
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Privacy Leakage of Search-Based Multi-Agent Planning Algorithms

Michal Štolba, Daniel Fišer, Antonı́n Komenda
{michal.stolba,daniel.fiser,antonin.komenda}@aic.fel.cvut.cz

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract
Privacy-Preserving Multi-Agent Planning (PP-MAP) has re-
cently gained the attention of the research community, result-
ing in a number of PP-MAP planners and theoretical works.
Many such planners lack strong theoretical guarantees, thus
in order to compare their abilities w.r.t. privacy, a versatile
and practical metric is crucial. In this work, we propose such
a metric, building on the existing theoretical work. We gen-
eralize and implement the approach in order to be applicable
on real planning domains and provide an evaluation of state-
of-the-art PP-MAP planners over the standard set of bench-
marks. The evaluation shows that the proposed privacy leak-
age metric is able to provide a comparison of PP-MAP plan-
ners and reveal important properties.

Introduction
Multi-agent planning (MAP) (Durfee 1999) comes in mul-
tiple flavors such as Dec-POMDPs (Oliehoek and Am-
ato 2016) or Deterministic MAP (DMAP) (Brafman and
Domshlak 2008; Torreño et al. 2017), each focusing on dif-
ferent aspects of MAP. One of the main rationales behind
multi-agent planning is that the planning agents have certain
private knowledge necessary to solve the planning problem.
The agents are not willing to share such information but they
have to use it in order to be able to find a joint solution to the
PP-MAP problem.

In recent years, a number of privacy-preserving planning
techniques have emerged, while in (Tožička, Štolba, and
Komenda 2017) the authors have shown that for the most
common MAP paradigms (including state-space search,
such as MAFS (Nissim and Brafman 2014)) it is not pos-
sible to achieve complete (strong) privacy, efficiency, and
completeness at the same time. This means that any prac-
tical privacy-preserving planner is essentially bound to leak
some private information. In order to compare such planners
in the context of privacy, it is necessary to quantify such pri-
vate information leakage.

A definition of privacy leakage metric has been addressed
in two theoretical publications. The approach of (Van
Der Krogt 2009) bases the leakage metric on the number
of plans of an agent compatible with the communicated in-
formation, whereas the approach of (Štolba, Tožička, and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Komenda 2017) (denoted as STK from now on) uses the
difference between the number of transition systems of the
agent compatible with the information available to the ad-
versary before and after the planning process. The former
approach assumes the knowledge of the agent’s problem and
therefore can be used only by the agent itself. The latter is
more general, as it is based purely on the knowledge avail-
able to the adversary. Both approaches were so far proposed
only in theory. Both mentioned works are theoretical and
thus were never used to actually measure privacy leakage of
a planning algorithm on a set of benchmarks. In this work,
we fill this gap.

The paper is structured as follows. We first formalize
MAP (including a running example) and privacy leakage
definition based on STK. Then we apply the privacy leak-
age on search-based algorithms and formally define the
search tree structure, which we use to propose novel algo-
rithms for detecting various sources of privacy leakage. We
generalize the computation of privacy leakage to arbitrary
sizes of variable domains and propose a novel SAT-based
technique to compute possible transition systems of an ac-
tion given arbitrary combinations of the sources of leak-
age. We continue by introducing a novel MILP-based tech-
nique to compute the actual privacy leakage. Finally, we
implement and evaluate the proposed techniques in an es-
tablished MAP planning framework MAPlan (Fišer, Štolba,
and Komenda 2015) and compare privacy leakage of its
variants (including MAFS (Nissim and Brafman 2014) and
Secure-MAFS (Brafman 2015)) on the CoDMAP (Štolba,
Komenda, and Kovacs 2016) benchmark set. This is the first
work to practically compare PP-MAP algorithms based on a
quantified leakage of private information.

Multi-Agent Planning
For a set of agents A, a PP-MAP problem M = {Πi}|A|i=1
is a set of agent problems, where for an agent αi ∈ A the
agent problem is

Πi =
〈
Vi = Vpub ∪ Vprivi ,Oi = Opubi ∪ Oprivi , siI , s?

〉
,

where Vi is a set of variables s.t. each V ∈ Vi has a finite
domain dom(V), Vpub is the set of public variables (with all
values public), common to all agents, and Vprivi is the set
of variables private to αi (with all values private), such that

482

Vpub ∩ Vprivi = ∅ and Vprivi ∩ Vprivj = ∅ for all i 6= j. A
complete assignment over V = Vpub∪

⋃|A|
i=1 Vprivi is a state,

partial assignment over V is a partial state.
We use s[V] to denote the value of a variable V in the

(partial) state s, s[V ′] to denote the state s restricted to
V ′ ⊆ Vi, and vars(s) to denote the set of variables with
value defined in s. The state sI is the global initial state and
siI = sI [Vi] is the initial state of agent αi. A partial state s?
defined over Vpub represents the goal condition, i.e., s is a
goal state iff s? = s[vars(s?)].

The set Oi is a set of actions of αi, Oprivi is a set of pri-
vate actions and Opubi is a set of public actions of αi. The
sets Opubi , Oprivj are pairwise disjoint for all i, j. An ac-
tion is defined as a = 〈pre(a), eff(a)〉, where pre(a) and
eff(a) are partial states over Vi representing the precon-
dition and the effect respectively. An action a is public if
vars(pre(a)) ∩ Vpub 6= ∅ or vars(eff(a)) ∩ Vpub 6= ∅, oth-
erwise a is private. A public action may also have private
preconditions or effects.

