
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

The Clustered Dial-a-Ride Problem

Fabian Feitsch
University of Würzburg
mail@fabian-feitsch.de

Sabine Storandt
University of Konstanz

sabine.storandt@uni-konstanz.de

Abstract

We study a variant of the classical dial-a-ride problem, with
an application to public transport planning in rural areas. In
the classical dial-a-ride problem, n users each specify a pick-
up and a delivery location, and the aim is to plan the least cost
route to cater all requests. This can be modeled as a traveling
salesmen problem in a complete graph with precedence con-
straints (pick-ups need to happen before deliveries). In this
paper, we consider the clustered dial-a-ride problem, where
we do not operate on a complete graph but on a graph com-
posed of serially numbered cliques where each clique is con-
nected to the next one via a single edge. This setting is in-
spired by door-to-door transportation for people from remote
villages who want to get to another village or the next city
by a bus which operates on demand. We argue that in case
the optimal route exhibits certain structural properties, it can
be computed significantly faster. To make use of this obser-
vation, we devise a classification algorithm which can decide
whether the optimal route exhibits these structural properties
before computing it. Extensive experiments on artificial and
real-world instances reveal that the majority of optimal routes
indeed have the desired properties and that our classifier is an
efficient tool to recognize the respective instances.

Introduction
There has been rising adoption of on-demand transportation
in the last decades, globally. On-demand transportation ser-
vices allow users to book a vehicle that picks them up from
either home or a convenient nearby location, and take them
to their desired destination. Taxis are still the prevalent in-
carnation of on-demand transportation. But they also exhibit
some disadvantages as being rather expensive (especially on
longer trips) and not being environment-friendly due to ac-
commodating often only a single passenger. Companies as
Uber or Lyft provide platforms for (cheap) ride-sourcing but
this also leads to even more clogged streets in urban areas—
while in rural areas both taxis and ride-sourcing services are
only of very limited availability.

Unfortunately, also scheduled public transportation has
poor coverage in many rural areas. With sparse bus stops
and long waiting times between buses (especially at night
time), the attractiveness of using this mode of transportation

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is often low. One interesting remedy are dial-a-bus services.
Here people can reserve a seat on a (small) bus for door-to-
door transportation. It is then critical to plan the bus route
such that all requests are dealt with and only small detours
are introduced for each rider when picking up and delivering
other passengers.

We will formalize this rural bus route planning problem
as a variant of the classical dial-a-ride problem. While such
(NP-hard) problems are often tackled with heuristics in prac-
tice, we carefully study structural properties of optimal so-
lutions which then allow us to compute optimal routes on
real-world instances efficiently.

Related Work
There exists a plethora of work on dial-a-ride problems, also
under terms as demand responsive transport, traveling sales-
man problem with pick-ups and deliveries (Dumitrescu et al.
2008), or traveling salesman problem with precedence con-
straints (Ascheuer, Jünger, and Reinelt 2000). In a broader
context, dial-a-ride problems belong to the family of vehicle
routing problems in which a single vehicle or a fleet of vehi-
cles has to deliver certain amounts of goods from depots to
customers (Dantzig and Ramser 1959). Psaraftis augmented
the well known Held-Karp algorithm (Held and Karp 1962)
for solving dial-a-ride problems (Psaraftis 1980). Other typi-
cal approaches to solve such problem types are ILP formula-
tions or branch-and-bound algorithms (Cordeau et al. 2010).
But as all of the mentioned problems are NP-hard in general,
these exact algorithms are only applicable to small instances.

The dial-a-ride problem is also closely related to ride shar-
ing problems. Algorithms to find good matchings of drivers
and customers have been proposed e.g. in (Geisberger et
al. 2009) and (Alonso-Mora et al. 2017). After the match-
ing of offers and requests is done, the actual route is either
computed with an exhaustive search (if the capacity of the
vehicle is small), or heuristics are used (Alonso-Mora et al.
2017). In our envisioned dial-a-bus application, the number
of seats is larger than in a conventional car. Hence exact al-
gorithms for ride sharing cannot easily be applied.

There is also work on the clustered version of the tradi-
tional TSP problem (CTSP). In CTSP, the points are parti-
tioned in predefined clusters and all points inside one clus-
ter must be visited consecutively. Ding et. al. present a ge-
netic algorithm that gives good heuristic results on CTSP

510

Figure 1: Clustered dial-a-ride instance in a real road network and the corresponding cluster graph.

instances (Ding, Cheng, and He 2007). Unfortunately, the
optimal TSP tour through a CTSP instance often does not
obey the clusters, so the lengths of the shortest routes of TSP
and CTSP differ in general.

Contribution
We introduce the clustered dial-a-ride problem and discuss
its applicability to real-world instances. We argue that it cap-
tures the characteristics of on-demand transportation plan-
ning problems in rural areas better than previous models.

