
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Learning Scheduling Models from Event Data

Arik Senderovich, Kyle E. C. Booth, J. Christopher Beck
Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada

sariks@mie.utoronto.ca, kbooth@mie.utoronto.ca, jcb@mie.utoronto.ca

Abstract

A significant challenge in declarative approaches to schedul-
ing is the creation of a model: the set of resources and their
capacities and the types of activities and their temporal and
resource requirements. In practice, such models are developed
manually by skilled consultants and used repeatedly to solve
different problem instances. For example, in a factory, the
model may be used each day to schedule the current customer
orders. In this work, we aim to automate the creation of such
models by learning them from event data. We introduce a
novel methodology that combines process mining, timed Petri
nets (TPNs), and constraint programming (CP). The approach
learns a sub-class of TPN from event logs of executions of
past schedules and maps the TPN to a broad class of schedul-
ing problems. We show how any problem of the scheduling
class can be converted to a CP model. With new instance data
(e.g., the day’s orders), the CP model can then be solved by
an off-the-shelf solver. Our approach provides an end-to-end
solution, going from event logs to model-based optimal sched-
ules. To demonstrate the value of the methodology we conduct
experiments in which we learn and solve scheduling models
from two types of data: logs generated from job-shop schedul-
ing benchmarks and real-world event logs from an outpatient
hospital.

Introduction
In declarative approaches to problem solving, the problem is
modeled in a formal language and solved by a general pur-
pose solver for the chosen formalism. Research in such areas
as AI planning, mixed integer programming, and constraint
programming has, therefore, addressed both how to model a
problem and how to build a formalism-specific solver.

In this work, we attack the modeling challenge by devel-
oping an approach to learn models of scheduling problems
from data. For many real-world scheduling applications, data
comes in the form of event logs: records of the executed
activities, their start and completion times, and the resources
that these activities used (van der Aalst 2011). We propose
to learn scheduling problems from logs using an existing
process mining solution and transform them into constraint
programming (CP) models that can be solved by an appropri-
ate solver. We assume the execution as recorded in the event

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

log does not violate any problem constraints, yet make no
assumptions about the quality of the schedule. As a result,
the logs may arise from the execution of schedules from any
source including model-less and manual approaches (e.g.,
decisions made by staff).

Figure 1 presents an overview of our approach. In
the first step, we apply an existing process mining
method (Senderovich et al. 2015) to mine the event logs.
The result is a timed Petri net (TPN), a well-established ex-
pressive formalism for modeling dynamic systems (Silva
and del Foyo 2012). We then map the mined TPN to a ba-
sic scheduling problem (BSP) provided that the TPN obeys
structural properties which can be efficiently detected. The
BSP captures a class of scheduling problem, generalizing
well-known classes such as job-shop scheduling. The final
step converts the BSP into a CP model which can then be
repeatedly solved with new data (e.g., new customer orders,
new patients to be treated) to produce schedules for the target
facility.

We provide a proof of concept implementation of our ap-
proach and evaluate it in a two-phased experiment. In the
first phase, we learn models of job-shop scheduling bench-
marks using synthetically generated data. We show that our
approach can reconstruct the original benchmark problem
and, given enough time, solve it to optimality. In the sec-
ond phase, we learn scheduling models from real-world logs
from a large outpatient cancer hospital in the United States.
Our method learns an appointment scheduling model that we
solve using CP.

The main contribution of our work is threefold:

1. We provide an end-to-end, data-to-model solution that
learns scheduling models from event logs.

2. We introduce activity-resource Petri nets to characterize
a sub-type of TPNs that correspond to basic scheduling
problems.

3. We provide a mapping of the learned scheduling problem
into a CP model and solve new problem instances.

Background
In this section we provide the background for our work. First,
we define timed Petri nets, the target formalism for our pro-
cess mining step. Then, we introduce event logs and present

401

Process
MiningEvent Log TPN2BSP

Timed
Petri net

Basic
Scheduling

Problem
BSP2CP

Constraint
Programming

Figure 1: An end-to-end solution for learning scheduling models from event logs.

Start

EXAM

r

Infusion1

EndInfusion2

r

NP

RN

Figure 2: A TPN of a hospital process.

the state-of-the-art methodology for mining TPNs from event
logs in schedule-driven systems.

Timed Petri Nets
Timed Petri nets (TPNs) are dynamic models for analyz-
ing discrete-event dynamic systems that exhibit parallelism,
synchronization, and resource consumption (David and Alla
1994; Silva and del Foyo 2012).

Figure 2 shows a TPN containing three timed transitions
that model activity modes (white rectangles), labeled as
Exam, Infusion1 and Infusion2, three immediate transitions
that model instantaneous events (black rectangles) and eight
places (circles). The Start and End places correspond to job
start and end points, respectively. The places labeled NP and
RN correspond to two resources: a nurse practitioner and a
registered nurse, with the tokens inside the places represent-
ing the corresponding resource capacities.

Definition 1 (Timed Petri net (TPN)). A timed petri netN is
a directed graph represented by tuple N = 〈E,E′, P, F, τ〉
with,

• E being a finite set of transitions with E′ ⊆ E being a
(possibly empty) set of timed transitions and E \ E′ being
the set of immediate (non-timed) transitions,

• P being a finite set of places,
• F ⊆ E × P ∪ P × E being the flow relation (edges) of

the Petri net, and,
• τ : E′ → R+ being a function that assigns deterministic

durations to timed transitions (without loss, we assume a
positive real-valued time dimension).

The marking of a Petri net is a function M : P → N that
maps a place to the number of tokens that it contains. The
marking in Figure 2 consists of a single job token in the Start
place and a single token in the NP and RN places.

A TPN is fully characterized by the pair (N ,M0) with N
being the net (Definition 1) and M0 being its initial marking.

