
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Learning Classical Planning Strategies with Policy Gradient

Paweł Gomoluch, Dalal Alrajeh, Alessandra Russo
Department of Computing, Imperial College London

{pawel.gomoluch14,dalal.alrajeh,a.russo}@imperial.ac.uk

Abstract
A common paradigm in classical planning is heuristic for-
ward search. Forward search planners often rely on simple
best-first search which remains fixed throughout the search
process. In this paper, we introduce a novel search frame-
work capable of alternating between several forward search
approaches while solving a particular planning problem. Se-
lection of the approach is performed using a trainable stochas-
tic policy, mapping the state of the search to a probability dis-
tribution over the approaches. This enables using policy gra-
dient to learn search strategies tailored to a specific distribu-
tions of planning problems and a selected performance met-
ric, e.g. the IPC score. We instantiate the framework by con-
structing a policy space consisting of five search approaches
and a two-dimensional representation of the planner’s state.
Then, we train the system on randomly generated problems
from five IPC domains using three different performance met-
rics. Our experimental results show that the learner is able
to discover domain-specific search strategies, improving the
planner’s performance relative to the baselines of plain best-
first search and a uniform policy.

1 Introduction
As a simple and complete search algorithm, best-first search
forms the core of many modern classical planners (e.g.
(Helmert 2006; Richter and Westphal 2010)). Approaches
combining greedy best-first search (GBFS) with other plan-
ning techniques have largely been confined to sequentially
attempting to solve the problem using two different search
modes (e.g. (Hoffmann and Nebel 2001; Lipovetzky and
Geffner 2017) or even an entire portfolio of potentially un-
related algorithms (e.g. (Howe et al. 2000; Gerevini, Saetti,
and Vallati 2009; Fawcett et al. 2011; Helmert, Röger, and
Karpas 2011; Cenamor, De La Rosa, and Fernández 2016)).
Elsewhere, best-first search (BFS) has been combined with
an auxiliary exploratory technique, triggered when the main
GBFS fails to reach progress for a certain number of expan-
sions (Xie, Müller, and Holte 2014; Lipovetzky and Geffner
2017).

In this work, we introduce a framework capable of sys-
tematically alternating between various forward search tech-
niques, in the course of solving the planning problem. Un-
like (Xie, Müller, and Holte 2014; Lipovetzky and Geffner

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017), we equip the planner with more than two techniques
and do not manually specify the rules for choosing between
them. The choice of the technique is made by the planner us-
ing a stochastic strategy, trained to maximize the planner’s
performance using reinforcement learning. With this ap-
proach, it is possible to train the planner for a particular do-
main or a selected performance objective, such as maximiz-
ing the IPC score or minimizing the time required to find a
solution. By enabling the learner to discover domain-specific
search strategies, this approach has the potential to cover the
middle ground between general-purpose search algorithms
designed to fit a variety of domains and the domain-specific
solvers, hand-crafted by human experts. Moreover, through
seamless integration of various performance objectives, it al-
lows for automatic navigation of the trade-off between the
time required to find plans and their cost, which is a central
issue in satisficing planning.

To demonstrate applicability of our framework, we intro-
duce a specific instantiation, which uses five different for-
ward search approaches and a simple characterization of the
planner’s state in terms of the estimated distance to the goal
(i.e. the heuristic value) and the remaining time available to
the planner.

We then empirically evaluate the resulting system by
training it on randomly generated problems from five IPC
domains. Although our training scheme uses planning prob-
lems of relatively small size, we extend our evaluation to
include larger, IPC-scale problems, which allows for testing
the generality of the learned strategies with respect to the
problem size.

2 Related work
In (Xie, Müller, and Holte 2014), GBFS is augmented with
local search or random walks whenever the search does
not yield progress for a certain number of node expan-
sions. Progress of the search is determined by decrease of
hmin, the lowest value of the heuristic function observed so
far. In a similar way, GBFS can be combined with width-
based search, which prunes out states which do not satisfy
a novelty criterion (Lipovetzky and Geffner 2017). Both ap-
proaches rely on single addition to GBFS, which is triggered
when the main search fails to find states with lower heuris-
tic value for a certain number of expansions. Our framework
allows for a larger number of search approaches and does

637

not explicitly distinguish between primary and backup ones.
The strategy for choosing between them is subject to the
learning process.

Related to our approach is also the concept of portfolio
planners, especially those configured based on experience
gathered on a set of training problems (Fawcett et al. 2011;
Helmert, Röger, and Karpas 2011; Cenamor, De La Rosa,
and Fernández 2016). The key difference between portfolio
approaches and our work is that the operation of a portfolio
planner involves running a number of independent searches,
each with a different planning algorithm. In our approach a
single search is performed, with the possibility of alternat-
ing between compatible search techniques, depending on the
state of the search.