An action a is applicable in a state s if s[vars(pre(a))] =
pre(a) and the application of a in s, denoted as s′ = a ◦ s
results in a state s′ s.t. s′[V] = eff(a)[V] if V ∈ vars(eff(a))
and s′[V] = s[V] otherwise. Let π = (a1, ..., ak) be a se-
quence of actions, if a1 is applicable in s0 and for each
1 ≤ i ≤ k, ai is applicable in si−1 and si = ai ◦ si−1,
then we denote sk = π ◦ s0 the application of π on s0 and
sk is the resulting state.

The public projection of a (partial) state s is s. = s[Vpub].
The public projection of an action a ∈ Opub is a. =
〈pre(a)., eff(a).〉. The public projection of Πi is

Π.
i =

〈
Vpub,OB

i = {a.|a ∈ Opubi}, s.I , s.?
〉

The solution to Πi is a sequence πi of actions from Oi ∪⋃
j 6=iO

B
j , s.t. sk = πi ◦ sI and sk is a goal state. We define

π. = (a.1, ..., a
.
k) with all private actions omitted to be the

public projection of πi. The global solution to M is a set
of plans {πi}|A|i such that each πi is a local solution to Πi

and all πi are equivalent w.r.t. the public actions, formally
π.i = π.j for all i, j.

Figure 1: The UAV example PP-MAP problem.

Example. Here we introduce a running example problem,
originally conceived by STK, and use it throughout the paper
to illustrate important concepts. The example is based on a
military scenario where a UAV must survey locations and
refuel at the base of a coalition partner. The partners do not

want to share the information about surveyed locations and
about base fuel supply. The problem is modeled using the
following variables:

• Vpub: f UAV has fuel, c mission is complete
• Vpriv

UAV: l1,l2 location 1,2 is complete

• Vpriv
base: s base has enough supplies

All variables are binary, i.e., with values from {true, false}.
In the initial state, all variables are false except for s = true,
c = true must hold in the goal state. The public actions of
αUAV can be formulated as follows:

• Survey Location 1:
SL1 = 〈{f = true}, {l1 = true, f = false}〉

• Survey Location 2:
SL2 = 〈{f = true}, {l2 = true, f = false}〉

• Complete mission:
C = 〈{l1 = true, l2 = true}, {c = true}〉

And the public actions of αbase are:

• Refuel:
R = 〈{f = false, s = true}, {f = true, s = false}〉

• Refuel and Resupply:
RR = 〈{f = false, s = false}, {f = true, s = true}〉

The public variables are c, f (bold) and thus the public pro-
jections of actions are:

• SL1. = SL2. = 〈{f = true}, {f = false}〉
• C. = 〈{}, {c = true}〉
• R. = RR. = 〈{f = false}, {f = true}〉
Because SL1.,SL2. and R.,RR.cannot be distinguished,
we denote the projected actions simply as SL. and R. re-
spectively.

Privacy Leakage
Let us first state a number of assumptions we place on the
agents and their interaction, as is usual in the Secure Multi-
party Computation literature.

Semi-honest agents. The agents adhere to the algorithm
and the communication protocol but try to infer as much pri-
vate knowledge as possible.

Knowledge of the algorithm. The adversary knows the
planning algorithm of the agent, but we do not assume any
particular heuristic and thus the adversary does not exploit
any information gained from the heuristic computation ex-
cept for the heuristic value itself.

FIFO communication. Each communication channel be-
tween a pair of agents is first-in, first-out, i.e., the messages
are received in the order they were sent.

Colluding adversaries. We refer to the agent trying to
hide information as agent α = αi for some i (the agent).
We model all other agents as a single agent (the adversary),
which is common in Secure Multiparty Computation, as all
the agents can collude and combine their knowledge in order
to infer more private information. We omit the index i when
referring to the agent is clear from the context.

Publicly known bounds. We assume that there are pub-
licly known bounds on the size of the agent’s problem, in

483

particular, |Vprivi | ≤ p and |dom(V)| ≤ d for all V ∈ Vprivi .

We adopt (and later generalize) the leakage metric of
STK, which is itself based on (Smith 2009), as follows.
First, it is important to understand what information is the
adversary given and what additional information it obtains
through the planning process. The a priori information is a
tuple Iapriori = 〈ΠB, πB, p, b〉 where ΠB is the public pro-
jection of the problem and πB of the solution plan, p and
b are the publicly known bounds on the number of private
variables and on the size of private variable domains respec-
tively.

The information obtained by the adversary is a se-
quence of messages exchanged between the agents M =
(m1, ...,mk). The posterior information, that is, the ad-
ditional information available to the adversary after the
execution of the planning process, is a tuple Ipost =
〈ΠB, πB, p, b,M〉.

Based on STK in order to quantify the information, we
associate the a priori information Iapriori with a random vari-
able representing the uncertainty of the adversary about the
agent’s input of the planning algorithm (i.e., the problem Πi

and its respective transition system. We denote τ(Iapriori)
the number of transition systems compatible with Iapriori.
Assuming uniform distribution of the inputs the proba-
bility of any particular transition system being the input
of α is 1/τ(Iapriori). Converting to an information mea-
sure ((Smith 2009) uses min-entropy) yields log 1

P (Iapriori)
=

log τ(Iapriori), where log denotes base-2 logarithm.
Similarly, we associate the public output, i.e., the com-

municated messages with a random variable Ipost represent-
ing the information including new observations. The con-
ditional probability P (Iapriori|Ipost) then corresponds to the
probability of a transition system being the hidden input
with respect to all available information Ipost. The respec-
tive information measure is then conditional min-entropy
log 1

P (Iapriori|Ipost) = log τ(Ipost) where τ(Ipost) is the num-
ber of transition systems compatible with Ipost.

