using saturated cost partitioning: firstly,
due to its greedy nature, the cost partitioning highly de-
pends on the order in which the heuristics are considered
(Seipp, Keller, and Helmert 2017b; Seipp 2017). Secondly,
the choice of saturators is clearly important. In the next sec-
tion, we introduce four saturators, discuss some of their the-
oretical properties and evaluate them experimentally.

When comparing saturators, we are particularly interested
in dominance results between saturated cost functions be-
cause dominating cost functions are “more economical” than
the cost functions they dominate: they achieve the same ob-
jective of preserving heuristic values while leaving a larger
portion of the available costs to the later heuristics in the se-
quence. Due to the greediness of saturated cost partitioning,
this does not necessarily translate into better overall heuris-
tics, but our experiments show that it usually does. The fol-
lowing general result is useful to establish dominance:
Theorem 1. Domination for S′′ ⊆ S′.
For a given transition system T , heuristic h for T and cost
function cost ∈ C(T), let SCF(X) be the set of saturated
cost functions for the set of states X ⊆ S(T), h and cost.

We say that a cost function cost is the unique minimum of
a set of cost functions Cost if it dominates all cost functions

394

in Cost. (Not all sets Cost have a unique minimum.)
Let S′′ ⊆ S′ ⊆ S(T). Then:

1. For all cost functions cost′ ∈ SCF(S′), there exists a cost
function cost′′ ∈ SCF(S′′) that dominates cost′.

2. If cost′′ is the unique minimum of SCF(S′′), then cost′′
dominates all cost functions in SCF(S′).

A corresponding result also holds for saturated cost func-
tions that are minimal among non-negative cost functions
rather than minimal in general.

To prove either result, it is sufficient to observe that
whenever requirement 2 for saturated cost functions (Def-
inition 10) holds for a given state set S′, it also holds for all
subsets S′′ ⊆ S′, and therefore SCF(S′′) ⊇ SCF(S′).

The practical significance of the theorem is that it shows
that saturators for S′′ ⊆ S′ are more economical than satu-
rators for S′. However, we must be careful to note that this
is a dominance results for sets: even minimal saturated cost
functions for SCF(S′′) are not guaranteed to dominate all
saturated cost functions for SCF(S′). This stronger notion
of dominance is only guaranteed if SCF(S′′) has a unique
minimum (part 2 of the theorem).

In summary, one way to obtain a dominating (more eco-
nomical) saturated cost function is to consider a subset of
states. A second way is to compose saturators, i.e., apply one
saturator to the output of another. We formalize this result in
the following theorem.

Theorem 2. Domination by Composing Saturators.
Let saturate1 and saturate2 be general saturators for the
same transition system T , state set S′ and heuristic h. Let
saturate12 : C(T) → C(T) be the composition of these sat-
urators, i.e., saturate12(cost) = saturate2(saturate1(cost))
for all cost functions cost ∈ C(T).

Then saturate12 is a general saturator for T , S′ and h,
and for all cost functions cost ∈ C(T), saturate12(cost)
dominates saturate1(cost).

In other words, we can “improve” any saturator (make it
more economical) by applying another saturator to its result.

The theorem follows directly from requirement 1 for sat-
urated cost functions: the composed saturator consists of the
outer saturator applied to the inner saturator, and the result
of every saturator must dominate its input by requirement 1.

The same result holds for non-negative saturators and
non-negative cost functions, but not for NNG saturators be-
cause in this case the inner saturator saturate1 can produce a
possibly negative cost function which saturate2 cannot pro-
cess. The ability to compose saturators in this way is the
main reason why we introduced general saturators in Defi-
nition 11 rather than limiting the definition to the previously
considered NNG saturators.

For NNG saturators, we can use a modified form of com-
position: saturate12 = saturate2(max(saturate1(cost), 0)),
where 0 is the constant-zero function and max is element-
wise maximum. In words, negative costs produced by the
inner saturator are replaced by 0. The resulting function is a
saturator because all original costs for an NNG saturator are
at least 0, so raising the output of saturate1 to 0 does not vio-
late requirement 1 of Definition 10. However, the dominance

result of Theorem 2 does not hold in this case.1

Saturators for Abstraction Heuristics
In the following, we introduce and analyze several saturators
for (explicitly represented) abstraction heuristics. The gen-
eral theory in the previous sections is not limited to abstrac-
tions, but the practical computation of suitable saturators for
other classes of heuristics (other than landmark heuristics,
which can easily be compiled into abstraction heuristics) is
an open research question not addressed in this paper.