Learning from experience has long been used as a way
of improving the planner’s performance. In classical plan-
ning, the work in this area included learning macro ac-
tions (e.g. (Fikes, Hart, and Nilsson 1972; Coles and Smith
2007), control knowledge in the form of decision rules
(e.g. (Leckie and Zukerman 1998; Yoon, Fern, and Givan
2008)) and heuristic functions (Yoon, Fern, and Givan 2008;
Virseda, Borrajo, and Alcazar 2013; Garrett, Kaelbling, and
Lozano-Perez 2016). A survey of learning methods for au-
tomated planning can be found in (Jimenez et al. 2012). To
the best of our knowledge, none of the learning approaches
attempted to construct a domain-specific composition of dif-
ferent search techniques.

3 Background

Classical planning Planning is the problem of finding se-
quences of actions which, when executed from a given ini-
tial state, lead to a state in which the planning goal is sat-
isfied. Classical planning, in particular, relies on a known
and perfect model of the environment, including a discrete
set of deterministic actions. Formally, a classical planning
task is given by a tuple 〈Vp, O, so, g〉, where Vp is a set of
finite-domain variables, O is the set of operators, s0 is the
initial state, which is an assignment over the variables of
Vp, and g is the goal, a partial assignment over the variables
of Vp. Each operator o ∈ O is itself specified with a tu-
ple 〈pre(o), eff(o)〉, where pre(o) and eff(o) are both partial
assignments over Vp, defining the preconditions and the ef-
fects of applying operator o, respectively. Operator o can be
applied in state s if and only if pre(o) ⊆ s. The result of ap-
plying operator o in state s, denoted as o(s) is defined as an
assignment over V differing from s by setting the variables
covered by eff(o) accordingly.

A common classical planning approach is forward search.
The search starts at the initial state and iteratively explores
states reachable by sequentially applying operators of set O.
A canonical example of forward search is best-first search
(BFS), which always expands the node n with the lowest
value under a specified evaluating function f(n). Heuristic
functions guide forward search by estimating the distance to
the goal from any given node. Best-first search driven solely
by the heuristic value of a node, f(n) = h(n), is known as
greedy best-first search (GBFS).

Reinforcement learning We adopt a reinforcement learn-
ing approach based on the standard Markov Decision
Process (MDP) setting. An MDP is given by a tuple
〈S,A, p(s, a, s′), r(s, a), γ〉, where S is a set of states, A is
a set of actions, p(s, a, s′) : S × A × S → S is a function
determining the probability of a transition to state s′, given
that action a is taken in state s, r(s, a) : S × A → R is a
function yielding the expected reward for taking action a in
state s and γ is the discount factor. The task of an agent oper-
ating in MDP is to maximize the discounted sum of rewards
observed during an episode: G =

∑T
t=1 γ

trt, where T is
the length of the episode. A policy of the agent is a (possi-
bly stochastic) mapping from S to A. Since in this paper we
focus on stochastic policies (search strategies), we assume
a policy to be a function π(s, a) = p(a|s), indicating the
probability of agent selecting action a in state s, for every
s ∈ S, a ∈ A.

Given the focus on stochastic policies, we employ a pol-
icy gradient method of learning them, based on the REIN-
FORCE algorithm (Williams 1992; Sutton and Barto 1998).
The core idea of REINFORCE is that unbiased samples of
the gradient of the return G with respect to parameters θ
of policy π can be computed using an expression that only
depends on the current policy and a single return sample.
Every state-action pair (s, a) occurring at time t in a par-
ticular episode, generates the following update of the policy
parameters θ:

∆θ = α(Gt − b(s))
∇θπ(s, a)

π(s, a)
(1)

where α is the learning rate, Gt is the discounted sum of
rewards from time t+ 1 to the end of the episode and b(s) is
the baseline for state s, for example computed as the average
of returns observed for that state in previous episodes.

4 Approach
The planning approach proposed in this paper relies on the
idea that the search algorithm does not have to be fixed
throughout the process of solving a planning problem. A
range of planning algorithms can interleave, provided that
they can all be cast as operations processing common inter-
nal state of the planner. In the remainder of the paper, we
assume that the algorithms are available to the planner in the
form of a set of routines. The routines applied to the state
of the planner perform an atomic step of the corresponding
algorithm. For example, a step of GBFS can consist of se-
lecting the node with the lowest heuristic value, expanding
it and adding its children to the queue (open list).

Algorithm 1 outlines our framework for planning with al-
ternating search routines. Typically for a planner, the algo-
rithm’s arguments include the initial state s0, the goal g and
the set of operators O. Additional parameters are the set of
search routinesA and time limit tr. The algorithm initializes
the state queue (the open list) with s0.Then, it chooses a rou-
tine from set of routines A, applies it for a limited time of
up to tr, then chooses a routine again, and so on, until a plan
is found. A single application of routine to the queue mod-
ifies the queue and returns the plan if a solution is found,

638

returns failure if the search space is exhausted without find-
ing a plan and returns a special in-progress token otherwise.
Note that the algorithm is presented in a simplified form,
focusing on alternating between the routines. It hides details
such as keeping track of already expanded states (closed list)
and recording their ancestors for the purpose of extracting
the plan.