The final information leakage is computed as

log τ(Iapriori)− log τ(Ipost)

By observing that each action contributes to the number
of possible transition systems independently, we can focus
on the number of transition systems τpost(a) represented by
each individual action a ∈ Opub and compute the number of
transition system as

τ(Ipost) =
∏

aB∈OB

τpost(a) (1)

and analogously for τ(Iapriori).
Let us now define private information leakage based on

the properties of actions, originally introduced by STK and
generalized in this work. A single projected action aB ∈ OB

represents all actions ak ∈ Opub such that ak[Vpub] = aB,
as in Figure 2. We define the possible properties of aB as
follows.
Definition 1. Let aB ∈ OB and OB

a = {a′ ∈ Opub|aB =
a′B}, we say aB is

Init-applicable (ia) if there exists a ∈ OB
a such that

pre(a) = sI [vars(pre(a))].
Not-init-applicable (nia) if for all a ∈ OB

a holds pre(a) 6=
sI [vars(pre(a))].

Privately-independent (pi) if there exist V ∈ Vpriv and a ∈
OB
a such that V /∈ vars(pre(a)), or for all values v ∈

dom(V) there is some a′ ∈ OB
a such that v = pre(a′)[V].

Privately-dependent (pd) if there exist V ∈ Vpriv and a ∈
OB
a such that V ∈ vars(pre(a)) and there exists some

value v ∈ dom(V) such that v 6= pre(a′)[V] for all a′ ∈
OB
a .

Privately-nondeterministic (pn) if there exist V ∈ Vpriv

and a, a′ ∈ OB
a such that V ∈ vars(eff(a)), V ∈

vars(eff(a′)), and eff(a)[V] 6= eff(a′)[V].

Informally, an action is init-applicable if it is applicable
in the initial state (where the value of every V ∈ Vprivi is
not known but fixed to some v0). An action is privately-
independent if for some V it is applicable on a state regard-
less of the value of V , privately-dependent if it is applicable
only for some values of V and not applicable for some other
values of V . Finally, an action is privately-nondeterministic
if its application can result in two different values of V .

Clearly, the defined properties are not exhaustive and thus
the proposed leakage metric is a lower bound and consider-
ing additional properties (or different techniques of possible
transition systems reduction) might increase the computed
leakage.

T

F F

T T

F F

T T

F F

TT

F F

T

Figure 2: Example of public projection and related transi-
tion systems of the resupply action. The values true, false
are shown as nodes T,F, the edges represent a transition
for the given variable. Column RB shows the public (pro-
jected) transition system, R,RR ∈ OB

R are the actions with
equal public projections and their individual transition sys-
tems. Column OB

R shows the combined transition system of
the projected action.

Example. According to Definition 1, the example action RB

shown in Figure 2 is ia, pi, pn in s. WLOG we can assume
that sI [s] = true, thus RB is ia. Moreover, RB is pi in s
because pre(R)[s] = true and pre(RR)[s] = true, and RB is
pn in s because eff(R)[s] 6= eff(RR)[s].

Leakage of Search-Based Algorithms
MAFS is an adaptation of the classical heuristic forward-
search to the multi-agent setting. Each agent αi ∈ A ex-
pands its search space defined over the variables in Vi. The
agent αi expands a state s using all applicable actions in
Oi. If s is expanded using a ∈ Oprivi , the resulting state

484

s′ = a ◦ s is added only to the open list of agent αi as it
has changed only in private variables Vprivi . If s is expanded
using a ∈ Opubi , the resulting state s′ = a ◦ s is sent to
(all) other agents, as it may influence their search. In order
to keep information private, only the public projection s′B
is sent to other agents. Nevertheless, to be able to recon-
struct the private parts of received states, each agent αi must
include some reference to the i-parent state, defined as fol-
lows.

Definition 2. Let s, s′, s′′ be states defined over Vi in the
search space of agent αi ∈ A such that s′ = a0 ◦ s where
a0 ∈ Opubi and s′′ is the result of application of a sequence
(a1, ..., ak) on s′, where for all a2, ..., ak−1 /∈ Oi. We say,
that s′ is the i-parent of s′′.

Informally, the i-parent of s′′ is the last state s′ expanded
by αi on the path leading to s′′. In order to reconstruct the
private part s′′[Vprivi] of the state s′′, the agent αi needs to
know the i-parent state s′ (or, at least, its private part). Let Si
be the state space of agent αi, we define δi : Si → N as the
function assigning an agent-specific identifier (id) to each
state s ∈ Si. The δi(s) for each agent is sent as part of each
state messagem = 〈sB, δ1(s), ..., δn(s)〉where sB is a pub-
lic projection of the sent or received state and δ1, ..., δn are
the id functions representing s[Vprivi] for each i ∈ 1, ..., n.
In order to be complete, it must hold that δi(s) 6= δi(s

′)
if s[Vprivi] 6= s′[Vprivi] for each agent, otherwise the agent
would not be able to reconstruct the private part correctly.