Saturate for All States (all)
We start with the saturator that preserves the heuristic esti-
mates for all states, as in previous work. We will call this
saturator all in the following. In previous work (Seipp and
Helmert 2018), we show how to compute a cost function
mscf ≤ cost (both in the non-negative and NNG case) that
preserves all heuristic estimates and that is a unique min-
imum among all such cost functions. The key idea is to
make sure that for each label `, the consistency constraint
h(mscf, s) ≤ mscf(`) + h(mscf, s′) is tight for at least one
state transition s `−→ s′. In the NNG case, this can be en-
forced by setting

mscf(`) = sup

a
`−→b∈T (T ′)

s.t. h∗T ′ (cost,a)<∞

(h∗T ′(cost, a)− h∗T ′(cost, b)),

where T ′ is the abstract transition system underlying h. (The
supremum of the empty set is −∞.) For the non-negative
cost setting, replace all negative costs in the result by 0.

To turn this idea into a general saturator, we need to
handle negative and infinite label costs in the input. This
can be achieved by applying three preprocessing steps to
T ′ before computing mscf. Firstly, for all labels ` with
cost(`) = ∞, set mscf(`) = ∞, remove all transitions la-
beled with ` from the transition system, and continue the
computation of mscf as if ` did not exist.2 Secondly, remove
all abstract states with h∗T ′(cost, a) = −∞ and their inci-
dent transitions. (Note that such states can also arise in the
finite-cost case due to negative cost cycles.) These do not
need to be considered because h∗T ′(cost, a) = −∞ implies
h∗T ′(cost′, a) = −∞ for all cost functions cost′ ≤ cost be-
cause goal distances monotonically depend on the cost func-
tion. Hence, their heuristic value will be preserved by every
cost function bounded from above by cost. Finally, remove
all abstract states and incident transitions from which there
is no path to the goal. For these the heuristic value is∞ in-
dependently of the cost function, so again they do not need

1In the next section we consider the perim saturator, which can-
not handle finite negative costs in its input, but can handle −∞. In
this case, we replace finite negative costs by 0 but preserve −∞.

2Strictly speaking, this may assign a higher cost to ` than nec-
essary, and thus the resulting cost function might not be minimal.
But this is never an issue because there is no need to save costs
when cost(`) = ∞, as the remaining costs will be ∞ no matter
how we set mscf(`), as ∞ −∞ = ∞ under left addition. Thus,
fully utilizing infinite costs is an optimal choice.

395

to be considered when computing mscf. After these transfor-
mations, all remaining goal distances in T ′ are finite, and we
can apply the original algorithm.

Saturate for Reachable States (reach)
In a forward search, there is no point in preserving heuristic
values of states that cannot be reached from the initial state,
as these values are never used during search. In an abstrac-
tion heuristic, we can overapproximate the set of reachable
states by the preimage S′ of all abstract states that are reach-
able in the abstract transition system.

Our second saturator, denoted by reach, is a saturator for
this set S′. It can be computed by pruning all unreachable
states from the abstract transition system T ′ (since we do
not want to preserve their values) and then applying the all
saturator to the result. For the same reason as for all, this
results in the unique minimum saturated cost function for
S′.

We will consider two different variants of reach in our
experiments. In the online setting, where we compute a dif-
ferent saturated cost partitioning for each state s encoun-
tered during search, we evaluate reachability with respect to
s. In the offline setting, where we precompute saturated cost
partitionings prior to search that are then used for all states
encountered during search, we evaluate reachability with re-
spect to the initial state. In this way, in either setting reach
only ever disregards states that do not matter.

We remark that the same general idea of pruning the “un-
interesting” states from T ′ does not work for arbitrary sets
S′. For example, we can clearly not compute a saturated cost
function that preserves just the initial state by pruning all ab-
stract states other than the abstract initial state. Unless the
abstract initial state is an abstract goal state, this would re-
sult in an empty transition system and hence in the constant
saturated cost function−∞. The critical property that makes
this idea work for S′ is that goal paths from reachable states
can only pass through reachable states. A similar goal path
closure property will also be important for the next saturator.