We denote by •p (•e) the preset of place p (transition e),
i.e., the set of places (transitions) that directly precede p
(e). Similarly, we denote by p• (e•) the postset of place p
(transition e), which is the the set of places (transitions) that
directly succeed p (e). We define FP to be the set of incoming
and outgoing flows that corresponds to a set of places P , i.e.,
FP = {(x, y) ∈ F | x ∈ P ∨ y ∈ P}.

Continuing the example, the preset of NP, •p with p being
the place NP, includes two transitions that correspond to
Exam and Infusion1, respectively, since these transitions have
flows into p. The set F{p} with p being the place NP consists
of four flows leading from and to NP.

The semantics of a TPN are defined by a token game: a
transition e ∈ E is enabled in a marking M , if all places
in the preset of e are marked, i.e., ∀ p ∈ •e : M(p) > 0.
An immediate transition that is enabled can fire. Firing of
a timed transition e′ ∈ E′ depends on its duration τ(e′):
once it is enabled, a deterministic clock is started and the
transition can fire after τ(e′) units have elapsed. Firing a
transition e in a marking M yields a marking M ′, such that
M ′(p) = M(p)− 1 for all p ∈ •e \ e•; M ′(p) = M(p) + 1
for all p ∈ e • \ • e; and M ′(p) = M(p) otherwise.

Returning to our example, given the initial marking in Fig-
ure 2, only the immediate transition that precedes Exam is
enabled. After that transition fires, the two tokens (the job
token and the NP token) merge into a single token and en-
able the timed transition labeled Exam. Following a delay of
τ(Exam), the joined token is split: the NP token is returned
to its original place and the job token continues to enable
the two immediate transitions that precede Infusion1 and
Infusion2.

Learning Models from Event Logs
Process mining is a rapidly evolving research field centered
around methodologies for learning process models from event
data (van der Aalst 2011). The assumption is that the exe-
cution of processes is recorded in event logs, which can be
employed to learn models of the underlying system in the
form of, for example, Petri nets (van der Aalst, Weijters, and
Maruster 2004), transition systems (van der Aalst et al. 2006),
process trees (Leemans, Fahland, and van der Aalst 2014),
and queueing networks (Senderovich et al. 2016).

An event log comprises a set of events with each event
corresponding to an executed (scheduled) activity. Every
event contains information about the activity in the form of
attributes including:
1. A unique job identifier.
2. The activity type.
3. The resource(s) that executed the activity.
4. The activity start and completion timestamps.

402

Case Activity Type Resources Start Complete

pat1 Blood-Draw RN 9:05AM 9:10AM
pat1 Exam MD 9:55AM 10:20AM
pat2 Exam NP 9:30AM 9:45AM
pat2 Infusion RN 9:35AM 10:52AM
pat3 Exam NP 12:45PM 1:10PM
pat3 Infusion NP 9:35AM 10:32AM

Table 1: Excerpt from an event log of a hospital process.

Table 1 presents an excerpt from a real-world event log for an
outpatient cancer hospital. The events correspond to activities
from a chemotherapy infusion process; the job identifier is the
‘case’ that identifies the patient and the resources involved are
registered nurses (RN), nurse practitioners (NP), and medical
doctors (MD).

To assess the quality of learned models, we let ψ(L,N) ∈
[0, 1] be a learning quality function that, given an event log L
and a process model N , evaluates the model. Higher values
of ψ indicate high quality models w.r.t. the event log.

Process learning aims at finding a function γ that maps
an event log L onto a timed Petri net model γ(L) such
that a quality measure ψ(L, γ(L)) is maximized (van der
Aalst 2011). The measure ψ quantifies the similarity between
model and log indirectly, since we do not assume that we
have labeled pairs of logs and models. For example, ψ can
be the fitness of a learned model: the proportion of events in
the log that can be parsed by the TPN (Rozinat and Van der
Aalst 2005). See Chapter 5 in (van der Aalst 2011) for an
extensive survey on process learning and its evaluation.

Process Learning for Scheduled Processes
We learn TPNs by adopting the SchedMiner approach for
learning scheduled processes from event logs (Senderovich
et al. 2015).

SchedMiner makes the following assumptions:
• Resources and their capacities do not change over time and

resources are work conserving (i.e., resources are available
immediately after completing a task).

• Resources reach their capacity at some point in the event
log. Otherwise, the capacity learned by the miner provides
a lower bound on the true capacity.

• Logs are complete: all resources and activities that partic-
ipate in the scheduled process are captured in the event
log. Furthermore, all possible resources per activity type
are observed in the log. For example, the activity Exam in
Table 1 can be executed only by an MD or an NP.
• An activity can be executed by one of several resources.
• Non-preemptive: activities that start their execution cannot

be interrupted.
With these assumptions SchedMiner learns a TPN as follows.
First, jobs are aggregated into job variants according to the
execution order of their activity types. In Table 1, the jobs
pat2 and pat3 are mapped to a single job variant, 〈Exam,
Infusion〉, while pat1 is mapped to job variant 〈Blood Draw,
Exam〉.

Next, SchedMiner maps activity types to the sets of re-
sources on which they can be executed. Durations for each
activity type and resource pairing are learned using averages
over the corresponding durations in the log.1 For Table 1,
the duration of an exam activity performed by an MD is 25
minutes and by an NP is 20 minutes (the average of 15 and
25 minutes for pat2 and pat3).

Based on the job variants, resources, and durations per
activity type/resource combination, one single input/single
output directed TPN is created for each job variant. The dark
area in Figure 2 represents a job variant corresponding to
pat2 and pat3 (see Table 1). Subsequently, resource places
that are shared between job variants are created based on
the activity/resource combinations and the flows between
resource places and job variants are determined according to
the resources that can execute each activity. These resource
flows connect the separate job variant TPNs into a single
TPN. Note that Figure 2 presents one out of many possible
job variants.