Algorithm 1 Planning with alternating search routines
function PLANASR(s0, g, O,A, tr)

queue← [s0]
while true do

routine← choose(A)
tstart ← now() . current time
while now()− tstart < tr do

result← routine(queue)
if result 6= in-progress then

return result . a plan or failure
end if

end while
end while

end function

The problem of choosing a routine given the state of the
search can be modeled as an MDP where the state set S is the
set of possible states of the search and the action set A is the
set of search routines available to the planner. The states of
the search are assignments over a set of finite-domain vari-
ables Vl. In Section 5 we introduce particular instantiations
of A and Vl. The reward function can be any measure of
planner’s performance available after a single attempt at a
given planning problem. In the simplest scenario, the reward
can be defined as 1 if the planner solves the problem within
a set time limit and 0 otherwise. Training with such a reward
function would correspond to optimizing for coverage, i.e.
the number of problems solved, disregarding the plan qual-
ity. The reward functions used in our experimental setup are
discussed in Section 5.

The search policy is parametrized by θ, with one param-
eter θi,j for every state-action pair (si, aj). The probability
of taking action aj in state si is determined by softmax over
the parameters associated with the state:

π(aj |si) =
eθi,j∑
j

eθi,j

We train the weights using a variant of episodic REIN-
FORCE (Williams 1992). To decrease the variance of the
gradient sample we average the update over N episodes,
during which the same stochastic policy is used on the same
training problem. In our setting with just four states, a state
is typically visited many times during a single episode and
many (possibly different) actions are taken from it. The pa-
rameter update after every N episodes is therefore:

∆θ = α
1

N

N∑
i=1

∑
s,a

ηi(s, a)(Gt − V (s))
∇θπ(s, a)

π(s, a)
(2)

where α is the learning rate, ηi(s, a) is the number of times
action a was taken from state s in episode i, Gt is the return
observed at the end of the episode and V (s) is a baseline
for state s, computed as the average of all past returns for
episodes passing through s.

5 Approach instantiation
In this section we describe an instantiation of the framework
described in Section 4, which we then empirically evaluate
in Section 6. The key components of the framework are the
set of search routines A, the representation of the planner’s
state and the reward function, reflecting the chosen perfor-
mance objective.

Another important choice is tr, the time span over which
the chosen routine continues to be applied. In this work we
fix tr to 100 ms, which enables a single routine to make
substantial progress, while also allowing for strategies inter-
leaving the routines in a fine-grained manner.

Search routines
Below, we describe the routines which we include in the set
A of our instantiation and state how they can be integrated
within the framework.

Greedy best-first search Plain greedy best-first search al-
ways expands the node with the lowest value of h. A single
application of this routine consists of a single node expan-
sion, followed by placing of all its ancestors in the queue.

ε-greedy search ε-greedy search was first considered in
classical planning context by (Valenzano et al. 2014). Like
greedy best-first search, one application of this routine per-
forms a single node expansion. The difference is that with
probability of ε a random node is selected from the queue
with the probability of selection uniform across all the
nodes. Throughout the paper we use ε = 0.2.

Greedy search with random walks A variation of GBFS,
following the expansion of node n with a single random
walk of length l starting in n, provided that no decrease in
heuristic value has been observed for the last s node expan-
sions. All the nodes along the walk are added to the global
queue. The walk stops as soon as a state with heuristic value
lower than that of n is found. This method is inspired by
(Xie, Müller, and Holte 2014), but throughout the paper we
use parameters of s = 5 and l = 20, which makes the ran-
dom walks much more frequent. This is to ensure that the
routine is substantially different from plain GBFS and offers
the learner a meaningful alternative.

Local search Local search is started from a node with the
lowest h value, extracted from the global queue when the
routine is selected. The node is used to initialize the local
queue, which persists between subsequent calls of the rou-
tine. The search continues by expanding states from the lo-
cal queue. When the time limit tr expires, the local queue is
merged into the global one (all the states from local queue

639

are inserted to the global one). If the local queue becomes
empty before tr expires, another node from the global queue
is put in the local one, effectively starting a new local search.

Heuristic-guided depth-first search Depth-first search is
performed using a local search stack. When the routine is
selected, a node with the lowest h value is extracted from
the global queue and placed on the stack. At every call, a
node n is popped from the stack and expanded. Descendant
nodes are put on the stack in order of decreasing h value, so
that the node expanded at the next step is the descendant of
n with the lowest h. The descendant nodes are also inserted
in the global queue. If the stack becomes empty before tr
expires, another node from the global queue is put on the
stack and the search continues.

State representation
As stated in Section 4, we the state space of our learner is
the set of possible assignments over the variables of Vl. In
the remainder of the paper, we consider Vl to be a set of two
boolean variables Vl = {d, t}. We take d to be a binarized
heuristic estimate of the distance to the goal:

d =

{
0 if hbest < h0/2

1 otherwise

where hbest is the lowest heuristic value recorded in the
search so far and h0 is the heuristic value of the initial state.
The variable is a simple way of tracking the progress of the
search. Similarly, t indicates how much time the planner has
left:

t =

{
0 if telapsed < tmax/2

1 otherwise

where telapsed is the time elapsed from the beginning of the
search and tmax is the total time allocated for the search.