We then investigate structural properties of optimal bus
routes on clustered inputs. In particular, we focus on so
called unidirectional routes where a cluster once left by the
bus is never visited again. We show that for instances with a
unidirectional optimal route, exact algorithms can be instru-
mented to run significantly faster than on general instances.
We design a classifier that allows to distinguish between in-
stances with unidirectional optimal routes and others with-
out having to compute the optimal route a priori. This allows
to construct an exact algorithm which first classifies the in-
stance and then depending on the outcome uses the fastest
algorithm that ensures getting the optimal solution. Note that
omitting the classification step but always using the faster
version of the algorithm also yields a feasible heuristic.

In our experiments on artificial and real data, we demon-
strate the effectiveness of our approach and study its sensi-
tivity to parameters as the average inter-cluster distance.

Preliminaries
In this section, we first formally define our bus route plan-
ning problem as an optimization problem which aims at min-
imizing the total riding time of all riders. Subsequently, we
discuss an exact baseline algorithm to solve the problem.

Formal Problem Definition
In the most basic dial-a-ride problem, we are given n pairs
of pick-up and drop-off locations, as well as all pairwise dis-
tances between those 2n locations in form of a matrix d, and
the goal is to compute the cheapest route that transports each
of the n riders from his pick-up to his drop-off location.

In our scenario, we also consider the bus driver as a spe-
cial kind of rider. Hence we deal with m = n + 1 persons.
The bus driver also has a dedicated start and end location
(e.g. bus depots), providing us with a list of 2m locations
that need to be visited on the route. For easier reference, we
enumerate the locations using the following scheme: Loca-
tion 0 is the start (aka pick-up) location of the driver, loca-
tions 1 to n are the pick-up locations of the riders in arbitrary
order, and locations n+1 = m to 2m−1 refer to the drop-off
locations in the same order as the pick-ups.

Definition 1 (Tour). A feasible tour is a permutation T of
{0, . . . , 2m − 1} such that T [1] = 0, T [2m] = m and
T−1[i] < T−1[i+m] for all i = 1, . . . ,m, so every pick-up
precedes its corresponding drop-off.

Inspecting real-world road networks in rural areas, we of-
ten observe similar structures, as exemplarily depicted in
Figure 1: Remote villages are connected by a single big-
ger road, which usually leads to the next town. Hence a bus
does not really have a choice how to get from one village to
another but the route in between is determined by that big-
ger road and other villages aligned on that street can not by
bypassed even if there are no pick-ups or drop-offs within.
This inspires our interpretation of the villages as a sequence
of clusters C1, · · · , Cq in the order they appear along the
road. Each cluster Ci ⊆ [0, 2m− 1] contains a subset of the
pick-up/drop-off locations. Furthermore, with each cluster
we associate two portal nodes over which the cluster can be
entered or exited. So two clustersCi andCi+1 are connected
via an edge from the exit portal of Ci to the access portal of
Ci+1 where the edge represents the connecting road. Apart
from those, there are no connections between the clusters.
Within each cluster the contained locations and the portals
form a clique. We refer to the resulting graph as the cluster
graph, see Figure 1 (lower right corner).

Now we can define the clustered dial-a-ride problem:

Definition 2 (The Clustered Dial-a-ride Problem). We are
given a weighted, undirected cluster graph with metric edge
weights, and with the following restrictions: Location 0 is
contained in C0, location m in Cq . For each rider, the clus-

511

ter Ci containing the pick-up location and the cluster Cj

containing the drop-off location have to obey i ≤ j. The
goal is to find a feasible tour T in the cluster graph with
minimum cost, where the cost is defined as

c(T) =

2m∑
i=2

w(i) · d
[
T [i− 1], T [i]

]
with w(i) denoting how many persons are on board while
traveling from location T [i−1] to T [i] and d

[
T [i−1], T [i]

]
being the shortest path distance between those two locations
in the cluster graph.

The restriction of only allowing requests ’from left to
right’ is sensible as it reflects the case that there is one bus
going towards the next town, and another one going from the
town to the villages. Hence we can subdivide the requests
based on their direction and then solve these two instances
separately. The objective function then sums up the distances
that each rider (including the driver) travels.

Psaraftis’ Algorithm
Note that every algorithm solving the classical dial-a-ride
problem can also solve the clustered version by simply ig-
noring all information about the clusters.

Psaraftis presented such an algorithm with a running time
of O∗(3n−1) (Psaraftis 1980). Due to the recursive nature
of Psaraftis’ algorithm it is also able to solve partial dial-a-
ride instances. A partial instance consists of the current bus
location as well as two state vectors sa, sb in which each
rider is assigned a state s ∈ {w, t, f}, indicating that he is
either still waiting to be picked up (w), currently travelling
on the bus (t) or already dropped off and hence finished (f).
The goal is to find the optimal tour that starts with the state
vector sa and ends when the state vector sb is reached. Note
that every dial-a-ride instance can be regarded as partial dial-
a-ride instance with sa = [w]n and sb = [f]n.