Saturate for a Perimeter (perim)
So far, we have considered saturators that preserve all po-
tentially useful heuristic values. The remaining two satura-
tors are less conservative. The perimeter saturator (perim)
preserves all heuristic values within a given perimeter of
the goal. It is based on the idea, well-established in heuris-
tic search (e.g., Holte et al. 2004; 2006; Torralba, Linares
López, and Borrajo 2018), that it is more important for
heuristic estimates to be accurate close to the goal than far
away from the goal.

Given an abstraction heuristic h based on abstract transi-
tion system T ′ and a numerical parameter k ≥ 0, consider
the set of states within a perimeter of k of the goal, i.e., with
heuristic values of at most k: S′k = {s ∈ S | h(cost, s) ≤
k}. In the abstract transition system, this corresponds to all
abstract states a with h∗T ′(cost, a) ≤ k.3 If cost is a non-

3In general, this set of abstract states might be larger than nec-
essary to cover S′

k because there may exist abstract states with no
concrete preimage, and such abstract states would not need to be

negative function, this set satisfies a somewhat weaker vari-
ant of the goal path closure property: goal paths starting in
states in S′k may pass through states outside the perimeter,
but they must eventually return to a state on the boundary of
S′k and then stay inside S′k until they reach a goal state.

In the setting of non-negative cost functions, this closure
property is sufficient for the same idea that we used for reach
(restrict T ′ to S′k, then apply the all saturator to the result)
to result in a unique minimum saturated cost function for S′k
in the case where all label costs are 0 or 1. However, this
uniqueness property does not hold in general.

For general non-negative cost functions, things are
slightly more complicated for the same reason that algo-
rithms like perimeter search (Dillenburg and Nelson 1994)
are more complicated for non-unit-cost problems. In this
case, a saturated cost function for S′k can be computed by
applying the reach saturator to a modified transition sys-
tem, where in addition to the states from S′k we include all
abstract states a with h(cost, a) > k for which there ex-
ist abstract state transitions a `−→ b with h(cost, b) < k <
h(cost, a) that “pierce” the perimeter, along with all such
transitions (but not other transitions incident to such states
a). We then treat these added states as if they had a heuristic
value of k. This modification ensures that the states on the
boundary of S′k cannot be bypassed.

For negative costs, the situation is yet more complicated,
and we conjecture that computing a perimeter with an effec-
tive closure property requires at least as much work as find-
ing shortest paths in directed graphs with possibly negative
edge costs. This can become prohibitive even for moderate-
size abstractions, and hence we only consider non-negative
cost functions as inputs for perim. (As an exception, we do
support label cost −∞ because it can be removed in prepro-
cessing as discussed for all.)

In our experiments, we set the parameter k to h(cost, s)
when using the perim saturator for heuristic h. Here, cost
is the cost function to which perim is applied, and s is the
currently evaluated state (in the online setting) or the sample
state for which the cost partitioning is optimized (in the of-
fline setting; see the section describing the experiments for
more details).

Saturate for a Single State (lp)
We conclude our discussion of saturators by considering the
least conservative case of only preserving the heuristic value
for a singleton state set {s}. In an online setting with a ded-
icated cost partitioning for each state, such a saturator can
potentially result in the best heuristic values, as it does not
spend costs on anything other than the evaluated state.

Single-state saturation is more complex than the earlier
saturators because there is no unique minimum, not even in
the non-negative finite case. Consider a saturator for {s} in a

considered. All our experiments are based on induced abstractions,
in which the abstraction mapping α is surjective and therefore this
case cannot arise. The perimeter saturator is still applicable without
this restriction, but considering more abstract states than necessary
means potentially missing an opportunity to preserve more costs.

396

transition system with two goal paths for s, one using the la-
bels `1 and `2 and another using the label `3. All labels have
unit cost. Then all cost functions cost′ with cost′(`3) = 1
and cost′(`1) + cost′(`2) = 1 are minimum saturated cost
functions for {s}. In general, the minimum saturated cost
functions form a large Pareto frontier with no obvious mech-
anism to select from the frontier. Many of these minima do
not even dominate the much more conservative saturator all,
as we will see in the experiments in the following section.
One remedy for this is to compose saturators (Theorem 2).
By first applying all and then the single-state saturator, we
can guarantee dominance over all.