Using two binary state features allows for a compact tabu-
lar representation of the learned policies. For readability, we
further refer to the states of the search as near (d = 0) or far
(d = 1) and early (t = 0) or late (t = 1).

Reward functions
We consider three different reward functions, corresponding
to three different ways of scoring performance of a planner.
The first reward is based on IPC score, first used in IPC-
20081. This is a widely used measure of planners’ perfor-
mance, assigning higher scores to planners finding lower-
cost solutions. For every solved problem, the planner re-
ceives score defined as follows:

z =
cmin
c

where c is the cost of the plan returned by the planner and
cmin is the cost of best known solution. For failed problems,
planners receive a score of 0. Cost cmin is determined us-
ing a set of reference planners, each based on a single rou-
tine from set A and run with the same timeout as the trained
planner.

1http://icaps-conference.org/ipc2008/deterministic/

During the training phase, we deviate from traditional
IPC score in two ways. First, we do not include the trained
planner in the reference set, allowing for a situation where
c < cmin an so z > 1. This way, the learner observes re-
wards higher than 1 for finding solutions with costs strictly
lower than any of the reference planners. Second, if the
trained planner solves the problem but none of the reference
planners does, we set the reward to a fixed value of 2. The
choice of value 2 is motivated by the fact that, during a com-
petition, solving a problem unsolved by others yields a net
advantage of 1, which is 1 more than in the case when a so-
lution with cost equal to the best competitor is found, when
both planners receive one point. Both of these changes aim
at providing the reward the ability to distinguish between
situations where the learner’s performance is as good as the
reference planners’ and the cases when it is strictly better. If
a problem is solved neither by the learner nor by any of the
reference planners, the reward is not defined and the episode
does not generate a parameter update. Formally,

ripc =

cmin

cL
if both cmin and cL are defined

0 if only cmin is defined
2 if only cL is defined

where cL is the cost of the plan computed by the trained
strategy.

The modified version of IPC score is only used in the
training phase. Naturally, during the evaluation of the trained
policies, the learned planner is included in the reference set,
treating it on par with any other planner included in the com-
parison and effectively capping its score for any single prob-
lem at 1.

The second reward function we consider is based on
squared IPC score. The motivation is to further increase em-
phasis on the cost of the plan. For example, a planner re-
turning a plan two times more expensive than the best plan
known would only receive (1

2)2 = 1
4 points. Given the mod-

ifications we introduced in ripc, we cap the reward at 2 to
prevent excessive premium for performance strictly better
than that of reference planners. Formally:

ripc2 = min(r2ipc, 2)

Finally, we consider a reward based solely on the time
used to find a solution. The learner receives a reward equal
to the proportion of spared time to the total time allocated
for the problem:

rtime =

{
T−t
T if solved

0 otherwise

where T is the total time allocated for the planner and t is
the actual time elapsed before the plan is returned. Note that
another reward function disregarding the plan cost could be
derived from coverage (1 if the problem is solved and 0 oth-
erwise). This however would ignore the computation time
as long as it falls within the limit. The time-based formula-
tion retains more information in the reward signal and incen-
tivizes finding a solution as quickly as possible.

640

Transport Parking
IPC reward

GBFS ε-greedy RW Local DFS
near early 0.98 0.01 ∼ 0 ∼ 0 ∼ 0
near late 0.01 ∼ 0 0.97 0.02 ∼ 0
far early ∼ 0 ∼ 0 ∼ 0 1.00 ∼ 0
far late 0.01 0.01 0.94 0.01 0.02

IPCˆ2 reward
GBFS ε-greedy RW Local DFS

near early 0.01 0.98 ∼ 0 ∼ 0 ∼ 0
near late 0.14 0.22 0.60 0.04 ∼ 0
far early 0.96 0.02 0.01 ∼ 0 ∼ 0
far late 0.02 0.02 0.91 0.05 0.01

Time reward
GBFS ε-greedy RW Local DFS

near early 0.01 0.01 0.95 0.01 0.01
near late 0.04 0.03 0.05 0.09 0.78
far early 0.01 ∼ 0 0.97 0.01 0.01
far late 0.19 0.17 0.23 0.19 0.21

IPC reward
GBFS ε-greedy RW Local DFS

near early ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.99
near late 0.01 0.01 0.01 0.02 0.94
far early ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.99
far late 0.2 0.2 0.2 0.2 0.2

IPCˆ2 reward
GBFS ε-greedy RW Local DFS

near early 0.2 0.02 0.01 0.15 0.80
near late 0.01 0.01 0.01 0.02 0.96
far early ∼ 0 ∼ 0 0.01 ∼ 0 0.98
far late 0.19 0.19 0.19 0.19 0.25