The message m might also contain the global heuristic
value h or projected heuristic value hB computed by the
sending agent and the g value determining the cost for get-
ting from sI to s. The projected heuristic hB is computed by
each agent αi on Πi separately, thus the computation itself
leaks no information and the resulting value depends only on
the problem of agent αi. In contrast, the global heuristic is
computed in a distributed way with all agents participating.
We assume that the global heuristic is privacy-preserving,
such as MA-Pot (Štolba, Fišer, and Komenda 2016), and
therefore the computation itself leaks no private information
as well.

The adversary agent cannot observe the global search tree
as it includes private actions of the agent and when receiving
a state, the adversary has no information about the action
applied by the agent. The adversary can easily encode the id
of the i-parent state in the communication by setting δi(s)
to a unique id of the state s. When the adversary receives
m = 〈sB, δ1(s), ..., δn(s)〉 the information in δi(s) encodes
exactly the i-parent.

Another crucial information the adversary needs to deter-
mine is whether two states s, s′ such that sB = s′B received
from the agent are in fact two different states.

Definition 3. Let s, s′ be two states. We say that s, s′ are
publicly equivalent but different (PEBD) if sB = s′B and
s 6= s′. We use s , s′ to denote PEBD states s, s′.

As proposed by STK, the PEBD states can be determined
based on g and h values and the sets of successor states.
Let αi be the agent and all other agents the colluding adver-
saries.

Proposition 4. (STK, generalized for |A| > 2) Let s, s′ be
states s.t. sB = s′B. Let h, g be the heuristic function and g
the cost function. If s[V privi] = s[V privj] for all j 6= i and
h(s) 6= h(s′) ∨ g(s) 6= g(s′) then s , s′.

We introduce a new proposition which is applicable when
the agents use a projected heuristic computation.
Proposition 5. Let s, s′ be states s.t. sB = s′B. Let hB be
a projected heuristic function computed by the agent αi. If
hB(s) 6= hB(s′) then s , s′.

Proof. Trivial as hB depends only on Πi and thus if
hB(s) 6= hB(s′) and s[Vpub] = s′[Vpub] it must hold that
s[Vi] 6= s′[Vi].

Finally, for each edge in the reconstructed search tree,
the adversary needs to determine the actions possibly re-
sponsible for the edge. Let s., s′. be two states such that
s. is the i-parent of s′.. If pre(aB)[V] = sB[V] for all
V ∈ vars(pre(aB)) and eff(aB)[V] = s′B[V] for all V ∈
vars(eff(aB)) then aB is possibly responsible for the edge
from s. to s′.. Multiple actions might be possibly responsi-
ble for a single edge and a single action might be possibly
responsible for multiple edges but for each state s., there
is only a single edge ending at s. because the i-parent is
determined unambiguously. Based on all the above informa-
tion, the colluding adversary agent builds the reconstructed
search tree structure. Let αi be the agent, the reconstructed
search tree is formally defined as follows.
Definition 6. The search tree is defined as a tuple ST =
〈Srec, Ssen, SI , i-par, ap-res, Erec, Esen, h, g〉 where
• Srec, Ssen is the set of public states sB received from the

agent αi and sent to the agent αi respectively.
• SI is the set of public states sB such that s is reachable

from sI without using actions of the agent αi.
• i-par : Srec → Ssen ∪ {sBI } assigns to each received state
sB its i-parent s′B.

• ap-res : OB → 2Srec assigns to each action aB ∈ OB the
set of received states possibly resulting from the applica-
tion of aB, i.e., aB is possibly responsible for the edge
ending at each such state.

• Erec ⊆ Srec × Srec and Esen ⊆ Ssen × Ssen are partial
PEBD relations on received and sent states respectively,
based on Ipost and the above propositions.

• h, g are the heuristic and cost functions for each state. Al-
ternatively hB represents the projected heuristic function
received from the agent.
Note that the search tree can be reliably reconstructed

only up to the last state for which all successors were re-
ceived. Based on the reconstructed search tree and Defini-
tion 1 the adversary determines the properties of actions. A
property (or a combination of properties) might be associ-
ated with a set of actions, meaning that the set of properties
applies on at least one of the actions but it is not possible
to determine which one. To associate the actions with their
possible properties, the adversary constructs a function

prop : 2O
B

→ 2{ia,nia,pi,pd,pn} (2)

485

Figure 3: Relevant excerpt of a search tree for the running
example as reconstructed by αUAV. Variables are encoded
as [c, f], [s] where true and false is encoded as 0 and 1 re-
spectively. The privIDs field represents private part identi-
fiers [δαbase

(s), δαUAV
(s)] for the respective agents.

Example. An example of (partial) search tree is shown
in Figure 3. Received states Srec = {s2, s3, s6} are
red, the i-par function is represented by a solid arrow
from i-par(s) to s. The partial PEBD relation Erec =
{(s2, s3), (s2, s6), (s3, s6)} is represented by dashed lines,
all the PEBD states are identified based on the private iden-
tifiers δαUAV

. Similarly, (s1, s4) ∈ Esen because δαUAV
(s1) 6=

δαUAV
(s4). Based on the change in the public variables,

the ap-res is constructed as ap-res(SL) = {s2, s3, s6} and
ap-res(C) = ∅.

The properties of actions
Let us now focus on how to determine which properties de-
fined in Definition 1 apply on which actions based on the
reconstructed search tree from Definition 6.