As a consequence of the complex solution structure, there
is no obvious greedy way of computing a minimum satu-
rated cost function for a single state. We conjecture that the
problem is at least as hard as finding shortest paths in di-
graphs with possibly negative arc weights.

We solve the problem by linear programming and call the
resulting saturator lp. We first restrict the transition systems
to all states that lie on paths between s and a goal state and
remove all infinities, as in all. It is then easy to verify that
the set of saturated cost functions for cost and {s} for the
abstract transition system T ′ and abstraction function α can
be characterized by the following linear constraints:

Ha ≤ 0 for all a ∈ S?(T ′) (1)

Ha ≤ C` + Hb for all a `−→ b ∈ T (T ′) (2)

C` ≤ cost(`) for all ` ∈ L(T ′) (3)
Hα(s) = h(s) (4)

The variables C` encode the saturated cost function, and the
variables Ha represent h∗ values in T ′ under this cost func-
tion. (Using a standard LP trick, Ha may be an underestima-
tion of the true h∗.) A Pareto-optimal solution can then be
extracted by solving the LP with a suitable objective func-
tion. We choose to minimize

∑
`∈L C` where L is the set of

labels occurring in any constraint. Any other linear combina-
tion of these variables with positive coefficients would also
result in a Pareto-optimal solution. The costs of all labels not
mentioned in any constraints are set to −∞.

We remark that the same approach can be used to saturate
for arbitrary subsets of states S′ by restricting the transition
system to all states between S′ and the goal and using the
same LP, but with one constraint of type (4) for each s ∈ S′.

Negative Costs and the Offline Setting
We conclude this section by discussing a computational con-
cern. In general, subset-saturated cost partitioning requires
the ability to evaluate a given heuristic under an arbitrary
cost function. Before processing heuristic hi, we must eval-
uate it under the remaini cost function, and after computing
costi, we may have to reevaluate hi under the costi func-
tion. The first reevaluation is generally not too costly be-
cause remaini is always a non-negative cost function (for
non-negative original cost functions, as in classical plan-
ning). However, costi can in general include negative costs.

This has not been an issue in earlier work on saturated
cost partitioning, which used the all saturator that guaran-
tees that hi(remaini, s) = hi(costi, s) for all states s, so no

recomputation is required. It is also not an issue in the online
setting where we only need the heuristic value of one state
s, which is preserved by the cost partitioning. However, it is
a concern when we saturate a heuristic for a state subset S′
and later evaluate it on states s /∈ S′. When negative costs
are permitted, this requires algorithms like Bellman-Ford to
reevaluate the heuristic. We found this to be prohibitively ex-
pensive in experiments. Therefore, we do not actually com-
pute hi(costi, s) but rather use a lower bound that can be
directly extracted from the computations of the saturators,
trading off heuristic quality for computation time.

For all states preserved by the saturators, the exact heuris-
tic values are known. For states where the preprocessing of
infinities detects that the heuristic value must be∞ or −∞,
we use these values. For reach, we use −∞ for all unreach-
able states, since these heuristic values will never be evalu-
ated anyway. For perim with a perimeter radius of k, we use
a heuristic value of k for all states outside the perimeter. Fi-
nally, for lp we use the values of the LP variables Ha for all
abstract states present in the LP and −∞ for all others. All
these values can be extracted with very little overhead while
computing the saturated cost functions.

Experiments
We implemented all saturators in the Fast Downward plan-
ning system (Helmert 2006) and conducted experiments
with the Downward Lab toolkit (Seipp et al. 2017) on Intel
Xeon Silver 4114 processors. Our benchmark set consists of
all 1827 tasks without conditional effects from the optimiza-
tion tracks of the 1998–2018 IPCs. We use a time limit of 30
minutes and a memory limit of 3.5 GiB.

We compute saturated cost partitionings over the same set
of abstraction heuristics as in earlier work (Seipp 2018):
pattern databases found by hill climbing (Haslum et al.
2007), systematic pattern databases (Pommerening, Röger,
and Helmert 2013) and Cartesian abstractions of landmark
and goal task decompositions (Seipp and Helmert 2018). We
order the heuristics according to the greedy ordering method
with the h

stolen scoring function, the best ordering in previous
work on saturated cost partitioning (Seipp 2018). This or-
dering method takes a state as an input and attempts to order
the heuristics in a way that is good for this state. The order-
ing does not depend on which saturator is used. All bench-
marks4, code5 and experimental data6 have been published
online.

