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Abstract
This work proposes and evaluates various improvements to
a circular local path template (LPT) that we have designed
in the past to estimate driver intents and to provide naviga-
tion assistance to wheelchair drivers. This LPT may also be
useful in other mobile robotics applications such as for intu-
itive teleoperated control, for fast collision checking in path
planning or for obstacle avoidance algorithms. The LPT con-
sists of a large but fixed set of paths in the mobile robot’s
local neighborhood. Based on an efficient look-up table, the
LPT paths’ lengths are adjusted such that they are collision-
free. However, experiments have shown that in dense envi-
ronments insufficient circular paths are found, which impedes
correct intention estimation and thus navigation assistance. In
this work, the use of clothoidal paths rather than circular paths
is evaluated. This substantially improves the capability to find
complex paths in dense areas. Furthermore, we adapt the LPT
to deal with dynamic obstacles of random shape using motion
prediction estimates of these objects.

Introduction
The ability to move around to any desired location is criti-
cal to all human development, activity and interaction. With
the increase in average age in almost all nowadays societies,
the loss of mobility caused by reduced physical capabili-
ties frequently leads to a loss in social contact and there-
fore quality of life. The use of robotic technologies can give
back a level of mobility and sense of autonomy to the el-
derly or disabled. For example, powered wheelchairs en-
able people with motion impairments to regain movement
control and thus to re-engage in more frequent human in-
teractions. However, this renewed mobility comes with its
own constraints. Wheelchairs are relatively large compared
to their indoor environment. In order to navigate the chair
without colliding, a significant degree of dexterity is needed.
Executing fine manoeuvres is even more demanding due to
the non-holonomic characteristics of most wheelchairs. It is
therefore often a tiresome and frustrating task for elderly and
disabled people to control their wheelchair properly.

Similar to several other research groups, we have devel-
oped navigation assistance algorithms in the past to lower
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the users’ workload for maneuvering their wheelchair, see
e.g. (Demeester et al. 2014; Demeester and Hüntemann
2016). This is performed by estimating the driver’s navi-
gation intention and by providing manoeuvring assistance
based on the estimated intention. In order to motivate the ra-
tionale behind and the requirements for the local path tem-
plate (LPT), this section briefly explains our intention esti-
mation approach using Figure 1. The remainder of this pa-
per then solely focuses on the local path template, i.e. on fast
computation of many collision-free paths in a robot’s local
neighborhood. This LPT may also be useful in other mobile
robotics applications such as for intuitive teleoperated con-
trol or for autonomous mobile robots that need fast collision
checking for path planning or obstacle avoidance.

Figure 1: (left) Fast computation of a set of local, circu-
lar, collision-free trajectories for a robotic wheelchair in an
apartment; the red rectangle represents the wheelchair. We
consider these paths as hypotheses ik regarding the driver’s
navigation intention. (right) Plan recognition results at that
location: each circular path gets assigned a probability (the
darker a path, the higher its probability), the red path is the
user’s actual, but unknown, navigation plan. Locally, the es-
timated intent corresponds to the user’s actual intent.

Estimation of the driver’s navigation plan is performed
as follows. We model the driver’s intention ik at time in-
stant k as a path, a succession of desired robot states from
the current state xcurrent to a goal state xgoal: ik =
{xcurrent, . . . ,xgoal}. The robot’s state is defined as x =
[x y θ]T with (x, y) the robot’s Cartesian position and θ
its orientation. A probability p(ik) is computed for each
local path ik as shown in Equation 1. Bayes’ theorem is
adopted to compute the posterior probability ppost on ik,
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based on the given steering signals (uk) and a history (H)
of driver signals, robot actions, robot poses and sensor read-
ings. pprior is the prior probability distribution on the set
of paths and puser is a user model, which models how
the driver transforms a particular intention ik into a certain
steering signal uk. η is a scale factor normalizing the proba-
bility distribution. For a more detailed description, we refer
to (Hüntemann et al. 2008; 2013).