Finally, SchedMiner sets the initial marking of the net.
All job tokens start in the input place of their corresponding
job variant TPN, while resource tokens reside in their cor-
responding places. The number of tokens in each resource
place corresponds to the capacity of that resource: the maxi-
mum number of tasks that the resource performed in parallel
in the event log.

We assume that the event log was generated by executing
a solution to a scheduling problem. Our goal is to find the
scheduling problem definition that generated the log. In this
section, we present a formalization of a problem definition
that we are able to learn: the basic scheduling problem (BSP).
We then provide a CP formulation for a BSP, corresponding
to the BSP2CP phase in Figure 1.

In the next section, we return to the mining of TPNs and
their translation to BSP.

Basic Scheduling Problems
The BSP follows the definition of a scheduling problem pre-
sented in van der Aalst (1996).2

Definition 2 (Basic Scheduling Problem (BSP)). Given a
set of activities to be scheduled A, a function θ : A → T
that maps these activities to activity types and a function
ν : A → V that maps activities to job variants, the BSP is a
tuple 〈A, θ, ν, T ,R,V, Π, c, d〉 with:

• T being the set of activity types,
• R being the set of resources,
• V being the set of job variants with V ⊆ T ∗ where T ∗ is

a set of finite sequences over T ,
• Π = {Πv ⊆ T × T | v ∈ V} being the set of precedence

relations between pairs of activity types, such that for all

1SchedMiner can learn stochastic distributions for activity du-
rations. However, we limit our work here to learning deterministic
TPNs.

2 van der Aalst (1996) defines a scheduling problem and shows
how it can be represented as a TPN. We go in the opposite direction
in the next section, showing how a restricted (and learnable) TPN
can be represented as a BSP.

403

(t, t′) ∈ Πv, activity type t must complete before t′ can
start in job variant v,

• c : R → N+ being the function that maps resources to
their capacities, and,

• d : T × R 9 R+ being the duration partial function
that maps pairs of activity types and resources (that can
execute these activities) to values in the time domain.

Note that in a scheduling problem instance that we eventually
solve,A, θ and ν are provided externally while the remaining
BSP components are learned from the event log via the TPN.
In other words, we are given the activities to be scheduled,
along with their types and their job variants but the dura-
tions, resources, resource capacities and requirements, and
precedence relations are all learned. In the hospital example,
if we have new activities to be scheduled, a1, a2 ∈ A, we
assume to know that a1 corresponds to type Exam and a2
corresponds to type Infusion and the two activities belong to
job variant 〈Exam, Infusion〉 ∈ V .

Since the BSP is a parameterized problem, its solution
requires precedence relations and durations to be expressed
on the activity level (rather than the activity type level). We
denote ΠA the activity level precedence relations,

ΠA = {(a, a′) ∈ A×A | ν(a) = ν(a′) = v

∧ (θ(a), θ(a′)) ∈ Πv}

and dA(a, r) the activity-resource durations,

dA(a, r) = d(θ(a), r),∀(θ(a), r) ∈ dom(d).

The function dA is a partial function that is defined only for
activity type and resource pairs (θ(a), r) that participate in d.

A schedule s, which satisfies a BSP, is an allocation of
resource sets to activities over time, i.e., s ∈ A → (R ×
R+). A feasible schedule respects resource and temporal
constraints. One often considers an objective function φ(s)
and the goal in optimal scheduling is to find a schedule s∗ that
optimizes φ(s). In this work, we do not learn the objective
function and hence assume that φ is given.

The BSP generalizes well-known scheduling problems
including the job-shop scheduling problem (JSP). For exam-
ple, we extend the JSP by allowing alternative resources and
durations that depend on both activity types and resources.

Mapping BSPs to CP Models
In this section we propose a generic CP model capable of
modeling and solving BSP instances (i.e., the BSP2CP step
in Figure 1). We employ a common formalism for modeling
multi-machine scheduling problems using optional activities
and alternative resources (Laborie 2009; Laborie et al. 2018).
The proposed model allows us to represent instances of the
BSP in CP and solve them using off-the-shelf solvers.

We use optional interval variables to efficiently represent
activities. Formally, an optional interval variable has possible
values within a convex interval: {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤
e}, where s and e are the start and end values of the interval
and ⊥ is a special value indicating the variable is not present
in the solution. The presence, start time, and duration of
an optional interval variable, var, can be expressed using

Pres(var), Start(var), and Length(var). Absent interval
variables (i.e., Pres(var) = 0), do not participate in model
constraints.

Activities. For each activity specified by the BSP instance,
a ∈ A, we create a mandatory (i.e., Pres(var) = 1) interval
variable, xa, where Start(xa) ≥ 0 and the duration is a vari-
able. These interval variables represent resource-independent
activities that are linked to resources below.

Precedence Relations. To enforce the precedence rela-
tions between the activities in the BSP, for each pair of
activities (a, a′) ∈ ΠA, we post a constraint of the form:
EndBeforeStart(xa, xa′). This constraint ensures interval
variable xa ends before interval variable xa′ starts.

Resource Assignment. For each activity, a ∈ A, we cre-
ate a set of optional interval variables, Xa, for the resources,
r ∈ R, with non-zero duration in dA(a, r). Formally Xa =
{x̄ar : dA(a, r) > 0, r ∈ R}, where x̄ar is an optional
interval variable representing activity a ∈ A assigned to re-
source r ∈ R with duration Length(x̄ar) = dA(a, r). Each
activity is assigned to exactly one resource and linked to the
resource-independent activities with Alternative(xa, Xa),
enforcing that only one interval variable from the set Xa is
present, and that it starts and ends together with mandatory
interval variable xa.

Resource Capacity. We model resource capacity with
Cumulative({x̄ar : a ∈ A}, c(r)),∀r ∈ R. The cumu-
lative constraint expresses that at any time point, the total
number of present and executing activity interval variables
assigned to a resource is bounded by the capacity of that
resource, c(r).