Even though the runtime of Psaraftis’ algorithm is expo-
nential, it is fast for small inputs or partial instances in which
sa is similar to sb. This is a crucial property which will help
to exploit the structure of clustered dial-a-ride instances.

Instance-based Classification
As already outlined above, exact algorithhms for the gen-
eral dial-a-ride problem are usually limited in practice to
small instances. For our clustered dial-a-ride problem, we
make the following important observation: Intuitively, the
optimal tour handles the clusters in the order of their enu-
meration (’from left to right’) without ever going back to a
cluster which was exited before. We call a tour which never
returns to an earlier cluster an unidirectional tour and refer
to the optimal unidirectional tour by

→
T∗. We will next show

that in case the intuition applies, we can design an algorithm
based on Psaraftis’ algorithm which solves clustered dial-
a-ride instances significantly faster than conventional dial-a-
ride instances. Unfortunately, we will then provide examples
of clustered dial-a-ride instances where the optimal tour is
not unidirectional. To still be able to make use of the faster

0,1

2

4

3,5

2

1

1

1
9

5
8

Figure 2: Example instance for m = 3. Location numbers
are given in black, edge costs in blue. The tour has to start at
location 0 and end at location 3. The best unidirectional tour
would be T = 0, 1, 2, 5, 4, 3 with c(T) = 2 ·2+3 ·1+3 ·1+
3 ·5+2 ·8+1 ·8 = 49. However the tour T ′ = 0, 1, 4, 2, 5, 3
has a smaller cost of c(T ′) = 2 · 1 + 2 · 1 + 2 · 9 + 1 · 9 +
1 · 1 + 1 · 1 + 2 · 1 + 2 · 1 + 2 · 5 = 47 despite not being
unidirectional.

algorithm for clustered dial-a-ride instances with unidirec-
tional optimal tours, we present an efficient classifier which
determines whether the optimal tour is unidirectional or not
without having to compute the optimal solution in the first
place.

The
→
T ∗-Algorithm for Unidirectional Solutions

We now assume that the optimal tour is indeed unidirec-
tional. Note that two unidirectional tours can only differ in
the order of locations inside the clusters. The state of all rid-
ers when entering a cluster is fixed, as well is the state of all
riders when leaving the same cluster (as the bus never returns
to a previously visited cluster). More precisely, when enter-
ing cluster Ci via its access portal, all riders with drop-off
locations in clusters Cj<i are in state f (finished), all riders
with a pick-up location in Cj≥i are in state w (waiting), and
all other riders are in state t (currently traveling on the bus).
When exiting Ci via the exit portal, the states of riders with
drop-off and/or pick-up locations within Ci changed appro-
priately.

Thus, one can solve partial dial-a-ride instances for ev-
ery cluster using Psaraftis’ algorithm and then assemble the
partial tours to get an optimal unidirectional tour

→
T∗. This

approach will be referred to as the
→
T∗-algorithm. Its running

time is exponential in the maximal size M of a cluster, but
not exponential in the number of requests. Therefore, for in-
stances where M � m holds, the

→
T∗-algorithm runs much

faster than Psaraftis’ original algorithm.

Instances with T ∗ 6= →
T ∗

The drawback of the
→
T∗-algorithm is that it does not guar-

antee to find a globally optimal tour T ∗ on every instance
because the optimal tour might indeed go back and forth be-
tween the clusters in order to minimize the objective func-
tion. Figure 2 shows a small example instance in which the
optimal tour is not unidirectional. As also evident from the
example, having small distances between the clusters but
large distances within the clusters makes it more likely that
the optimal tour is not unidirectional.

512

Figure 3: Values of the four counters for Ci (left) and Ci+1 (right). The number of persons m is 10, thus locations < 10 are
all pick-ups and locations ≥ 10 are all drop-offs. The rider at pick-up l wants to travel to the drop-off l + 10. The encircled
numbers show how many passengers are on board while traveling the respective leg of the journey.

On such instances the
→
T∗-algorithm does find a feasible

tour but not an optimal tour. Hence we should use the origi-
nal algorithm of Psaraftis instead. In order to make that de-
cision, we now design a fast instance classifier.

Basic Idea for Classification
We obviously can not compute the optimal solution prior to
the classification as this would make the classifier useless.
Hence then we can only rely on the structural characteristics
of the particular instances. The idea for proving the optimal-
ity of a tour T is to distribute the costs c(T) of T carefully
to the clusters, and to try to match them with lower bounds
for the costs within each cluster. The following definition of
induced costs formalizes the distribution idea.

Definition 3 (Induced Costs). For an instance I let C be the
set of clusters Ci and T the set of all feasible tours on I .
A function Υ: C × T → R+ which has the property that∑

Ci∈C Υ(Ci, T) = c(T) for all tours T represents the in-
duced costs Υ(Ci, T) of cluster Ci in T .