Time reward
GBFS ε-greedy RW Local DFS

near early ∼ 0 ∼ 0 ∼ 0 0.01 0.98
near late 0.19 0.19 0.18 0.19 0.25
far early 0.01 0.01 0.01 0.01 0.97
far late 0.2 0.2 0.2 0.2 0.2

Elevators No-mystery
IPC reward

GBFS ε-greedy RW Local DFS
near early 0.05 0.58 0.03 0.32 0.02
near late 0.01 ∼ 0 0.01 0.98 ∼ 0
far early 0.02 0.01 0.92 0.02 0.04
far late 0.11 0.09 0.11 0.16 0.53

IPCˆ2 reward
GBFS ε-greedy RW Local DFS

near early 0.01 ∼ 0 0.98 ∼ 0 ∼ 0
near late 0.01 0.01 0.97 0.01 ∼ 0
far early 0.01 0.03 0.45 0.51 ∼ 0
far late 0.14 0.14 0.19 0.28 0.25

Time reward
GBFS ε-greedy RW Local DFS

near early 0.02 0.01 0.09 0.08 0.79
near late 0.07 0.04 0.30 0.38 0.21
far early 0.03 0.03 0.04 0.04 0.86
far late 0.19 0.19 0.21 0.20 0.21

IPC reward
GBFS ε-greedy RW Local DFS

near early ∼ 0 0.93 ∼ 0 0.06 0.01
near late 0.94 0.05 0.01 ∼ 0 ∼ 0
far early 0.01 0.86 0.01 0.01 0.10
far late 0.18 0.19 0.24 0.20 0.19

IPCˆ2 reward
GBFS ε-greedy RW Local DFS

near early 0.06 0.87 0.01 0.02 0.04
near late 0.01 0.99 ∼ 0 ∼ 0 ∼ 0
far early 0.01 0.92 0.02 0.03 0.02
far late 0.19 0.22 0.20 0.20 0.20

Time reward
GBFS ε-greedy RW Local DFS

near early 0.01 0.97 0.01 ∼ 0 0.01
near late 0.42 0.38 0.09 0.05 0.06
far early 0.01 0.96 0.01 0.01 0.01
far late 0.2 0.2 0.2 0.2 0.2

Floortile
IPC reward

GBFS ε-greedy RW Local DFS
near early ∼ 0 1.00 ∼ 0 ∼ 0 ∼ 0
near late 0.42 0.55 ∼ 0 0.01 ∼ 0
far early 0.01 0.98 ∼ 0 ∼ 0 ∼ 0
far late 0.2 0.2 0.2 0.2 0.2

IPCˆ2 reward
GBFS ε-greedy RW Local DFS

near early ∼ 0 1.0 ∼ 0 ∼ 0 ∼ 0
near late 0.02 0.97 ∼ 0 ∼ 0 ∼ 0
far early 0.01 0.97 0.01 0.01 0.01
far late 0.2 0.2 0.2 0.2 0.2

Time reward
GBFS ε-greedy RW Local DFS

near early ∼ 0 1.00 ∼ 0 ∼ 0 ∼ 0
near late 0.79 0.19 0.01 0.01 0.01
far early 0.01 0.97 0.01 0.01 0.01
far late 0.2 0.2 0.2 0.2 0.2

Entries in the table are the probabilities
of selecting a given routine in a given
search state, learned separately for each of
the domains and reward functions. Prob-
abilities > 0.2 highlighted in bold. The
impact of different rewards is most visi-
ble in Transport and Elevators domains,
where time-based reward shifts the poli-
cies towards depth-first search. On the
other hand, changing the reward has lit-
tle effect in No-mystery and Floortile do-
mains, where the more aggressive routines
are potentially harmful, and in Parking,
which admits DFS without big impact on
the plan cost.

Table 1: The policies learned for each of the planning domains and reward functions.

641

IPC score
T P E N F Sum

GBFS 29.46 15.57 28.73 24 28.27 126.03
ε-gr. 27.23 10.88 21.87 30.64 50.33 140.95
RW 30.92 9.79 31.82 19.48 4.91 96.92

Local 37.18 21.89 32.87 20 23.9 135.84
DFS 12.95 37.45 16.92 7.7 0.13 75.15
Uni 24.07 25.71 26.79 20.75 32.44 129.76
L(I) 38.85 37.27 32.67 26.62 49.83 185.24

L(Iˆ2) 36.79 37.38 32.13 27.2 49 182.5
L(T) 30.58 36.56 19.54 26.37 46.84 159.89

IPCˆ2 score
T P E N F Sum

GBFS 27.49 13.66 27.6 24 24.67 117.42
ε-gr. 22.82 9.52 20.87 30.5 44.69 128.4
RW 19.26 8.41 24.27 19.38 3.95 75.27

Local 28.58 16.76 26.44 20 20.54 112.32
DFS 4.07 25.93 6.42 7.7 0.06 44.18
Uni 13.73 19.71 18.24 20.71 28.33 100.72
L(I) 30.7 26.18 25.13 26.55 44.28 152.84

L(Iˆ2) 30.55 26.51 24.57 27.1 43.59 152.32
L(T) 18.75 25.5 8.77 26.26 41.36 120.64