Objective Function. Although in this work we do not learn
the objective function, we conduct experiments minimizing
the makespan, Cmax, and minimizing the sum of completion
times,

∑
a∈A(Start(xa) + Length(xa)). The makespan is

linked to the rest of the model with the constraint: Cmax ≥
Start(xa) + Length(xa),∀a ∈ A.

Activity-Resource Petri Nets
Our approach requires a process mining algorithm that learns
a timed Petri net. However, deriving a schedule from a timed
Petri net model is undecidable (Popova-Zeugmann 2013).
Therefore, without making further assumptions on its struc-
ture, a TPN cannot be translated into a BSP. To bridge this
expressiveness gap, we define the activity-resource Petri net
(ARPN), a novel sub-type of TPN that enables the translation
of learned TPNs into BSPs.

Defining ARPNs
To define ARPNs we use two building blocks:
• Seize-delay-release constructs (SDRCs) are TPNs that con-

sist of three nodes (two transitions and a single place) and
two flows. The nodes are (1) seize, an immediate transition

404

that seizes tokens; (2) delay, a place where the token is
delayed; and (3) release, a timed transition that releases
the token after a delay.

• Activity Petri nets (APNs) are TPNs that consist of seize-
delay release constructs. APNs are feed-forward acyclic
timed Petri nets that model job variants: sets of partially
ordered activities.

The light gray parts of Figure 2 correspond to three SDRCs.
For example, the SDRC that directly follows the start place
in Figure 2 contains an immediate transition, which seizes
the token from the start place. Then, the token is delayed
according to the duration of an Exam. Subsequently, Exam
releases the token to wait for the two Infusion SDRCs. Note
that the two following SDRCs comprise a single activity type
Infusion with two execution modes with potentially different
durations: an infusion with a nurse practitioner (NP) and an
infusion with a registered nurse (RN).
Definition 3 (Seize-Delay-Release Construct (SDRC)). An
SDRC is a timed Petri net, S = 〈E,E′, P, F, τ〉, such that
• The set E = {eseize, erelease} contains two transitions

(seize and release),
• The set E′ = {erelease} is the timed delay transition,
• The set P = {pdelay} is a single delay place, and,
• The flows are F = {(eseize, pdelay), (pdelay, erelease)}.
Given an SDRC, S, we denote by ES (and E′S), PS , FS its
sets of transitions (and timed transitions), places and flows,
respectively. Furthermore, the set of places that precede (fol-
low) the immediate (timed) transition of S is denoted by •ES
(ES•), i.e.,

• ES = {p ∈ P | ∀e ∈ ES \ E′S : p ∈ •e}
ES• = {p ∈ P | ∀e′ ∈ E′S : p ∈ e′•}.

The complexity of detecting all SDRCs in a general TPN
is linear in the number of its nodes (places and transitions)
since it involves traversing the immediate transitions of the
TPN and verifying that the nodes that directly follow them
adhere to Definition 3.

Let S = {S1, . . . ,Sm} be a set of SDRCs. S can be parti-
tioned into k sets denoted by C = {C1, . . . , Ck}, with each
set Cj ⊆ S, j = 1, . . . , k containing SDRCs that have the
same input and output places, i.e.,

C = {C ⊆ S | ∀Si,Sj ∈ C : •ESi = •ESj ∧ ESi• = ESj •}.

From the existence of S, we get that C always exists and
it is unique for a given TPN. From the scheduling perspec-
tive, each C ∈ C corresponds to a single activity type with
multiple execution modes. In Figure 2, the two SDRCs with
delay transitions Infusion1 and Infusion2 correspond to two
execution modes of an activity type Infusion.

Let ECj (E′Cj) be the set of transitions (timed transitions)
of the SDRCs in Cj . We are now ready to define the APN.
Definition 4 (Activity Petri net (APN)). An APN is a timed
Petri net, 〈E,E′, P, F, τ〉, which satisfies the following con-
ditions:
• The set

⋃m
j=1ESj contains only transitions from the set of

SDRCs, S,

• The set P =
⋃m

j=1 PSj ∪ Pc contains the delay places
in S and a finite set of k + 1 connector places Pc =
{p1, . . . , pk+1} with p1, pk+1 ∈ Pc being unique source
and sink places, respectively, and,

• The flow F =
⋃m

j=1 FSj ∪ Fc contains both the set of
SDRC flows and a set Fc such that:

Fc = {(p, e) ∈ Pc × E \ E′ | p = pj ∧
∃Cj ∈ C(e ∈ ECj \ E′Cj)} ∪
{(e, p) ∈ E′ × Pc | ∃Cj ∈ C(e ∈ E′Cj ∧ p = pj+1)}.

An APN is shown in the blue area of Figure 2: it consists of
three SDRCs partitioned into two sets: an SDRC that involves
Exam and two SDRCs that correspond to Infusion (transitions
Infusion1 and Infusion2 are part of the same set in C). The
APN is the main building block of the ARPN. Specifically, an
ARPN contains a set of APNs with the addition of resource
places and resource flows that connect these APNs.
Definition 5 (Activity-Resource Petri nets (ARPN)). Let
{Nj}ni=1 be a set of APNs with Nj = 〈Ej , E

′
j , Pj , Fj , τj〉

and let S = {S1, . . . ,Sm} be a set of SDRCs that compose
these APNs.