Init-applicable Let aB ∈ OBsuch that there exists s ∈
ap-res(aB) for which i-par(s.) = s.I , or i-par(s.) = s′.,
such that s′. = π ◦ s.I where π is a sequence of actions from
Oprivi . Then aB is init-applicable, i.e., prop({aB}) = {ia} .
Conversely, if there is no such s. ∈ ap-res(aB), aB is not-
init-applicable.

Privately-independent Among all edges in ST a particu-
lar action is responsible for, we need to find those where the
edge originates in two PEBD states. We use the following
algorithm:

1. Let OB
s = ∅ for each s. ∈ Srec denote the subset of ac-

tions responsible for the edge from i-par(s.) to s. identi-
fied to be privately-independent.

2. For each aB ∈ OB and for each s.1, s
.
2 ∈ ap-res(aB) such

that s.1 6= s.2

(a) s′1
B = i-par(s.1), s′2

B = i-par(s.2)

(b) If (s′1
B, s′2

B) ∈ Esen, add the action aB to both
OB
s1 ,O

B
s2 .

3. For each s. ∈ Srec, at least one action aB ∈ OB
s is

privately-independent, i.e., prop({OB
s }) = {pi}.

Privately-dependent For each edge from s. to s′. in ST
a particular action aB ∈ OB is responsible for, we need to
determine whether aB is responsible also for all transitions
from states s′′. such that (s., s′′.) ∈ Esen. We use the fol-
lowing algorithm:

1. Let OB
s = ∅ for each s. ∈ Srec denote the subset of ac-

tions responsible for the edge from i-par(s.) to s. identi-
fied to be privately-dependent.

2. For each aB ∈ OB, for each s.1 ∈ ap-res(aB) and for
each PBED state s.2 s.t. (i-par(s.1), s.2) ∈ Esen

(a) If there is no s.3 ∈ ap-res(aB) such that i-par(s.3) = s.2,
add action aB to OB

s1 .

3. For each s. ∈ Srec, at least one action of aB ∈ OB
s is

privately-dependent, i.e., prop({OB
s }) = {pd}.

Privately-nondeterministic Among all edges in ST a par-
ticular action is responsible for, we need to find those where
the edges originate in the same state but results in two PEBD
states. We use the following algorithm:

1. Let OB
s = ∅ for each s. ∈ Ssen denote the subset of ac-

tions responsible for the edge from i-par(s.) to s. identi-
fied to be privately-nondeterministic.

2. For each aB ∈ OB and for each s.1, s
.
2 ∈ ap-res(aB) such

that (s.1, s
.
2) ∈ Erec and s′. = i-par(s.1) = i-par(s.2),

(a) add action aB to OB
s′ .

3. For each s. ∈ Ssen, at least one action of aB ∈ OB
s is

privately-nondeterministic, i.e., prop({OB
s }) = {pn}.

Example. The above algorithms can be used to con-
struct prop based on the search tree in Figure 3. Be-
cause i-par(s2) = s1, s1 is a direct successor of sI
(not shown in the figure), and s2 ∈ ap-res(SLB), SLB is
init-applicable, whereas CB is not-inint-applicable. Because
ap-res(SL) = {s2, s3, s6}, i-par(s2) = s1 and i-par(s6) =
s4, and (s1, s4) ∈ Esen, SLB is privately-independent. Fi-
nally, because (s2, s3) ∈ Erec and i-par(s2) = i-par(s3),
SLB is privately non-deterministic. Thus we can construct
prop({SLB}) = {ia, pi, pn} and prop({CB}) = {nia}.

Computing the Privacy Leakage
Once the properties of actions are determined and the prop
function is constructed, we can proceed to compute the ac-
tual privacy leakage. To do so, we first need to compute the
number of possible transition systems an action represents
given its properties. Then we need to combine the informa-
tion about each action to compute the total number of possi-
ble transition systems based on the Equation 1 and finally to
compute the actual privacy leakage.

486

Transition Systems of an Action
To account for all possible combinations of the properties
for arbitrary values of p and d, we introduce a novel general
approach to compute the number of transition systems repre-
sented by a given set X ∈ 2{ia,nia,pi,pd,pn} of properties. We
construct a first-order logic formula for each X to describe
the properties of actions related to privacy leakage. For each
V ∈ Vpriv, and each v ∈ dom(V), we define first-order logic
propositions preV=v and effV=v . The formulas are indepen-
dent of particular actions and depend only on the set X of
properties. The semantics of preV=v = true is that for some
a ∈ OB

a , pre(a)[V] = v and of preV=v = false is that for
all a ∈ OB

a , pre(a)[V] 6= v, analogously effV=v for effects,
where a. ∈ OB is any action which has the properties X .

Let aB ∈ OB, V ∈ Vpriv, and v0 ∈ dom(V) is some fixed
value of V , then

ia =
∧

V ∈Vpriv

preV=v0

nia =
∨

V ∈Vpriv

¬preV=v0

pi =
∨

V ∈Vpriv

(
∧

v∈dom(V)

preV=v)

pd =
∨

V ∈Vpriv

(
∨

v∈dom(V)

preV=v ∧
∨

v∈dom(V)

¬preV=v)

pn =
∨

V ∈Vpriv

(
∨

v 6=v′∈dom(V)

(effV=v ∧ effV=v′))

Combinations of properties can be obtained by conjunction.
Example. For the example action SL., for which
prop({SLB}) = {ia, pi, pn}, the formula is ia ∧ pi ∧ pn.
There are two private binary variables l1, l2 (their identities
are not known to the adversary but we use them here for
clarity). The complete formula is