ppost(ik | uk,H0:k)
= puser(uk | ik,H0:k) · pprior(ik |H0:k) · η. (1)

In the past, we adopted circular local paths as an approxi-
mation of potential driver navigation plans ik, see Figure 1.
This seemed a reasonable choice, as the wheelchair’s instan-
taneous motion corresponds to a circular path, given its non-
holonomic constraints. Since we adopted a haptic joystick
to provide navigation assistance feedback to the user at a
high frequency (Vander Poorten et al. 2012), we needed a
very fast and accurate collision checking algorithm to verify
potential collisions between all paths ik and detected obsta-
cles. This was obtained through an obstacle-based look-up
table (Demeester et al. 2012) that uses a large but fixed set
of paths expressed in the robot’s local coordinate frame; we
call this fixed set of paths a “local path template”. However,
experiments showed that in dense environments, e.g. when
entering narrow doors or elevator entrances, too few or even
no circular paths at all were found through these narrow pas-
sageways as shown in Figure 2 (left). As a result, no appro-
priate intent estimation and thus navigation assistance could
be provided under these circumstances.

Figure 2: Circular (left) versus clothoidal (right) curves
to find paths through narrow doorways, showing that the
clothoidal paths have a higher chance to find paths in dense
environments.

This work’s goal is to improve the richness of the local
paths such that substantially more local paths through nar-
row passageways can be found. More specifically, we ex-
plore whether clothoidal geometries can be adopted for this,
see Figure 2 (right). The remainder of the paper is organized
as follows. First, the clothoidal local path template is de-
scribed. Then, an extension of this local path template is
given that is able to deal with dynamic obstacles. Next, the
clothoidal local path template is evaluated and its improved
planning capability in dense environments is demonstrated.
The paper concludes with some tracks for future work.

Clothoidal Local Path Template
This section describes the formation of a clothoidal local
path template (LPT). The LPT proposed by Demeester et
al. (2012) consists of a fixed set (or template) of paths that
are compatible with the robot’s kinematics, that start from
the robot’s current pose (hence local), and that are expressed
in the robot’s local coordinate frame. In (Demeester et al.
2012), kinematically feasible paths are obtained with the for-
ward generation method, i.e. by integrating achievable lin-
ear and angular velocity (v, ω) pairs over a certain amount
of time ∆t. Another option to generate paths is to adopt
the inverse generation method as proposed by Pivtoraiko
and Kelly (2012). They introduce a novel search space, the
State Lattice, consisting of a set of discretised states inter-
connected with kinematically feasible paths, called Motion
Primitives (MPs).

Our clothoidal LPT is created by using a Local State Lat-
tice (LSL) (a local version of the State Lattice of Pivtoraiko
and Kelly) and an obstacle-based lookup table for collision
checking. The method consists of an offline phase (steps 1
to 4) and an online phase (step 5):

1. Generation of a multi-size, multi-resolution grid (fine
nearby, coarse farther away) of discretised poses.

2. Each discretised pose in a chosen Region Of Interest
(ROI) around the origin is connected with a clothoidal
curve. If this path is kinematically feasible, it is added to
the set of MPs.

3. To ensure a certain degree of flexibility, step 2 is repeated
at certain grid cells, called Expansion Positions (EPs). By
doing this, certain paths in the LSL will consist of a se-
quence of clothoidal curves.

4. A look-up table is built for this fixed set of paths, as-
suming a static robot geometry. This table stores through
which grid cells the robot passes when it follows the
paths.

5. Using the look-up table and perceptual information of
the robot’s surroundings, the lengths of the paths in the
clothoidal LPT are adjusted in order to be collision-free.