An ARPN is a timed Petri net, 〈E,E′, P, F, τ〉, such that
• The set E =

⋃n
j=1 Ej contains only transitions from the set of

APNs, Napn,
• The set P =

⋃m
j=1 Pj∪Pr contains places from the APNs, Napn,

and a finite set of resource places Pr , and,
• The flow set F =

⋃m
i=1 Fi ∪ Fr contains the flows from Napn,

and a set Fr such that:

Fr ={(x, y) ∈ (Pr × E \ E′) ∪ (E′ × Pr) | ∀(x, y) ∈ Fr :

Q(x, y, S)}

with,

Q(x, y, S) =

((x ∈ Pr ∧ y ∈ ESi \ E
′
Si ⇒ ∃(e

′, x) ∈ Fr : e′ ∈ E′Si)

∧ (x ∈ E′Si ∧ y ∈ Pr ⇒ ∃(y, e) ∈ Fr : e ∈ ESi \ E
′
Si).

The set of flows Fr allows for resource tokens to be con-
sumed only by immediate transitions and produced only by
timed transitions. The property Q(x, y, S) ensures that if an
immediate transition consumes a resource token while being
part of SDRC, Si, then there must be a flow between the
timed transition of Si back to the same resource place. Simi-
larly, if a timed transition of an SDRC produces a resource
token, there must be a flow between the resource place and
the immediate transition of the same SDRC. One can easily
verify that Figure 2 is an ARPN having a single APN, three
SDRCs and two resource places.

Verifying that a mined TPN is an ARPN is linear in the
number of Petri net nodes and flows (O(|P |+|E|+|F |)). The
procedure involves the computation of the SDRC set, S. Then,
resource places are detected by validating that Q(x, y, S)
holds and resource places and their corresponding flows are
removed from the TPN. Verifying that the remaining n com-
ponents are APNs is done by computing the partition set C,
and checking that each of the n components adheres to the
conditions of Definition 4.

405

Translating ARPNs to BSPs
If the TPN is not an ARPN, then we detect it and return
a mismatch. Provided that the TPN is an ARPN we can
compute the following sets:
1. The set of resource places Pr.
2. The set of SDRCs S = {S1, . . . ,Sm}, which correspond

to the various execution modes per activity.
3. The set of n APNs {Ni}ni=1 that comprise the ARPN,

representing different job variants.
4. The partitions of SDRCs in Ni, namely Ci.
We are now ready to provide the translation from an ARPN
into a BSP. Since A, θ and ν are external, the procedure
below computes only the parameters of the BSP.
Definition 6 (ARPN to BSP). Given an ARPN and an initial
marking, (N = (E,E′, P, F, τ),M0), the BSP is created as
follows:

• The set of activity types corresponds to the sets of SDRC
partitions, namely T =

⋃n
i=1 Ci,

• The resource set is given by the set of places,R = Pr,
• The set of job variants is given by,

V = {(C1, . . . , Cmi) | ∃i ∈ [n] : Cj−1 i Cj , j = 2, . . .mi},

with i indicating that the input place into Cj directly
follows the output place of Cj−1 in Ni,

• The precedence relation for all job variants, Πv, v ∈ V , is
given by,

Πv = {(t, t′) ∈ T × T | t→v t
′}

with t →v t′ being true if t occurs before t′ in the job
variant v,

• The resource capacities, c, are equal to the initial marking
of resource places, i.e., ∀r ∈ R : c(r) = M0(pr), and,

• The duration (partial) function d is computed as follows:

d(·) ={((t, r), δ) ∈ T ×R× R+ |
∀S ∈ S : (∀e ∈ ES \ E′S(t ∈ •e ∧ r ∈ (•e ∩R))

∧ ∀e′ ∈ E′S(δ = τ(e′)))}.

The set of job variants corresponds to the n APNs that com-
pose the ARPN. For each APN, Ni, i ∈ [n], we construct a
job variant as the sequence of the SDRC sets within Ci. The
precedence relation is derived from the job variants, since
the latter define a total order among activity types. Therefore,
if a pair of activity types (t, t′) is ordered in job variant v
such that t occurs before t′, the pair of activity types will
appear in the corresponding precedence relation of job vari-
ant v, namely (t, t′) ∈ Πv . To compute durations, we iterate
over all SDRCs of the ARPN and retrieve the duration values
τ(e′) of their corresponding timed transitions E′S . We assign
a value d(a, r) for every pair of activity type (given by set C)
and resource that is connected to the SDRCs of that activity
type in the ARPN.

Returning to the ARPN in Figure 2, we assume that the
Exam by an NP has a duration of 20 minutes, while Infusion
has a duration of 15 minutes when performed by an NP

and 10 minutes when performed by an RN. When applying
the translation in Definition 6, a BSP is created as follows:
(1) the activity type set T = {t1, t2}, that comprises the
Exam and Infusion SDRC partition sets, (2) two resources,
R = {r1, r2}, derived from the NP and RN places, (3) a
single job variant, v1 = 〈t1, t2〉 will be created in V , (4) a
precedence relation Πv1 = {(t1, t2)} (i.e., Exam type comes
before Infusion type in variant v1), (5) resource capacities are
set to 1 (c(R1) = c(R2) = 1) and (6) durations are assigned:
d(t1, r1) = 20, d(t2, r1) = 15, d(A2, r2) = 10.

Evaluation
In this section, we apply our log-to-model methodology to
two types of event logs: (1) simulated event logs generated
using publicly available JSP benchmarks and (2) real-world
event logs from an outpatient cancer hospital in the United
States (denoted DayHospital).

JSP Benchmarks. For the first experiment, we simulate
event logs using 53 publicly available JSP benchmark in-
stances, learn their parameterized models, and solve them.3
Instance files contain the jobs to be scheduled, the resource
requirements, durations, and required order (precedence con-
straints) of each of the activities. We assume that every job
in the instance file is a single job variant and every activity
in the job is a unique activity type. For example, consider
a JSP input file that contains 20 jobs and 15 machines (300
activities). To create our logs, we assume that the job shop
has 20 job variants with 300 types of activities.