Let Φ(CI) ≤ Υ(Ci, T
∗) be a lower bound on the induced

costs of Ci in the optimal tour T ∗. Then the following theo-
rem holds:

Theorem 4. If for allC1, . . . , Cq ∈ C : Υ(Ci,
→
T∗) = Φ(Ci),

then
→
T∗ = T ∗, i. e. the optimal tour is unidirectional.

Proof. Suppose that T ∗ 6= →
T∗ holds. Then there is an non-

unidirectional route
↔
T∗ with

↔
T∗ = T ∗. In

↔
T∗ there must be a

sequence K = [Ci, . . . Ci′] of contiguous clusters which are
all at least visited twice with |K| ≥ 2. The costs c(K) of K
are related to Φ(Ci):

c(K) =

i′∑
j=i

Υ(Cj ,
←→
T ∗) ≥

i′∑
j=i

Φ(Cj) (1)

By definition of Υ(Ci,
→
T∗), the clusters in K can be handled

unidirectionally with costs c′(K) defined by the summation:

c′(K) =

i′∑
j=i

Υ(Ci,
→
T∗) =

i′∑
j=i

Φ(Cj) (2)

By combining equations 1 and 2 we conclude that c′(K) ≤
c(K) which is a contradiction to the assumption that the op-
timal route was not unidirectional.

The theorem does not depend on a fixed implementa-
tion of Υ(·, ·). We will describe a suitable realization of
the induced costs as well as an approach to lower bound
Υ(Ci, T

∗) in the next two subsections.

Part 1: Cost Distribution
This subsection introduces a concrete cost distribution func-
tion Υ(·, ·) which also has the nice property that it can be
computed in linear time.

Let r be a rider, pr the index of his pick-up cluster and dr
the index of his drop-off cluster. For a feasible tour T and a
cluster Ci, the following counters are defined: α counts the
events that a rider r with pr ≤ i exits to the right, and β the
events that a rider r with dr ≥ i exits to the left. In the same
spirit, the counters γ and δ are used: γ counts how often a
rider r with pr ≥ i enters from the left, and last, δ counts the
occurrences of riders with dr ≤ i, that enter from the right.
Then Υ(Ci, T) is given by
Υ(Ci, T) = (α+ δ) · d[Ci, Ci+1] + (β + γ) · d[Ci, Ci−1]

+ inside(Ci, T) (3)
where d[Ci, Ci+1] denotes the distance from the exit portal
of Ci to the access portal of Ci+1, d[Ci, Ci−1] the distance
from the access portal of Ci to the exit portal of Ci−1, and
inside(Ci, T) the costs of the subtour of T strictly within Ci.

Figure 3 shows an example of the induced costs of cluster
Ci in a feasible tour T . In this instance, one can easily check
that the sum of the induced costs of all clusters is exactly
the cost of the tour T . This property is formally stated for all
feasible tours in the next theorem. This theorem requires a
brief lemma:
Lemma 5. Consider a journey from Ci to Ci+1. Then
the journey can either be counted by Ci’s α-counter or by
Ci+1’s γ-counter, but not both. The same applies for a left-
bound journey between Ci+1 and Ci.

Proof. If the right-bound journey is covered by Ci’s α-
counter, then pr ≤ i. Yet, Ci+1’s γ-counter catches the jour-
ney only if the condition pr ≥ i+1 is true. That cannot hap-
pen since the first condition prohibits it. Thus, the γ-counter

513

can only be used if the α-counter of the cluster to the left
does not fire. Symmetrically, the same argumentation shows
that either Ci’s δ-counter or Ci+1’s β-counter is responsible
for a journey from the cluster Ci+1 to the cluster Ci.

With the help of this lemma the validity of the induced
costs can be shown:
Theorem 6. For every feasible tour T , the sum of induced
costs according to Equation 3 equals the total cost of T :∑

Ci∈C Υ(Ci, T) = c(T).

Proof. All costs generated inside the clusters are covered
once by the last term of Equation 3, so the main task is to
show that the costs that are generated between the clusters
are counted exactly once. We pick an arbitrary journey of
one person between the two clusters Ci and Ci+1. If this
person is the driver and the journey goes from cluster Ci to
cluster Ci+1, then the α-counter of Ci carries this journey
and no counter of Ci+1 counts the same movement. This
applies for a journey of Ci+1 to Ci symmetrically.

If the journey’s person is a rider r and the journey goes
from Ci to Ci+1, then it can only be counted by Ci’s α
counter or Ci+1’s γ counter. It suffices to show that at
least one of these counters catches the journey. The previ-
ous lemma ensures that no other counter catches the same
journey. The two locations of r can lie in five different ways
relative to Ci:

Both locations are left of Ci. This case occurs when pr <
dr ≤ i, i. e. the rider travels further than he needed. This
journey is counted by Ci’s α because pr < i.

Pick-up left of Ci and drop-off in or right of Ci. This is the
case if pr < i ≤ dr. Since pr ≤ i, it is counted by Ci’s α
counter.

Both locations lie in Ci. Then pr = i = dr and Ci’s α
counter is responsible for counting the journey.