Time score
T P E N F Sum

GBFS 23.66 14.27 14.83 20.58 17.13 90.47
ε-gr. 21.48 10.15 10.44 21.58 38.47 102.12
RW 39.93 9.35 21.28 16.77 3.96 91.29

Local 33.87 22.45 19.22 15.98 14.02 105.54
DFS 36.88 48.6 25.41 5.44 0.21 116.54
Uni 34.55 27.75 20.25 17.18 19.71 119.44
L(I) 33.97 47.69 20.64 21.12 38.39 161.81

L(Iˆ2) 29.27 46.98 21.11 21.56 37.9 156.82
L(T) 41.32 47.13 24.8 20.83 37.02 171.1

Table 2: IPC, IPCˆ2 and time score of the learned planning
strategies and relevant baselines on 60 test problems ran-
domly generated for each of the five domains: Transport
(T), Parking (P), Elevators (E), No-mystery (N) and Floor-
tile (F). Average of 10 test runs. L(I), L(Iˆ2) and L(T) are
the strategies trained with rewards based on IPC, IPCˆ2 and
time-based score, respectively. Values within 1 point from
the highest one highlighted in bold.

6 Evaluation
The learning planner was implemented on the basis of
the Fast Downward planning system (Helmert 2006). The
source code is available online2.

We tested the system on five IPC domains of Transport,
Parking, Elevators, No-mystery and Floortile. This is the set
of domains used in the learning track of IPC 2014 (Val-
lati et al. 2015), with the exception of the Spanner domain.
We excluded Spanner because it was designed not to work
well with delete-relaxation heuristics, such as the FF heuris-
tic, used throughout all of our experiments. We fixed the
time allocated for solving a single problem to 5 seconds.
For each of the domains we generated 1000 training prob-
lems using the problem generators from the learning track of
IPC 20143. The parameters passed to the problem generators

2https://github.com/pgomoluch/fd-learn
3http://www.cs.colostate.edu/∼ipc2014/

IPC score
T P E N F Sum

GBFS 0 5.89 11.56 8 3.62 29.07
ε-gr. 0 3.84 11.68 7.72 4.87 28.11
RW 0.92 4.55 9.88 6.91 2.6 24.86

Local 2 9.98 11.63 6.98 3.64 34.23
DFS 0 8.88 7.47 7.77 0 24.12
Uni 0 6.21 10.81 7 3.61 27.63
L(I) 0 12.27 11.78 7.72 5.7 37.47

L(Iˆ2) 0 12.09 11.15 7.72 6.72 37.68
L(T) 0.48 7.59 7.67 7.72 4.76 28.22

IPCˆ2 score
T P E N F Sum

GBFS 0 5.79 11.15 8 3.29 28.23
ε-gr. 0 3.7 11.39 7.48 4.75 27.32
RW 0.85 4.15 8.05 6.83 2.29 22.17

Local 2 8.42 9.78 6.96 3.32 30.48
DFS 0 7.38 4.63 7.55 0 19.56
Uni 0 4.9 8.8 7 3.29 23.99
L(I) 0 10.28 9.6 7.48 5.48 32.84

L(Iˆ2) 0 10.69 9.32 7.48 6.48 33.97
L(T) 0.23 6.5 4.82 7.48 4.55 23.58

Time score
T P E N F Sum

GBFS 0 4.03 10.35 7.77 3.99 26.14
ε-gr. 0 2.95 10.07 7.86 4.96 25.84
RW 0.72 3.05 10.3 6.3 2.97 23.34

Local 0.56 8.49 10.81 6.92 3.97 30.75
DFS 0 8.47 11.67 7.32 0 27.46
Uni 0 5.51 10.76 6.46 3.98 26.71
L(I) 0 10.85 10.65 7.86 5.93 35.29

L(Iˆ2) 0 10.33 11.02 7.73 6.9 35.98
L(T) 0.13 7.28 11.64 7.89 4.95 31.89

Table 3: IPC, IPCˆ2 and time score of the learned planning
strategies and relevant baselines on IPC-11 problems under
60 second time limit. Transport (T), Parking (P), Elevators
(E), No-mystery (N) and Floortile (F) domains. L(I), L(Iˆ2)
and L(T) are the strategies trained with rewards based on
IPC, IPCˆ2 and time-based score, respectively. Values within
1 point from the highest one highlighted in bold.

were selected to match the timeout of 5 seconds: for each of
the domains we aimed at parameters for which the result-
ing problems will prove challenging but possible to solve.
More precisely, we searched for generator configurations,
for which about 50% of the problems could be solved in
5 seconds by the baseline planner using GBFS guided by FF
heuristic (Hoffmann and Nebel 2001) with unary operator
costs, which we used as the heuristic function throughout
all the experiments. Training on substantially larger prob-
lems would be difficult in the current framework, because of
the time required to complete a single episode (that is, solve
the planning problem) and the sparser reward (more actions
contributing to a single solution).