We simulate each job variant a uniform number of times
(between 100 and 200) to obtain the event log. During the
simulation, we schedule the jobs using a randomized dispatch
policy that adheres to precedence and capacity constraints.
Returning to the example of an instance with 20 jobs over
15 machines, we produce an event log that contains approxi-
mately 3000 jobs, which corresponds to 45000 events. The
event logs from the 53 instances vary with the number of
events (15000 and 45000 events per log) depending on the
number of jobs and machines per instance.

For each of the produced event logs, we learn the TPN,
verify that it is an ARPN and create the parameter set of the
corresponding BSP. Next, for each of the benchmarks, we
consider the original instance file, and add its activities with
their job variants and activity types to the BSP. This results
in a complete BSP representation. Lastly, we map the BSP to
a CP model and solve it. These experiments are conducted
with a makespan minimization objective function.

Results. Mining the ARPN and mapping it into a BSP for each
JSP instance is not very time consuming, taking, on average,
0.73 seconds. CP model experiments are implemented in CP
Optimizer from the IBM ILOG CPLEX Optimization Studio
version 12.8. We use a 10-minute time limit for the branch-
and-infer search. Our CP model then solves 49/53 of the JSP
benchmark instances to proven optimality. Feasible solutions
were found for all instances. The average runtime for the

3Instances retrieved from: https://github.com/Thiebout/
JobShopScheduling/tree/master/testinstances

406

instances proved optimal was 15.4 seconds and the average
optimality gap for the instances not solved to optimality was
6.3%.

DayHospital. In the second experiment, we examine the
applicability of the model learning methodology to real-world
problems. We use four months of event data from DayHospi-
tal (January-April, 2016). The acquired dataset comprises two
types of information: (1) appointment book records, which
provide the activities that were scheduled for a given day
(including their types and resources) and (2) events that came
from a real-time locating system that continuously tracks
patients and health providers, which provided the timestamps
of activity starts and completions. Matching these two infor-
mation sources creates an event log, an excerpt of which was
shown in Table 1.

With a volume of roughly 1000 patients per day, a month
of log data (19 working days/month) contains approximately
30000 executed activities (events). Each activity is attributed
to one out of 60 activity types and one of 240 job variants.
Furthermore, the data contains 31 organizational roles (e.g.,
MD, RN) belonging to 80 departments (e.g., Thoracic On-
cology, Gastrointestinal Oncology). These attributes can be
used to identify resources, however, since the pooling of re-
sources in DayHospital is based on departments and not roles
(i.e., two MDs from different departments are not pooled for
the same activities), we chose departments as our resource
attribute. Department capacities range between 1 (Geriatrics)
and 36 (Floor 7 infusion unit). Note that the capacity may
either be dominated by roles (e.g., number of nurses) or by
other resources, such as the number of rooms, number of
ECG monitors, etc. Activity durations vary between 5 min-
utes (Blood Draw) and 10 hours (Infusion).

The first three months of data (January-March) serve as
our training data, which we use for learning the BSP. Indi-
vidual days from April are used as test data, providing new
appointments to be scheduled. Specifically, we consider ac-
tivity types that were scheduled during April to be the fresh
set of activities that are fed into the learned BSP. We used the
CP model that corresponds to the learned BSP to schedule
these new appointments with respect to two optimality crite-
ria, namely minimizing makespan (the objective employed
by the current DayHospital scheduling system) and sum of
completion times.

Results. Learning the ARPN and mapping it to a BSP takes
from 200 to 450 seconds, depending on the number of events
in the training set. From the BSP, we then apply our CP
model, investigating both minimizing schedule makespan
and sum of completion times. Our CP model uses the same
experimental set-up used for the JSP experiments.

For makespan minimization, CP is able to solve all of
the problem instances to proven optimality in less than one
second. Upon closer inspection, the presence of a num-
ber of very long activities (e.g., chemotherapy infusions)
in each instance allows the solver to find the optimal solu-
tion with little effort because the long activities determine
the makespan and the solver infers further search cannot
reduce it.

Fri
, 1

st

Mon
, 4

th

Tu
es,

 5t
h

Wed
, 6

th

Th
urs

, 7
th
Fri

, 8
th

Mon
, 1

1th

Tu
es,

 12
th

Wed
, 1

3th

Th
urs

, 1
4th

Fri
, 1

5th

Mon
, 1

8th

Tu
es,

 19
th

Wed
, 2

0th

Th
urs

, 2
1st

Fri
, 2

2n
d

Mon
, 2

5th

Tu
es,

 26
th

Wed
, 2

7th

Th
urs

, 2
8th

Fri
, 2

9th

DayHospital Test Date (April, 2016)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Su
m

 o
f C

om
pl

et
io

n
Ti

m
es

 (s
ec

on
ds

)

1e7

39.0

54.0

54.2 56.5

55.8

47.0
45.4

54.9
57.3

53.5

39.0

37.0

52.9
54.7

51.9

41.5

55.4 52.0
54.6 54.1

44.4

DayHospital: CP Model Performance

Bound

Figure 3: Real-world DayHospital experiments. Objective
values (bars), lower bounds (line), and optimality gap (top of
bars in %) for sum of completion times objective function (in
1× 107 seconds).

To produce schedules that intelligently sequence the
shorter activities, we also investigate minimizing the sum
of activity completion times as an objective function. This
problem is much more difficult for the solver, as the place-
ment of each activity has direct impact on the objective value.
Our CP model is able to find feasible solutions to all 21
instances, as illustrated in Figure 3, but with an average opti-
mality gap of 50.3%, as measured against the lower bound
determined by the CP solver.

Discussion & Limitations
As far as we are aware, our work represents the first system
that can automatically learn parameterized scheduling models
from log data and apply them to new instances in the same
context (see the next section on related work). Nonetheless,
there are a number of limitations in our work.

First, we do not necessarily learn a good CP model. A
given problem has numerous possible CP models with dif-
fering computational performance (Smith 2006) and we rely
on a single mapping from BSP to a CP scheduling model.
While such models exhibit very strong (often, state-of-the-
art) performance (Laborie 2018), the question of learning
good models is not in the scope of this paper.