Pick-up left of or in Ci and drop-off right of Ci This condi-
tion can be expressed mathematically as pr ≤ i < dr. It
is counted by Ci’s α counter because pr ≤ i.

Both locations are right of Ci. In formal terms, i < pi ≤ di
and thus, only Ci+1’s γ counter considers this journey.

The same steps can be applied to a right-to-left journey and
Ci’s δ counter and Ci+1’s β counter. Therefore, every jour-
ney is counted exactly once in

∑
Ci∈C Υ(Ci, T).

The next subsection introduces a non-trivial lower bound
on Υ(Ci, T

∗) which can be computed in bearable time for
moderate cluster sizes.

Part 2: Cost Estimation
This subsection presents a method to compute a lower bound
Φ(Ci) ≤ Υ(Ci, T

∗). Note that it is easy to come up with
just some lower bound but for our classifier to be useful in
pratice, we require lower bounds that are tight. Our lower
bounding technqiue is based on the observation that a tour
that visits Ci on several subtours partitions the cluster into
subsets. Thus the approach is to enumerate all possible par-
titions and compute a lower bound for each of them. The
smallest of these lower bounds is the desired value.

Figure 4: The pictures show two different paths that realize
the same partition S = S1, S2, S3 of the cluster but different
vectors P . On the right side, the bus has to traverse Ci with-
out visiting a location inside Ci to make the tour possible.
This journey is indicated as dashed line.

Let Ci be a cluster and S an ordered partition of Ci

into subsets S1, . . . , Sk. Then ΦS(Ci) represents the lower
bound of serving cluster Ci via the subsets defined by S.
The overall lower bound Φ(Ci) is given by Equation 4.

Φ(Ci) = min
S ordered partition of Ci

ΦS(Ci) (4)

For a given partition S of Ci there are several ways to
connect the subsets inside S because every subset S ∈ S
can be entered from the left or from the right of the cluster.
Analogously, the bus can leave the cluster through the access
portal or through the exit portal. Therefore, for k = |S| there
are 22k possibilities to realize S. Let P be a list of length k
of 2-tuples, where the i-th tuple in P determines through
which portal node the i-th set of S is entered and exited. We
use the symbols a and e to refer to the access portal or the
exit portal. Figure 4 illustrates these concepts.

Let now ΦS,P (Ci) denote a lower bound to handle the
partition S with respect to the P . Then the value of ΦS(Ci)
can be calculated with the following equation.

ΦS(Ci) = min
P∈({a,e}2)k

ΦS,P (Ci) (5)

Now it remains to compute ΦS,P (Ci) itself. This is a four
step procedure in which every step takes care about different
parts of the cost, as illustrated in Figure 5.

Figure 5: Lower bounding the cost for a given partition S
and a vector P . The dashed green line shows the costs of
which step 1 takes care, step 2 is responsible for the costs
depicted in solid blue. Costs bounded in step 3 are drawn
in solid green and step 4 is represented in dashed blue. The
gray lines are not part of the costs of cluster Ci but rather
assist the reader to trace the route.

514

Step 1 collects the costs at the beginning and at the end
of S. In order to get those we compute the number of riders
that must inevitable be inside the bus when S1 is entered and
Sk is exited.

Step 2 covers all costs generated inside the cluster Ci. To
this end, for every S ∈ S we compute the initial and fi-
nal state vector of all rides before serving S and afterwards.
These state vectors are used to define partial dial-a-ride in-
stances which are then solved by Psaraftis’ algorithm.

Step 3 consists of aggregating the costs happening outside
of Ci, but caused by riders with at least one location in Ci.
These are the costs which are covered by the counters α, β,
γ and δ, hence we need to compute up with bounds for those.
This can be achieved in a similar way as in the first step by
keeping track of riders which are inevitably on the bus on
intermediate legs of the tour.

Step 4 deals with the costs generated by riders passing
through Ci, so riders whose pick-up cluster is left of Ci

and whose drop-off cluster is right of Ci. Those riders are
called hoppers. There are three ways to transport the hop-
pers through Ci of which the cheapest one is chosen. The
first possibility is to fetch them in an extra tour after Ci was
handled. The second possibility is only available if there ex-
ists a S ∈ S which is entered from the left and exited to
the right. The hoppers can be transported through Ci using
the tour handling S. The costs are h times the length of the
shortest left-right-tour through any such S, if there is one.
The last possibility exists if there are two consecutive tu-
ples (·,a) and (e, ·) in P . This constellation means that the
bus must drive directly through the cluster from its access
portal to its exit portal.

Exact Classification-Based Algorithm
Combining all of the results obtained above, we are now
ready to state the overall algorithm for tackling clustered
dial-a-ride instances. The high-level pseudo-code is pro-
vided in Algorithm 1.