Online Subset-Saturated Cost Partitioning
We first consider the online setting where we compute a sat-
urated cost partitioning for each state evaluated during an A∗

search. (This also includes computing a potentially different
heuristic order for each state.) In addition to the four basic
saturators all, reach, perim and lp, we consider composi-
tions, which we write in forward composition notation. For
example, “reach, perim, lp” means to first apply the reach
saturator, then perim on its result, then lp on that result.

4Benchmarks: https://doi.org/10.5281/zenodo.2616479
5Code: https://doi.org/10.5281/zenodo.2616502
6Experimental data: https://doi.org/10.5281/zenodo.2616510

397

al
l

re
ac

h

pe
ri

m

re
ac

h(+
) ,p

er
im

lp al
l,

lp

re
ac

h,
lp

pe
ri

m
,l

p

re
ac

h(+
) ,p

er
im

,l
p

all – 2 2 2 88 2 2 2 2
reach 15 – 5 2 88 2 2 2 2
perim 433 430 – 0 142 15 15 6 6
reach, perim 436 434 6 – 142 15 15 6 6
lp 493 490 229 226 – 79 79 84 84
all, lp 507 505 219 216 179 – 0 12 12
reach, lp 507 505 219 216 179 0 – 12 12
perim, lp 512 510 217 214 185 16 16 – 0
reach, perim, lp 512 510 217 214 185 16 16 0 –

all – 2 65 65 407 5 5 53 53
reach 48 – 75 69 412 11 4 58 57
perim 325 314 – 0 505 109 92 3 3
reach+, perim 332 319 21 – 507 113 95 4 3
lp 282 277 169 168 – 107 100 110 110
all, lp 367 359 236 234 505 – 6 117 117
reach, lp 378 370 241 238 521 28 – 119 118
perim, lp 407 397 199 188 542 133 117 – 0
reach+, perim, lp 408 397 200 188 542 134 117 1 –

Table 1: Per-task comparison of heuristic estimates for the
initial state. Top: non-negative saturators. Bottom: general
saturators. The entry in row r and column c shows the num-
bers of tasks where saturator r returns a higher initial state
estimate than saturator c. We only consider the 1506 (non-
negative) and 1390 (general) tasks for which all nine config-
urations compute the initial state heuristic value within the
time and memory limits. We highlight the maximum of the
entries (r, c) and (c, r) in bold.

Using Theorems 1 and 2 we can restrict the set of use-
ful combinations. For example, all only makes sense at the
beginning of a composition and lp only at the end, and
many combinations are redundant. For example, “all, reach”
would be equivalent to reach. This still leaves a large set of
possibilities, of which we consider a reasonable subset.

The upper part of Table 1 compares the quality of the
resulting heuristics by showing in how many benchmarks
a given non-negative saturator results in a higher initial
heuristic value than another non-negative saturator. We see
that ignoring unreachable states (reach) has a mild benefit
over considering all states (all). Saturating for the perimeter
(perim) has a very significant advantage over all and reach.
Comparisons with the lp saturator have the largest variance:
it is very often better than the other saturators, but also often
worse, even when compared to all. This can be explained
by the lack of unique minimum when saturating for a single
state, as different cost functions from the Pareto frontier can
behave wildly differently.

Coverage Evals/sec h(s0) higher

nn gen nn gen nn gen

all 680 703 940.9 946.2 7 195
reach 657 679 501.4 514.1 5 222
perim 722 726 897.7 906.6 4 99
reach(+), perim 689 695 415.1 423.1 4 111
lp 360 320 8.7 6.9 493 144
all, lp 385 354 10.0 8.1 138 180
reach, lp 384 355 9.9 8.1 120 181
perim, lp 392 367 11.0 8.8 31 134
reach(+), perim, lp 395 366 10.8 8.7 30 134

Table 2: Comparison of non-negative (nn) and general (gen)
saturators in the online setting. Coverage: Number of solved
tasks. Evals/sec: geometric mean of evaluations per sec-
ond for the 131 commonly solved tasks that need at least
100 evaluations. h(s0) higher: number of tasks where non-
negative/general saturators yield a higher h(cost, s0) than
their counterparts among the 1389 tasks for which all heuris-
tics report h(cost, s0) in both settings.