Secondly, because we assume unsupervised learning, we
have no information on the quality of the schedules executed
in the log or the objective function that is appropriate for
our learned model. Future research may be able to adapt
hypotheses testing work in process mining (Senderovich et
al. 2016) to evaluate the likelihood that a particular log was
produced to optimize different objective functions from a
specified set of possibilities. However, in the current system,
the objective function must be provided externally.

The missing objective function is a special case of the
limitations of SchedMiner: we can only learn what is in the
log. Unseen activity types or resources will not be learned,

407

nor will capacities for resources that have not been used
fully at some point in the log. Furthermore, the events and
resources named in the log determine what we can learn as
activities and resources. However, it should be noted that we
do not need the logs to reflect a good schedule (by whatever
metric is used) or to even be the result of an optimization.
Any execution of the processes in the log, provided they
satisfy the constraints of the context, can be used to learn
a CP model. And that model, given the desired objective
function and enough time, can be solved to optimality.

In terms of generality, there is no need to restrict the opti-
mization technology to CP. Other model-based approaches,
such as mixed integer linear programming, or even non-
model-based approaches, such as metaheuristics, can be used
to solve the resulting scheduling problems provided the map-
ping can be made from the BSP.

Finally, our approach can only learn problems expressible
as BSPs. While SchedMiner can learn more general TPNs,
our mapping to BSPs will (gracefully) fail if the mined TPN
is not an ARPN. We chose to use TPNs as an intermediate
knowledge representation rather than directly learning a BSP
in order to exploit the richer expressivity of the TPNs in the
future. We plan to expand the types of scheduling problems
that can be recognized and the optimization methods that
can be targeted. For example, in a context with substantial
duration uncertainty, we would like to learn stochastic Petri
nets that can then be mapped to solvers based on queueing
theory or stochastic scheduling. We can then begin to investi-
gate automatically learning (i.e., based on the characteristics
of the learned TPN) which types of scheduling problems
and solution approaches are appropriate for which problem
characteristics. TPNs are also expressive enough to repre-
sent planning problems and we are considering whether our
framework can be used to learn planning models from execu-
tion logs (e.g., in the context of teleoperated systems that can
also be run autonomously).

Related Work
Scheduling with Timed Petri nets. Research on modeling
scheduling problems using TPNs dates back to 1980s (Car-
lier, Chretienne, and Girault 1985; van der Aalst 1996;
Zuberek and Kubiak 1999). The majority of these works map
basic scheduling elements, such as precedence constraints
and resources with limited capacities, onto Petri net con-
structs. In our work, we provide a methodology that solves
the inverse problem: given a (learned) TPN, we translate it
into a parameterized scheduling model.

TPNs were shown to provide an inefficient platform for
solving scheduling problems, since they require a global
search over the entire state-space (Lee and DiCesare 1994).
Due to their ineffectiveness, Petri nets were either used for
inference (e.g., finding redundant constraints and providing
lower and upper bounds on makespan) or solved by heuristic
methods (Silva and Valette 1988; Lee and DiCesare 1994). In
our work, we avoid solving the scheduling problem in its Petri
net representation. Instead, we map the scheduling problem
into a CP model for which effective solvers exist (Baptiste,
Le Pape, and Nuijten 2001).

Learning CP Models. Freuder (2018) defines automatic
model acquisition to be part of the Holy Grail of Constraint
Programming. Unsurprisingly, learning CP models from data
has been studied in recent literature (see (Raedt et al. 2016)
and references within). Existing methods aim at finding a set
of constraints that yield the most accurate classification of
assignments in the data into feasible and infeasible. In Lal-
louet et al. (2010), the authors combine an inductive logic
programming technique for learning from labeled data with
background knowledge on the structure of the problem to
learn a representation of the problem that correctly classifies
solutions. Furthermore, the work by Bessiere et al. (2017)
suggests acquiring constraints from examples classified by
the user. These approaches require negative examples, i.e.,
assignments that do not satisfy the problem, which may be
difficult to come across. Beldiceanu and Simonis (2012) pro-
pose ModelSeeker, a method for learning global constraints
for CP using well-structured data. Our approach differs from
ModelSeeker in that we learn parameterized models i.e., we
do not assume the problem parameters (e.g., the size of the
JSP problem) in advance.

Learning Action Planning Models. Our work relates to
an existing body of work on learning action planning mod-
els using observed past plans (e.g., Zhuo and Kambham-
pati (2017), Aineto, Jiménez, and Onaindia (2018), and ref-
erences within). The most closely related work on learning
of planning models provides a synthesis of learned transi-
tion systems into action schemata, which are representations
of the preconditions, effects and parameters of a given ac-
tion (Cresswell, McCluskey, and West 2009). Instead of tran-
sition systems, we learn timed Petri nets, a formalism that
better captures the various scheduling elements.

Conclusion
We presented a novel approach for learning parameterized
scheduling models from event data that combines process
learning, timed Petri nets, parameterized scheduling mod-
els, and constraint programming. To bridge the expressive-
ness gap between timed Petri nets and scheduling problems
we proposed a novel sub-type of timed Petri nets, namely
activity-resource Petri nets, that enabled us to translate from
Petri nets into basic scheduling problems. The applicability
of our end-to-end (data-to-CP-model) approach was demon-
strated in an empirical evaluation. Our experiments have
shown that the proposed method effectively learns parame-
terized scheduling models from event data. Specifically, the
learning method accurately reconstructed and solved (to op-
timality) a set job shop scheduling problems. Additionally,
using real-world event logs, the approach provided an ap-
pointment scheduling solution based solely on the learned
CP model. Future work involves extending our approach in
several directions. First, we plan to extend our TPN recogni-
tion algorithm beyond BSPs to include aspects of determin-
istic scheduling such as non-unit resource requirements and
general temporal constraints. Second, we wish to generalize
the Petri net framework to stochastic Petri nets, allowing us
to learn and solve queueing scheduling problems.