The correctness of the algorithm follows from Theorem 4
and the validity of the lower bounds on Υ(Ci, T

∗).
In case the unidirectional tour is optimal, the running time

of the algorithm is dominated by the time to compute the
lower bounds Φ(Ci) in the for-loop. Here we need to iter-
ate over all possible ordered partitions of Ci and all possible
vectors P . The number of ordered partitions p(n) of a set
of size n is described by the ordered Bell number (or Fubini
number), which can be computed recursively via p(n) =∑n

i=1

(
n
i

)
p(n − i) and p(0) = 1 (Gross 1962). To account

for the possible choices of the vector P as well, we have to
consider p′(n) cases with p′(n) =

∑n
i=1 4

(
n
i

)
p′(n− i) and

p′(0) = 1. For n = 6, we already need to check 5,227,236
configurations, for which we need to solve partial instances
via Psaraftis’ algorithm. Nevertheless, we show in our exper-
iments that for moderate cluster sizes our classifier is signif-
icantly faster than running Psaraftis’ algorithm on the whole
instance. Hence in case the unidirectional tour is not optimal,
the time overhead induced by the classifier is negligible.

Note that if we just omit lines 2–8 and output the best
unidirectional tour right away, the algorithms turns into an
efficient heuristic.

Algorithm 1: Classification and Exact Computation
Input: clustered dial-a-ride instance I
Output: optimal tour T ∗(I)
/* compute optimal unidirectional

tour */

1
→
T∗ ← result of

→
T∗-algorithm on I

2 for Ci ∈ C do
3 Φ(Ci)← lower bound for cost induced by Ci

/* check whether induced cost and
lower bound match */

4 if Φ(Ci) < Υ(Ci,
→
T∗) then

/* in case of violation run
Psaraftis’ algorithm */

5 T ∗ ← result of Psaraftis’ algorith on I
6 return T ∗
7 end
8 end
/* if no violator exists return the

optimal unidirectional tour */

9 return
→
T∗

Experimental Results
This section covers the performance of the classifier in view
of running time and precision as well as some other more
specific properties. Our implementation was written with the
Go Programming Language, Version 1.10.3. Experiments
were carried out on an Ubuntu Xenial 16.04.3 LTS computer
with Linux core 4.13.0-36. It possessed an AMD Ryzen
Threadripper 1950X 16-Core Processor (3.4 GHz) with hy-
per threading enabled, so 32 cores in total.

Benchmark Data Sets
To evaluate our classifier we tested it on a variety of artificial
and real-world instances.

For investigating scalability and to measure the influence
of certain parameters in a sound way, we created artificial
clustered dial-a-ride instances where locations are points
in the Euclidean plane. There, clusters are represented by
squares which are placed with their centers on the x-axis.
Squares were not allowed to overlap. The x-axis plays the
role of the main road connecting the clusters. Then, for vary-
ing values ofm, we randomly placed 2m locations inside the
clusters (obeying the constraint that pick-ups need to be left
of the respective drop-off locations). For drop-off locations
we made it more likely to end up in a cluster with a high
index, as this more faithfully simulates that people want to
go towards a bigger town. The edge weights of the cluster
graph are the Euclidean distances between the points. The
maximal number of locations inside a cluster was set to 6.

To check whether our approach can cope with real in-
stances as well, we selected existing bus lines operating in
Germany and simulated user requests within the areas served
by the bus line. In particular, we investigated three scenarios:

• rural bus lines (connecting six to eight small villages)

515

riders (n) 6 8 10 12
Psaraftis 0.053 s 1.010 s 17.238 s 232.107 s
→
T∗-algo. 0.001 s 0.002 s 0.003 s 0.004 s
classifier 0.504 s 0.581 s 3.810 s 4.759 s

Table 1: Running times on artificial instances.

• regional bus lines (connecting six towns along federal
highways)

• one intercity bus (connecting six major German cities:
Munich – Ingolstadt – Nuremberg – Erfurt – Magdeburg
– Berlin)

Evaluation on Artificial Instances
Guided by measuring the diameters of typical villages and
the distances of consecutive villages along a bigger road, we
initially used the following parameters to create 100 artificial
instances randomly: We placed eight squares with a mean
width of 3 000 meters and a mean inter-cluster distance of
4 000 m (standard deviation 2 000 m). Then we placed the
desired number of pick-up and drop-off locations randomly
within the clusters. To measure the influence of the inter-
cluster distance, we took the created instances and pushed
the clusters further apart until the mean inter-cluster distance
reached d while maintaining the positions of the locations
relative to their clusters. With that, we created a new set
of 100 instances for each d = 4000, 5000, 6000, . . . , 24000
meters. Hence, for every choice of n we investigate a total
number of 2100 instances.