(prel1=true ∧ prel2=true)∧
((prel1=true ∧ prel1=false) ∨ (prel2=true ∧ prel2=false))∧ (3)

((eff l1=true ∧ eff l1=false) ∨ (eff l2=true ∧ eff l2=false))

The next step is to compute the number of possible tran-
sition systems τ(X) w.r.t. the set of properties X . Let λ̄X =∧
x∈X x denote the conjunction of the formulas respective to

the properties inX . LetM be the set of all models of the for-
mula λ̄X . For each V ∈ Vpriv and v ∈ V , the model m ∈M
either assigns preV=v = true, preV=v = false, or preV=v is
not in λ̄X and therefore m assigns no value to preV=v . The
same holds for effV=v . For each variable V ∈ Vpriv, we de-
fine the set P+

V = {preV=v|v ∈ dom(V), preV=v = true}
of positive propositions and P free

V the set of unassigned
propositions (analogously E+

V , and Efree
V for effects). Let

pfree =
∑
V ∈Vpriv |P free

V |, p+ =
∑
V ∈Vpriv |P+

V | and efree, e+

analogously.
Example. Let us consider the formula in Equation 3.
One model of the formula assigns true to prel1=true,
prel2=true, prel1=false, eff l1=true, eff l1=false, eff l2=false and
false to prel2=false, eff l2=true. Based on the semantics, this

model describes a transition system where there are all tran-
sitions SL. for l1, but only false → true for l2 as shown
in Figure 4. There are no unassigned propositions and thus
pfree = efree = 0, p+ = 3, and e+ = 3.

T

F F

Tl1: T

F F

Tl2:

Figure 4: Transition system of the SL. action based on one
possible model of formula in Equation 3.

If p+ = 0 and e+ = 0 then t∅ = (2d
2 − 1)p as in STK.

Otherwise, we need to evaluate all possible combinations
of free propositions. To do so, for each k′ ≤ pfree, l′ ≤
efree let us fix a subset of k′ precondition propositions and a
subset of l′ effect propositions to be true, and all other free
propositions to be false.

This way we arrive at a fixed number of true preconditions
and true effects, in particular k = p+ + k′ and l = e+ + l′.
The number of possible transition systems for such configu-
ration is equal to the number of bipartite graphs with parti-
tions of size k and l such that each of the nodes has a degree
≥ 1 (all nodes are connected). There is (2k − 1)l of all bi-
partite graphs and (2k−j − 1)l bipartite graphs which do not
use j particular fixed nodes. For all values of j, we use this
number in the inclusion-exclusion principle and arrive at

ts(k, l) =

k∑
j=0

(−1)k
(
k

j

)
(2k−j − 1)l

Moreover, we care not only about the number of true pre-
conditions and effects, but also about their identity, therefore
we need to consider all possible choices of k′ and l′ propo-
sitions. The final number of transition systems for action for
which the set X of properties holds is

τ(X) =

k′=pfree∑
k′=0

l′=efree∑
l′=0

(
pfree

k′

)(
efree

l′

)
ts(p+ + k′, e+ + l′)

In order to exclude the empty transition system, if p+ = 0
then k′ starts from 1 instead of 0 and if e+ = 0 then l′ starts
from 1 instead of 0.

Example. For the example action SL., we need to com-
pute tia,pi,pn, since there are no free propositions, tia,pi,pn =
ts(p+, e+) = ts(3, 3) = 49 possible transition systems.
Note that this value holds for any ia, pi, pn action which is
in a problem with two binary private variables.

Total Number of Transition Systems
For each aB ∈ OB, let the number of transition systems rep-
resented by aB before the algorithm is executed be denoted
by τapriori(aB) and let the number of transition systems rep-
resented by aB after the algorithm is terminated be denoted
by τpost(aB). In this section, we focus on the computation
of τpost(aB), the computation of τapriori(aB) is analogous.

Based on the search tree reconstruction, let X be a set of
properties s.t. prop(OX) for some OX ⊆ OB. We know

487

that for at least one aB ∈ OX , X holds, but we do not know
which one it is. Consider an action aB such that aB ∈ OX
and aB ∈ OX′

where X 6= X ′, how do we best (optimally)
determine the number of transition systems τpost(aB) in the
presence of such information?

We formulate the problem as a combinatorial optimiza-
tion problem and solve it using LP. We define an LP vari-
able ā for each action aB ∈ OB. The variable ā represents
ā = log τpost(a

B). Logarithm can be applied to both sides of
an inequality as we use logarithm with base > 1. This way,
we can use a sum variant of Equation 1,

∑
aB∈OB τpost(a

B).
Each LP variable ā is bounded by 1 ≤ ā ≤ log t∅. We for-
mulate the following objective function to be maximized:

Maximize
∑

aB∈OB

ā

resulting in the logarithm of Equation 1. For eachOX ⊆ OB

we formulate a disjunctive constraint:∨
aB∈OX′

(ā ≤ log τ(X))

For example if there is a set of actions {aB1 , aB2 , aB3 } and we
know that at least one of the actions is privately-independent
the disjunctive constraint is:

ā1 ≤ log t{pi} ∨ ā2 ≤ log t{pi} ∨ ā3 ≤ log t{pi}

Such a disjunctive formulation can either be directly solved
by a branch-and-bound algorithm or transformed to mixed-
integer linear program (MILP) by using the Big-M reformu-
lation. In order to do so, for each constraint in the disjunction
we define a binary variable, e.g., y1, y2, y3 ∈ {0, 1}, and en-
force that only one of them holds true by

y1 + y2 + y3 = 1

Then we define a large enough constant M and reformulate
the above disjunction as

ā1 ≤ log t{pi} +M(1− y1)

ā2 ≤ log t{pi} +M(1− y2)

ā3 ≤ log t{pi} +M(1− y3)

which significantly expands all but one of the bounds, thus
rendering them ineffective. Such transformation then allows
to use a standard solver with MILP capabilities, such as the
IBM CPLEX.