For every combination of domain and reward function, we
trained the policy on a single CPU for 48 hours. During this
time, problems were sampled randomly from the training set
and attempted N = 5 times, before the policy was updated
according to Equation 2 with α = 0.02. Table 1 shows the
policies learned for each of the domains and reward func-

642

tions. Every entry of the tables indicates the probability of
selecting the routine given by the column in the state given
by the row.

In the majority of the states, the learned policy approaches
a deterministic one, with the probability of choosing the
dominant routine exceeding 0.9. For some states, however,
the policy remains nondeterministic. This is often the case
for states visited infrequently during the training process.
The most extreme example is the far late state, which did
not occur at all when training on Parking with the IPC or
time reward. To shed some light on the learning process, in
Figure 1 we plot the probabilities of choosing particular rou-
tines in selected states, as functions of the number of training
episodes.

In the Transport domain the preferred routine changes
over the course of the search. For example, under the IPC re-
ward, GBFS is preferred when substantial progress towards
the goal has been made and there is still a lot of time (the
near early state). However, when the time starts to run out,
the planner switches to BFS augmented with random walks
(the near late state). The learned policies vary depending
on the selected reward function. The relatively conservative
routines of GBFS and ε-greedy search are chosen in two
states under the IPCˆ2 reward, one state under the plain IPC
reward, and in none of the states in the case of time-based
reward. In fact, with the time reward the learner goes as far
as choosing DFS in the near early state. Indeed, in this do-
main DFS allows for rapid progress towards the goal, at the
cost of generating strongly suboptimal plans. The impact of
changing the objective is even more visible in the Elevators
domain, where time reward results in frequent selection of
DFS, while less aggressive options of local search and ran-
dom walks are preferred under the two remaining rewards.

Since, in Parking, the use of DFS comes without substan-
tial increase of the plan costs, the learner chooses it very con-
sistently, irrespective of the selected reward function. The
opposite occurs for No-mystery and Floortile: since aggres-
sive exploration can be harmful in these domains (because of
dead ends), the learner confined itself to GBFS and ε-greedy
search. Again, this resulted in very similar policies learned
across all three reward functions.

To evaluate the learned policies, for every domain we ran-
domly generated 60 test problems, using the same generator
parameters as for the training problems. Table 2 shows per-
formance of the learned planners, measured by IPC, IPCˆ2
and time-based score respectively. For comparison, the base-
lines of uniform random policy and each of the routines on
its own are included. The strategies learned with the corre-
sponding reward function consistently outperform most of
the baselines, reaching the highest or nearly-highest scores.
In particular, for Transport the scores obtained when learn-
ing with relevant reward are higher than those reached with
any of the routines on their own. In Elevators, the learner
scores a bit lower than the best single routine (local search
for IPC, GBFS for IPCˆ2 and DFS for the time score), but
remains ahead of most others. On Parking, No-mystery and
Floortile all the strategies are comparable to the single best
routine, which is expected given the policies learned in these
domains.

A real-world application of a learning planner would aim
at training the system on problems representative of the ones
encountered in actual operation, e.g. by recording past prob-
lems. However, to check whether the learned policies can
also be useful on problems larger than the training ones,
we performed an additional series of experiments. We used
the problem sets from IPC-2011, which is the last edition
in which the five domains occurred together in the satisfic-
ing track. Initially, we conducted the experiments with the
standard per-problem time limit of 30 minutes. The value
of timeout T , used for computing the time score was ad-
justed accordingly to 1800s. However, the Parking and El-
evators problems turned out to be very easy even for the
plain GBFS(FF), which only failed one of 20 Parking prob-
lems. GBFS with random walks also failed one of the prob-
lems, but otherwise all of the Parking and Elevators prob-
lems were solved by all of the planners. In this situation, the
learned planners were unable to match GBFS, which gener-
ally returned solutions of lower cost. This is expected given
the added depth-bias of the other routines and therefore the
strategies relying on them.

For this reason, we decided to reduce the time limit to one
minute (again, T was adjusted to 60s). This setting was in-
tended to reflect more closely the relative difficulty of the
training setting, in which, as stated at the beginning of this
section, only about half of the problems could be solved in
time by GBFS with FF heuristic. Indeed, with one minute
timeout GBFS solved 6 of the Parking problems and 12 of
the Elevators problems. The scores are reported in Table 3.
The strategies trained with IPC and IPCˆ2 rewards remain
competitive, although their advantage over the baselines is
not as large as on problems generated from the training dis-
tributions. The strategies learned with the time-based reward
generalize worse, but on aggregate remain ahead of the base-
lines in terms of the obtained time score.

7 Conclusion and future work
In this paper, we introduced a planning framework capa-
ble of alternating between various search techniques while
solving a problem. We modeled the problem of choosing the
planning technique a reinforcement learning problem. Fur-
ther, we provided an instantiation of the framework, defin-
ing a set of compatible search routines and a high-level
representation of the planner’s state. The resulting system
was trained and evaluated on five planning domains and
with three different performance measures. The experimen-
tal results show that the learned strategies obtain good per-
formance on all five domains. Furthermore, despite being
trained on relatively small problems, the strategies were also
useful on larger problems, provided that the time interplay
between problem size and time constraint roughly matched
the training setting.