Table 1 shows the average running times to solve these
instances to optimality using Psaraftis’ algorithm, as well as
the timings for the

→
T∗-algorithm and the classifier. We ob-

serve that the computation of the best unidirectional route is
very efficient. The running time barely increases when more
riders are added. In contrast, the running times of Psaraftis’
algorithm increase roughly by an order of magnitude every
time two additional riders are added. The running time of
the classifier is larger than that of Psaraftis’ algorithm for
6 riders but significantly smaller for 12 riders. In case the
classifier certifies that the computed unidirectional tour is
optimal, the combined running time of the

→
T∗-algorithm and

the classifier is about a factor of 50 faster than Psaraftis’ al-
gorithm.

The ratio increases further when more riders are added but
the maximum number of locations to be visited in a single
cluster stays the same. If we use 6 riders in all 8 clusters,
we get a total of 48 riders. While the running time of our
classifier barely increases compared to the running time for
12 riders (still taking less than a half minute), Psaraftis’ al-
gorithm did not produce a result within a day on such an in-
stance. The same is true for the other exact algorithms men-
tioned in the related work section. Due to the exponential
running time of all exact algorithms, we can always outper-
form them if the maximum cluster size M is significantly
smaller than the number m of riders. In general, though, our
approach can be seen as a framework where Psaraftis’ algo-
rithm can also be replaced by another exact algorithm. We

4 6 8 10·1030

20

40

60

80

100

d

p
er
ce
n
t

T ∗ 6= −→T ∗

T ∗ =
−→
T ∗

4 8 12 16·1030

20

40

60

80

100

d

p
er
ce
n
t

Figure 6: Percentage of instances where T ∗ =
→
T∗ in depen-

dence of the mean inter-cluster distance d for n = 6 (left)
and n = 12 (right).

4 6 8 10·1030

0.2

0.4

0.6

0.8

1

d
re
ca
ll

4 10 16 22·1030

0.2

0.4

0.6

0.8

1

d

re
ca
ll

Figure 7: The classifier’s recalls for different d. Left: n = 6,
right: n = 12.

choose Psaraftis’ here as it allows to compute partial solu-
tions easily but it would be also interesting to try substitutes
for Psaraftis’ in future work.

If we would increase the maximum number of locations
inside a cluster from 6 to 7, the classification time increases
roughly by a factor of 30, which is still manageable. For 8
locations or more, the combinatorial explosion makes the
classifier too slow. Hence 7 is the current limit our approach
can handle. However, we see great potential for time reduc-
tion by exploiting redundancies among the partitions.

But now the crucial question is how often the unidirec-
tional tour is indeed optimal and how often the classifier
can certify it. Figure 6 shows that for n = 6 in at least
90 % of the cases we have an unidirectional optimal tour.
For n = 12 this ratio is approximately 40 % for the small-
est considered mean inter-cluster distance and then rapidly
increases for growing d. Figure 7 shows the recall of the
classifier for selected values of d. It gets more accurate the
higher the inter-cluster distances are. For n = 6 and d = 6
kilometers, we can already certify the optimality of the uni-
directional tour in over 80 % of the cases. For n = 12 and
d = 10 kilometers we have a recall of roughly 40 %.

Based on these numbers we may be tempted to use the
→
T∗-algorithm as a heuristic without the classifier when deal-
ing with many riders and clusters with a rather small dis-
tances in between. We found that the empiric approximation
ratio of the

→
T∗-algorithm (the cost of the best unidirectional

tour divided by the best optimal tour) is at most 1.1 among
all considered instances but significantly better on average.

516

instance mean ICD % uni opt. recall
rural 1 1.2 km 77 0.05
rural 2 3.4 km 82 0.16
rural 3 4.1 km 89 0.29
regional 1 7.9 km 55 0.59
regional 2 8.2 km 100 0.52
regional 3 10.7 km 97 0.55
intercity 1 129.0 km 100 0.93

Table 2: Results on real-world instances. ICD in the second
column stands for inter-cluster distances. The third column
shows the percentage of optimal tours that are unidrectional
and the last column is the recall of our classifier.

Figure 8: Left image: Intended order of clusters. Right im-
age: Many of the optimal tours bypass the nothern city or
visit it later to avoid detours for riders boarded in the left-
most town.

Hence the
→
T∗-algorithm as a standalone can be regarded as

an efficient, complete heuristic.

Evaluation on Real-World Data
For our real-world scenarios (three rural bus lines, three re-
gional bus lines, and one intercity bus line), we created 100
instances each for n = 10. Table 2 summarizes our results.

For the rural lines, we observe that over three-fourths of
the instances have a unidirectional optimal tour with the
number increasing with the mean inter-cluster distance. For
villages lying very close to each other, our classifier is un-
fortunately often not able to certify optimality of the tours.
But for a mean inter-cluster distance of 4.1 kilometers, our
lower bounds are tight already for 29 % of the instances.

The regional bus line 1 was designed to push the classifier
to its limits as it does not satisfy the assumption made for our
classifier to work (note that this can easily be checked a pri-
ori). As shown in Figure 8, there are two towns for which the
shortest path bypasses the cluster between them (because the
highway follows the bends of a river). This results not only
in fewer instances in which T ∗ =

→
T∗ but also in several false

positives. In these cases the classifier said that T ∗ =
→
T∗ but

that was not true. Note that is impossible for instances which
meet our assumptions. The reason for the classifier failing is
that there is a huge discrepancy between the shortest path
distance of the leftmost and the rightmost town in the road
network and their shortest path distance in the cluster graph
used by the classifier.