Example. Formulating the LP for the example problem is
straightforward, especially because |OX | = 1 for all transi-
tions and thus we do not need to use disjunctive constraints.
The objective value is 12.98 which represents the logarithm
of the number of possible transition systems given the re-
ceived information, that is, log τ(Ipost) = 12.98. By con-
sidering only information learned from the final plan, we
arrive at log τ(Iapriori) = 14.98 and thus the total private in-
formation leakage of the example problem is log tapriori −
log tpost = 2 bits.

Handling Complexity
Although general enough, the described computation of
leakage is not tractable for practical use on realistically large
problems, such as the CoDMAP benchmarks. The most de-
manding operations are the finding of PEBD states and de-
termining the number of transition systems τ(X) based on
the set X of properties.

The PEBD states computation isO(|Srec|2), i.e., quadratic
in the number of received states, as we need to test each state
against each other state. Moreover, the number of received
states can be up to the number of states expanded by the
agent α, as in the case where all actions are public, every
expanded state is also sent to all other agents.

The computation of τ(X) is even worse as we need to find
all models of the formula λ̄X . Let vars(λ̄X) denote the num-
ber of propositional variables in λ̄X , then finding all valua-
tions of λ̄X is O(2vars(λ̄X)) and vars(λ̄X) can be as large as
p·d, therefore the complexity isO(2pd). That said, the values
are problem-independent and thus can be pre-computed just
once and stored in a table. Still, the complexity is forbidding
for larger values of p and d.

In order to be able to run the analysis on the actual
CoDMAP domains, we need to simplify the privacy leak-
age estimate computation. First, notice that the full set Erec

of PEBD states over the received states is used only in the
computation of privately-dependent actions. Therefore, we
remove the computation of privately-dependent actions from
the analysis and thus we can skip the pre-computation of all
PEBD states. Instead, we test the states on PEBD equiva-
lence only when needed.

The computation of τ(X) is a bigger challenge. We use
the pre-computed values for small values of p and d which
are stored in the form of log τ(X). Notice, that for τ(∅) =
(2d− 1)p the value log τ(∅) = p(2d− 1) can be easily com-
puted for any (positive) p, d. For a simple linear extrapola-
tion, we define a coefficient kX for each set X of properties
as an average value of

log τ(X)

p(2d − 1)

over all values of p and d for which we were able to com-
pute log τ(X) exactly. For higher values of p, d we extrap-
olate as log τ(X) = kX log τ(∅) = kXp(2

d − 1). Clearly,
using an average is a very simple technique for approxima-
tion, nevertheless, the standard deviation is on average (over
all X) only 10% and as the leakage is computed as a sum of
log τ(X), the overall standard deviation can only decrease.
We assume such approximation to be reasonably precise and
leave better approximations for future work.

Evaluation
We demonstrate the ability of the proposed leakage quan-
tification metric to be used to compare privacy-preserving
planners. In order to compare various planners on various
domains we do not compare the absolute value of the leak-
age (that is, the leaked bits of information), but a ratio of the
leakage of the particular algorithm to the ground truth leak-
age. The ground truth leakage is computed the same way

488

a) b)

Figure 5: Detailed leakage ratio comparison, MAFS vs. Secure-MAFS (a) and MAFS vs. MAFS with projected heuristic (b).

as the leakage of the algorithm, but with action properties
derived directly from the private information of the agent.
Similarly, the upper bounds on p = |Vpriv| and d are com-
puted directly from the private problem description, where
d = maxV ∈Vpriv |dom(V)|.

Implementation
We have modified the MAPlan planner to a) print out sent
and received states, b) enable the ε-MAFS search. The leak-
age analysis tool1 is implemented in Python using SymPy
and PuLP2. The upper bounds on p = |Vpriv| and d neces-
sary for the computation are computed directly from the pri-
vate problem description, where d = maxV ∈Vpriv |dom(V)|.
We have used the pre-computed values of log tX for small
values of p, d and simplified extrapolations for large values,
as described in the previous section.

We have evaluated the following planner configurations:
MAFS Plain MAFS as implemented in MAPlan, using

A* search and MA-LM-Cut distributed heuristic (Štolba,
Fišer, and Komenda 2015) (dist) and projected LM-Cut
heuristic (Helmert and Domshlak 2009) (proj).

Secure-MAFS As Secure-MAFS is not implemented in
MAPlan, we have simulated its execution post-hoc by re-
moving the states which would not be sent. We evaluate
variants with the distributed (dist) and projected (proj)
LM-Cut heuristic.

We have set the planning memory limit to 512 MB and time
limit to 15 minutes. Note that it is not necessary for the plan-
ner to find a plan in order to perform the leakage evaluation
(only the final plan πB cannot be used in that case). As the
leakage evaluation runtime and memory consumption is rel-
atively high w.r.t. the number of received states such limits
are reasonable.