Composing multiple saturators clearly pays off, underlin-
ing the dominance result of Theorem 2. In particular, ap-
plying lp after other saturators stabilizes its behavior. The
best configuration reach, perim, lp produces a better heuris-
tic estimate than the previous state of the art all in 512 cases,
while being worse in only 2.

The corresponding results for general saturators are
shown in the lower part of Table 1.7 Most trends are sim-
ilar to the non-negative scenario, but there is much more
variance. Most strikingly, lp is worse than the other basic
saturators more often than not, showing that selecting ap-
propriately from the Pareto frontier is even more of an issue
for general cost functions. Combining reach and/or perim
with lp results in the strongest heuristics.

Table 2 shows coverage results and state evaluation rates
for planning algorithms using these saturators. We see that
an increase in heuristic accuracy does not always lead to
solving more tasks. As a reminder, these algorithms com-
pute a new cost partitioning for each evaluated state. Satu-
rator reach has a noticeable runtime overhead, and the over-
head of lp is so large that this saturator is clearly not worth
using in this context. In contrast, since perim is almost as fast
to evaluate as all (Table 2) and yields better estimates (Ta-
ble 1), it solves more tasks than all in both the non-negative
and the general setting.

Table 2 also shows that all non-LP-based saturators per-
form significantly better in terms of heuristic quality, run-
time and coverage when producing general cost functions

7The reach+ saturator is a version of reach that replaces all fi-
nite negative costs with 0 but preserves −∞. This modification is
necessary in compositions with perim because, as discussed in the
previous section, perim cannot handle finite negative costs.

398

al
l

re
ac

h

pe
ri

m

lp pe
ri

m
?

Coverage

all – 1 9 36 1 1136
reach 0 – 8 36 1 1134
perim 1 2 – 36 0 1117
lp 0 0 0 – 0 694
perim? 4 4 11 36 – 1144

Table 3: Per-domain coverage comparison of saturated cost
partitioning heuristics computed offline using different sat-
urators. The entry in row r and column c shows the number
of domains in which saturator r solves more tasks than sat-
urator c. For each saturator pair we highlight the maximum
of the entries (r, c) and (c, r) in bold. Right: Total number
of solved tasks.

than when producing non-negative ones. Therefore, we only
consider general saturators in the remaining experiments.

Offline Subset-Saturated Cost Partitioning
As shown by the low state evaluation rates in the online
experiment, saturated cost partitioning appears to be more
useful as an offline technique, where one or more cost par-
titionings are precomputed and then used for all states en-
countered during search. This is the setting in which satu-
rated cost partitioning has previously been considered (e.g.,
Seipp, Keller, and Helmert 2017b). Therefore, we now re-
port results for precomputed cost partitionings.

We follow our previous approach (Seipp, Keller, and
Helmert 2017b), changing only the saturators used. We
start with an empty family F of cost-partitioned heuristics
and sample 1000 evaluation states Ŝ with random walks
(Haslum et al. 2007). We then iteratively sample a new state
s called an optimization target in the same way, compute
a heuristic order and saturated cost partitioning optimized
for s and add the resulting cost-partitioned heuristic h to F
if there exists an evaluation state ŝ ∈ Ŝ for which h(ŝ) is
larger than for all heuristics already in F . For both the eval-
uation states and the optimization targets, the first generated
state is the initial state rather than a state sampled by ran-
dom walk. We stop this diversification procedure after 200
seconds and then perform an A∗ search using the maximum
over the heuristics in F .

Unlike the online setting, for saturators other than all and
reach, the precomputed heuristics can be evaluated on states
whose heuristic values the saturators in question made no
attempt to preserve. Saturated cost partitioning using the
perim saturator will spend no label costs on states outside
the perimeter, even if this means that label costs remain com-
pletely unused. This is clearly undesirable and easy to ad-
dress. If any costs are left over after a full cost partitioning
run using perim, we can start another cost partitioning run
with the remaining costs using the all saturator, which al-
ways exploits all exploitable costs. This results in two cost
functions for each component heuristic, which can simply be

Comp1 Comp2 PPDBs perim?
M

Coverage 1028 1100 1085 1195
#Domains perim?