In all other instances we considered, our assumptions
were met and the precision of the classifier was 100 %, ac-

cordingly. For the other two regional settings (2 and 3), the
recall is over 50 %, leading to a significant reduction of the
average running time on these instances.

Unsurprisingly, all instances in the intercity scenario have
an unidirectional optimal tour, of which the classifier found
93%. In all but one of the seven false negative instances the
classifier reached only Nuremberg. Note that the distance
between Nuremberg and Ingolstadt is the smallest inter-
cluster distance in the scenario. But this also kept the classi-
fication time short for the instances on which we could not
use the

→
T∗-algorithm.

For the intercity 1 and the regional 2 instances, the heuris-
tic version of our algorithm where we only run the

→
T∗-

algorithm would provide us with 1.0 empirical approxima-
tion factor, as all created instances exhibit a unidirectional
optimal tour. For the rural 1 instances, we get an average ap-
proximation factor of 1.008 and a maximum value of 1.282.
For the regional 3 instances, the average was 1.013 and the
maximum was 1.100. So the empirical approximation is in-
deed quite good for sensible instances. Note that we could
also use our lower bound computation techniques to get an
upper bound on the approximation factor the

→
T∗-algorithm

achieves. This also allows for an approach where Psaraftis’
algorithm is only applied in case the estimated approxima-
tion factor on the unidirectional solution is too large.

Conclusions and Future Work
We introduced a classification-based algorithm for the clus-
tered dial-a-ride problem which always returns the optimal
tour and significantly saves running time compared to the
baseline algorithm by Psaraftis on instances with a unidi-
rectional optimal tour. As the cost for the classification is
negligible compared to the running time of Psaraftis’ algo-
rithm in case the optimal tour is not unidirectional, it always
makes sense to use the classifier.

Our experiments on over 9,000 artificial and real-world
instances reveal that indeed a large percentage exhibits a
unidirectional optimal tour. However, the classifier is not al-
ways able to certify the optimality. We looked at the gaps
between the cost of the optimal tour and our lower bound for
those instances and observed that these are usually smaller
than the mean inter-cluster distance. Hence already a slight
improvement in the lower bound construction could yield a
significant increase of the recall. Furthermore, the running
time of the classifier could possibly be reduced by exploit-
ing redundancies among the partial instance computations
or performing instance-independent preprocessing.

A sensible extension of the problem setting could be to in-
clude a constraint on the number of seats on the bus. Given
a limit L on the number of riders that are allowed on the
bus at the same time, there is an easy way of certifying that
the optimal route is not unidirectional: If more than L rid-
ers have a pick-up location left of a cluster Ci but a drop-off
location in Ci or right of Ci, then they can not all be trans-
ported to Ci together. In case an unidirectional tour exists,
we could again try to prove its optimality via cost distribu-
tion and lower bound computation. The lower bound compu-
tation would be more complicated in this scenario, though.

517

References
Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences 114(3):462–467.
Ascheuer, N.; Jünger, M.; and Reinelt, G. 2000. A branch &
cut algorithm for the asymmetric traveling salesman prob-
lem with precedence constraints. Computational Optimiza-
tion and Applications 17(1):61–84.
Cordeau, J.-F.; Iori, M.; Laporte, G.; and Salazar González,
J. J. 2010. A branch-and-cut algorithm for the pickup and
delivery traveling salesman problem with lifo loading. Net-
works 55(1):46–59.
Dantzig, G., and Ramser, J. 1959. The truck dispatching
problem. Management Science 6(1):80–91.
Ding, C.; Cheng, Y.; and He, M. 2007. Two-level genetic
algorithm for clustered traveling salesman problem with ap-
plication in large-scale tsps. Tsinghua Science and Technol-
ogy 12(4):459–465.
Dumitrescu, I.; Ropke, S.; Cordeau, J.-F.; and Laporte, G.
2008. The traveling salesman problem with pickup and de-
livery: polyhedral results and a branch-and-cut algorithm.
Mathematical Programming 121(2):269.
Geisberger, R.; Luxen, D.; Neubauer, S.; Sanders, P.; and
Volker, L. 2009. Fast detour computation for ride sharing.
arXiv preprint arXiv:0907.5269.
Gross, O. A. 1962. Preferential arrangements. The American
Mathematical Monthly 69(1):4–8.
Held, M., and Karp, R. M. 1962. A dynamic programming
approach to sequencing problems. Journal of the Society for
Industrial and Applied Mathematics 10(1):196–210.
Psaraftis, H. N. 1980. A dynamic programming solution to
the single vehicle many-to-many immediate request dial-a-
ride problem. Transportation Science 14(2):130–154.

518