Benchmarks
The evaluation is based on the planning domains used in
the CoDMAP (Komenda, Stolba, and Kovacs 2016) com-
petition. Moreover, we have implemented a domain named

1http://github.com/stolba/privacy-analysis
2http://www.sympy.org; http://pythonhosted.org/PuLP/

UAVs which was used by STK as a running example. The
simplest problem is shown in Figure 1. The planning task
is to visit the locations while refueling at a base where the
UAV operator and base are agents and the private informa-
tion is the visited location and state of supplies respectively.
We have constructed 5 problems with an increasing number
of locations and UAVs.

Comparison of the Search Algorithms

search MAFS Secure-MAFS
heuristic dist. proj. dist. proj.
blocksworld 5.18 4.85 5.18 4.85
depot 0.08 0.13 0.08 0.13
driverlog 0.17 0.17 0.17 0.17
elevators 3.37 3.40 3.35 3.38
logistics 5.82 6.14 5.44 5.75
rovers 3.76 3.72 2.78 2.76
satellites 3.10 3.10 1.96 1.96
sokoban 0.05 0.06 0.05 0.06
woodwork. 0.00 0.00 0.00 0.00
taxi 0.00 0.00 0.00 0.00
wireless 0.19 0.19 0.19 0.19
zenotravel 3.04 3.16 1.87 2.03
uav 2.92 3.14 2.30 2.52
sum 27.69 28.04 23.38 23.78

Table 1: Comparison of search algorithms. Minimal leakage
in bold, maximal in italics.

Table 1 shows an evaluation of the leakage ratio, where
the leakage ratio is summed over all problems in the domain
for each planner configuration. The table clearly shows that
the use of Secure-MAFS decreases privacy leakage, which
has already been suggested by STK, but here, we present
a quantified result. Moreover, the results show that the use
of projected heuristic significantly increases privacy leakage
in some domains as Proposition 5 can be used to discern
PEBD states. For comparison, the Figure 6 shows the abso-
lute values of leaked private information in bits averaged per
domain for each planner configuration.

489

Figure 6: Absolute values of privacy leakage in bits of infor-
mation averaged per domain.

Figure 5 provides a more detailed comparison of the leak-
age ratios per problem. Again, in some problems, the pro-
posed privacy leakage metric was able to show that Secure-
MAFS (above) leaks less private information and MAFS
with projected heuristic (below) leaks more private informa-
tion.

Conclusion
In this work, we have proposed a generalization of the pri-
vacy leakage quantification approach of (Štolba, Tožička,
and Komenda 2017) to arbitrary numbers of private vari-
ables and sizes of private domains. As the original work was
only theoretical, we have proposed a number of algorithms
and computational techniques to arrive at the privacy leak-
age metric for actual MAP planners and domains.

In order to be tractable on real benchmark problems, we
have proposed an approximation of the leakage quantifi-
cation metric. This enabled us to evaluate the MAFS and
Secure-MAFS algorithms on the CoDMAP domains using
distributed and projected heuristics. In addition to confirm-
ing the known fact that Secure-MAFS leaks less information
than MAFS, we were also able to show a novel result stating
that the MAFS algorithm actually leaks more private infor-
mation when using the projected heuristic then when using
the distributed one (assuming that the distributed computa-
tion is secure).

Acknowledgments This research was supported by the
Czech Science Foundation (grant no. 18-24965Y). The au-
thors acknowledge the support of the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16 019/0000765 ”Re-
search Center for Informatics”.

References
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-

ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, (IJCAI’15), 1530–1536.
Durfee, E. H. 1999. Distributed problem solving and plan-
ning. In Weiß, G., ed., A Modern Approach to Distributed
Artificial Intelligence. San Francisco, CA: The MIT Press.
chapter 3.
Fišer, D.; Štolba, M.; and Komenda, A. 2015. MAPlan.
In Proceedings of the Competition of Distributed and Multi-
Agent Planners (CoDMAP’15), 8–10.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 162–169.
Komenda, A.; Stolba, M.; and Kovacs, D. L. 2016. The in-
ternational competition of distributed and multiagent plan-
ners (CoDMAP). AI Magazine 37(3):109–115.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research 51:293–332.
Oliehoek, F. A., and Amato, C. 2016. A concise introduction
to decentralized POMDPs. Springer.
Smith, G. 2009. On the foundations of quantitative infor-
mation flow. In Proceedings of the 12th International Con-
ference on Foundations of Software Science and Computa-
tional Structures, 288–302.
Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissible
landmark heuristic for multi-agent planning. In Proceedings
of the 25th International Conference on Automated Planning
and Scheduling (ICAPS’15), 211–219.
Štolba, M.; Fišer, D.; and Komenda, A. 2016. Potential
heuristics for multi-agent planning. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling, ICAPS’16, 308–316.
Štolba, M.; Komenda, A.; and Kovacs, D. 2016. Com-
petition of distributed and multiagent planners (CoDMAP).
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 4343–4345.
Štolba, M.; Tožička, J.; and Komenda, A. 2017. Quantifying
privacy leakage in multi-agent planning. Transactions on
Internet Technology (TOIT).
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2017. Cooperative multi-agent planning: a survey. ACM
Computing Surveys (CSUR) 50(6):84.
Tožička, J.; Štolba, M.; and Komenda, A. 2017. The limits
of strong privacy preserving multi-agent planning. In Pro-
ceedings of the 27th International Conference on Automated
Planning and Scheduling (ICAPS’17).
Van Der Krogt, R. 2009. Quantifying privacy in multiagent
planning. Multiagent and Grid Systems 5(4):451–469.

490