Our future work will investigate more complex represen-
tations of the planner’s state and ways to improve practical
sample efficiency of the learner. Another research direction
is to extend the set of routines available to the learner. Pos-
sible additions include local search guided by other heuris-
tic functions, width-based search (Lipovetzky and Geffner
2012), and stochastic rollouts driven by preferred operators.

643

0 10000 20000 30000 40000 50000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

0 10000 20000 30000 40000 50000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

Transport, IPC reward, near early Transport, IPC reward, near late

0 10000 20000 30000 40000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

0 10000 20000 30000 40000
0

0.05

0.1

0.15

0.2

0.25

0.3

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

Parking, IPC reward, near early Parking, time reward, near late

0 10000 20000 30000 40000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

0 10000 20000 30000 40000 50000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

GBFS

ε-greedy

GBFS + RW

Local GBFS

DFS

Elevators, IPC reward, near early No-mystery, time reward, near late

Figure 1: Policies for selected states and reward functions, changing with the number of training episodes. The policy for
near early state in Transport domain under the IPC reward (top left) chooses GBFS nearly deterministically. DFS is discarded
particularly early because in Transport it leads to plans of very high cost. For the near late state (top right), the learner oscillates
between greedy search with random walks and local search, before committing to the latter. The policy for near early state in
Parking domain under the IPC reward (middle left) quickly commits to DFS, which is typical for the Parking domain. However,
for near late state and the time reward (middle right), the policy remains close to uniform despite preference for DFS. This is
because the state is rarely visited, providing few samples. For near early state in Elevators domain under IPC reward (bottom
left) the learner does not find a stable policy and oscillates between local and ε-greedy search, which both seem reasonable
choices. For near late state in No-mystery domain under time reward (bottom right), the policy remains nondeterministic after
48h of training, choosing either of the preferred routines with similar probability. GBFS and ε-greedy search are generally
preferred over more aggressive routines in the No-mystery domain, which was designed to enforce nearly-optimal solutions.

644

References
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2016. The
IBaCoP Planning System: Instance-Based Configured Port-
folios. Journal of Artificial Intelligence Research 56:657–
691.
Coles, A., and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. Journal of Ar-
tificial Intelligence Research 28:119–156.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-Specific Con-
figuration using Fast Downward. ICAPS 2011 Workshop on
Planning and Learning 28–35.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and Executing Generalized Robot Plans. Artificial Intelli-
gence 3(1972):251–288.
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Perez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics. In
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, 3089–3095.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An Auto-
matically Configurable Portfolio-based Planner with Macro-
actions: PbP. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009, Thessaloniki, Greece, September 19-23, 2009.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. ICAPS 2011 Workshop on Planning and Learning 28–
35.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:263–312.
Howe, A. E.; Dahlman, E.; Hansen, C.; Scheetz, M.; and
Mayrhauser, A. v. 2000. Exploiting Competitive Planner
Performance. In Proceedings of the 5th European Confer-
ence on Planning: Recent Advances in AI Planning, ECP
’99, 62–72. Berlin, Heidelberg: Springer-Verlag.
Jimenez, S.; De La Rosa, T.; Fernandez, F.; and Borrajo, D.
2012. A Review of Machine Learning for Automated Plan-
ning. The Knowledge Engineering Review 27(4):433–467.
Leckie, C., and Zukerman, I. 1998. Inductive learning
of search control rules for planning. Artificial Intelligence
101:63–98.
Lipovetzky, N., and Geffner, H. 2012. Width and Serial-
ization of Classical Planning Problems. In ECAI 2012 -
20th European Conference on Artificial Intelligence. Includ-
ing Prestigious Applications of Artificial Intelligence (PAIS-
2012) System Demonstrations Track, Montpellier, France,
August 27-31 , 2012, 540–545.
Lipovetzky, N., and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA. 3590–3596.

Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.
Valenzano, R.; Sturtevant, N. R.; Schaeffer, J.; and Xie, F.
2014. A Comparison of Knowledge-Based GBFS Enhance-
ments and Knowledge-Free Exploration. In Proceedings of
the Twenty-Fourth International Conference on Automated
Planning and Scheduling, ICAPS 2014, Portsmouth, New
Hampshire, USA, June 21-26, 2014.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015. The 2014 International Planning
Competition: Progress and Trends. AI Magazine 36(3):90–
98.
Virseda, J.; Borrajo, D.; and Alcazar, V. 2013. Learning
heuristic functions for cost-based planning. Preprints of the
ICAPS’13 PAL Workshop on Planning and Learning 6–13.
Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning. Ma-
chine Learning 8:229–256.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding Local
Exploration to Greedy Best-First Search in Satisficing Plan-
ning. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27-31, 2014, Québec City,
Québec, Canada., 2388–2394.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. The Journal of
Machine Learning Research 9:683–718.

645