408

References
Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning
STRIPS action models with classical planning. In de Weerdt,
M.; Koenig, S.; Röger, G.; and Spaan, M. T. J., eds., Pro-
ceedings of the Twenty-Eighth International Conference on
Automated Planning and Scheduling, ICAPS 2018, Delft, The
Netherlands, June 24-29, 2018., 399–407. AAAI Press.
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-
Based Scheduling. Norwell, MA, USA: Kluwer Academic
Publishers.
Beldiceanu, N., and Simonis, H. 2012. A model seeker:
Extracting global constraint models from positive examples.
In Principles and practice of constraint programming, 141–
157. Springer.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B. 2017.
Constraint acquisition. Artificial Intelligence 244:315 – 342.
Combining Constraint Solving with Mining and Learning.
Carlier, J.; Chretienne, P.; and Girault, C. 1985. Modelling
scheduling problems with timed petri nets. In Advances in
Petri Nets 1984. Springer. 62–82.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning
examples. In Gerevini, A.; Howe, A. E.; Cesta, A.; and
Refanidis, I., eds., Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009, Thessaloniki, Greece, September 19-23, 2009. AAAI.
David, R., and Alla, H. 1994. Petri nets for modeling of
dynamic systems: A survey. Automatica 30(2):175–202.
Freuder, E. C. 2018. Progress towards the holy grail. Con-
straints 23(2):158–171.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for scheduling. Constraints 23(2):210–
250.
Laborie, P. 2009. IBM ILOG CP Optimizer for detailed
scheduling illustrated on three problems. In International
Conference on AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, 148–162.
Springer.
Laborie, P. 2018. An update on the comparison of mip,
cp and hybrid approaches for mixed resource allocation and
scheduling. In International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research, 403–411. Springer.
Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
learning constraint problems. In Tools with Artificial Intel-
ligence (ICTAI), 2010 22nd IEEE International Conference
on, volume 1, 45–52. IEEE.
Lee, D. Y., and DiCesare, F. 1994. Scheduling flexible
manufacturing systems using petri nets and heuristic search.
IEEE Transactions on robotics and automation 10(2):123–
132.
Leemans, S. J.; Fahland, D.; and van der Aalst, W. M. 2014.
Discovering block-structured process models from event logs
containing infrequent behaviour. In Business Process Man-
agement Workshops, 66–78. Springer.

Popova-Zeugmann, L. 2013. Time petri nets. In Time and
Petri nets. Springer. 31–137.
Raedt, L. D.; Dries, A.; Guns, T.; and Bessiere, C. 2016.
Learning constraint satisfaction problems: An ILP perspec-
tive. In Bessiere, C.; Raedt, L. D.; Kotthoff, L.; Nijssen, S.;
O’Sullivan, B.; and Pedreschi, D., eds., Data Mining and Con-
straint Programming - Foundations of a Cross-Disciplinary
Approach, volume 10101 of Lecture Notes in Computer Sci-
ence. Springer. 96–112.
Rozinat, A., and Van der Aalst, W. M. 2005. Conformance
testing: Measuring the fit and appropriateness of event logs
and process models. In International Conference on Business
Process Management, 163–176. Springer.
Senderovich, A.; Rogge-Solti, A.; Gal, A.; Mendling, J.;
Mandelbaum, A.; Kadish, S.; and Bunnell, C. A. 2015.
Data-driven performance analysis of scheduled processes. In
Motahari-Nezhad, H. R.; Recker, J.; and Weidlich, M., eds.,
Business Process Management - 13th International Confer-
ence, BPM 2015, Innsbruck, Austria, August 31 - September
3, 2015, Proceedings, volume 9253 of Lecture Notes in Com-
puter Science, 35–52. Springer.
Senderovich, A.; Weidlich, M.; Yedidsion, L.; Gal, A.; Man-
delbaum, A.; Kadish, S.; and Bunnell, C. A. 2016. Confor-
mance checking and performance improvement in scheduled
processes: A queueing-network perspective. Information
Systems 62:185–206.
Silva, J. R., and del Foyo, P. M. 2012. Timed petri nets. In
Petri Nets-Manufacturing and Computer Science. InTech.
Silva, M., and Valette, R. 1988. Petri nets and flexible
manufacturing. In European Workshop on Applications and
Theory in Petri Nets, 374–417. Springer.
Smith, B. 2006. Modelling. In Rossi, F.; van Beek, P.;
and Walsh, T., eds., Handbook of Constraint Programming.
Elsevier. chapter 11, 377–406.
van der Aalst, W. M.; Rubin, V.; van Dongen, B. F.; Kindler,
E.; and Günther, C. W. 2006. Process mining: A two-step
approach using transition systems and regions. BPM Center
Report BPM-06-30, BPMcenter. org 6.
van der Aalst, W. M. P.; Weijters, T.; and Maruster, L. 2004.
Workflow Mining: Discovering Process Models from Event
Logs. IEEE Trans. Knowl. Data Eng. 16(9):1128–1142.
van der Aalst, W. 1996. Petri net based scheduling.
Operations-Research-Spektrum 18(4):219–229.
van der Aalst, W. M. P. 2011. Process Mining - Discov-
ery, Conformance and Enhancement of Business Processes.
Springer.
Zhuo, H. H., and Kambhampati, S. 2017. Model-lite plan-
ning: Case-based vs. model-based approaches. Artif. Intell.
246:1–21.
Zuberek, W., and Kubiak, W. 1999. Timed petri nets in
modeling and analysis of simple schedules for manufacturing
cells. Computers & Mathematics with Applications 37(11-
12):191–206.

409