M better 28 26 27 –
#Domains perim?

M worse 12 15 13 –

Table 4: Total and per-domain coverage comparison of state-
of-the-art planners.

added. We call the resulting approach perim? = perim + all.
Table 3 shows the results of this experiment. We present

overall coverage and the number of domains in which al-
gorithm X solves more tasks than algorithm Y for all pairs
(X,Y). We see that the lp saturator is clearly too slow even
when used in this offline setting and the runtime penalty for
reach also makes it perform slightly worse than all. The
perim saturator by itself leaves too much cost unused for
good overall performance, but in the perim? variant, it leads
to an improvement over the previous state of the art all.

The strong performance of perim? raises the question
how this algorithm fares against the state of the art in op-
timal classical planning. Table 4 compares perim? to the top
three non-portfolio planners from IPC 2018, Complemen-
tary1 (Franco et al. 2018), Complementary2 (Franco et al.
2017) and Planning-PDBs (Moraru et al. 2018). Since all
three IPC planners prune irrelevant operators in a prepro-
cessing step (Alcázar and Torralba 2015), Table 4 evaluates
a version of perim? that uses the same technique, denoted by
perim?M. The results show that perim?M has an edge over the
three IPC planners in a per-domain comparison and solves
the highest number of tasks in total.

Conclusion
We generalized the saturated cost partitioning algorithm by
preserving the heuristic estimates only for a subset of states.
To evaluate our generalization we introduced several satura-
tors for computing saturated cost functions. Both in the on-
line setting, where we compute a cost partitioning for each
evaluated state, and the offline setting, where we precompute
a set of cost-partitioned heuristics before search, the subset
saturators yield stronger heuristics than the earlier saturators
that preserve all heuristic values.

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639).

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Proc. ICAPS 2015, 2–6.
Bellman, R. E. 1958. On a routing problem. Quarterly of
Applied Mathematics 16:87–90.

399

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. The MIT Press.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
AIJ 65:165–178.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Franco, S.; Torralba, Á.; Lelis, L. H. S.; and Barley, M.
2017. On creating complementary pattern databases. In
Proc. IJCAI 2017, 4302–4309.
Franco, S.; Lelis, L. H. S.; Barley, M.; Edelkamp, S.; Mar-
tines, M.; and Moraru, I. 2018. The Complementary1 plan-
ner in the IPC 2018. In IPC-9 planner abstracts, 28–31.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
AAAI 2005, 1163–1168.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple pattern databases. In Proc. ICAPS 2004,
122–131.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. AIJ 170(16–17):1123–1136.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M., and Domshlak, C. 2008. Optimal additive com-
position of abstraction-based admissible heuristics. In Proc.
ICAPS 2008, 174–181.
Katz, M., and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ 174(12–13):767–798.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings for
Cartesian abstractions in classical planning. In Proc. IJCAI
2016, 3161–3169.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs planner. In IPC-9 planner abstracts,
69–73.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proc. ICAPS 2014, 289–297.
Seipp, J., and Helmert, M. 2018. Counterexample-guided
Cartesian abstraction refinement for classical planning. JAIR
62:535–577.
Seipp, J., and Helmert, M. 2019. Subset-saturated cost par-
titioning for optimal classical planning: Additional details.
Technical Report CS-2019-001, University of Basel, Depart-
ment of Mathematics and Computer Science.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; Keller, T.; and Helmert, M. 2017a. A comparison
of cost partitioning algorithms for optimal classical plan-
ning. In Proc. ICAPS 2017, 259–268.
Seipp, J.; Keller, T.; and Helmert, M. 2017b. Narrowing
the gap between saturated and optimal cost partitioning for
classical planning. In Proc. AAAI 2017, 3651–3657.
Seipp, J. 2017. Better orders for saturated cost partitioning
in optimal classical planning. In Proc. SoCS 2017, 149–153.
Seipp, J. 2018. Counterexample-guided Cartesian Abstrac-
tion Refinement and Saturated Cost Partitioning for Optimal
Classical Planning. Ph.D. Dissertation, University of Basel.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. AIJ 259:1–31.

400