Steps 1 to 4 are computed once for a given LPT and robot
geometry. As these elements do not change while driving
around, these steps are not recomputed online. The LPT’s
paths are expressed in the local robot coordinate frame.
Hence, the look-up table does not need to be built for all
possible robot locations, nor when the robot changes loca-
tion. Only in step 5 information regarding the robot’s envi-
ronment is adopted; therefore, this step needs to be executed
online. The following paragraphs describe each of the steps.

Step 1 - Generation of a multi-size, multi-resolution grid
The LSL constitutes a fixed set of feasible trajectories orig-
inating from the robot’s current pose to nearby end poses.
The first step in the creation of the LSL is to sample the
reachable space surrounding the robot by using a multi-
size grid (MSG). A clothoidal curve will then be connected
to each of these discrete poses, if possible. The MSG is
composed of three different sizes (fine, medium, coarse),
as shown in Figure 3 (top). The inverse generation method
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is adopted to create a set of MPs. First, the environment is
sampled and a boundary value problem is solved to connect
these discrete states with feasible paths using a defined curve
geometry. The inverse approach is preferred in this imple-
mentation as it makes the state discretization the driver of
the design of the LSL. Parameters can then be fine-tuned
depending on the application. The main reason to adopt a
MSG is to limit the number of paths to end points far away
from the origin. For intention estimation, it may be ineffi-
cient to look too far into the future, since the environment
and the intention of the driver may change. An end pose lo-
cated in the coarse grid therefore represents a large group of
poses compared to an end pose in the fine grid. A ROI se-
lects the Candidate End Poses (CEPs) of the grid cells in the
immediate surrounding of the origin. This step is illustrated
in Figure 3 (top). Depending on the chosen geometry of the
MP and the constraints of the robot, a CEP will be reachable
or not. If it is reachable, the path leading to the CEP will be
added to the set of MPs. Table 1 contains values of the used
parameters.

Figure 3: (left) Multi-size grid (MSG) and region of intrest
(ROI) shown at the origin in the robot’s local coordinate
frame. Three grid sizes are used to sample the environment.
Some grid cells in the ROI become candidate expansion
points (CEPs), which will be connected to the origin by a
geometrical curve. (right, top) Notation for the G1 Hermite
interpolation scheme, and (right, bottom) yielding multiple
solutions using clothoids (Bertolazzi and Frego 2015).

Step 2 - Connection of grid cells in the ROI with a geo-
metrical curve Once the CEPs around the origin are de-
termined, a geometrical connection has to be established be-
tween the origin and these CEPs. In this work, clothoids
have been adopted, but other choices are possible. Clothoids
(also called Euler or Cornu spirals) are curves whose curva-
ture changes linearly with their arc length, see Equation 2.
In Equation 2 to 5, s denotes the path coordinate (length
along the curve measured from the initial position), x and y
correspond to the robot’s position along x and y axis respec-
tively, θ is the robot’s orientation, κ denotes the path curva-
ture and apostrophes indicate derivatives. Clothoids are fre-
quently used for the design of railway tracks (Cope 1993)
and highway design (Baass 1982) to connect a tangent to
a circular curve, resulting in a continuous curvature profile.
Joining a tangent and a circular curve directly would result

in a discontinuity, thus leading to an instantaneous change
in the centripetal acceleration, causing discomfort to passen-
gers. Clothoids have also been applied in path planning for

Table 1: LSL parameters and corresponding values.

parameter value description
dx1, dy1 0.10 m Discretization of the fine grid

{x, y}1,max 1.00 m Width, height of the fine grid
dx2, dy2 0.25 m Discretization of the medium grid

{x, y}2,max 2.00 m Width, height of the medium grid
dx3, dy3 0.50 m Discretization of the coarse grid
x3,max 4.00 m Width of the coarse grid
y3,max 3.00 m Height of the coarse grid

dθ π/8 rad Angular discretization
xROI 2.00 m x-distance (only +) of the ROI
yROI 1.50 m y-distance (+/-) of the ROI
κmax 1 m−1 Maximum allowed curvature
dxEP 0.50 m l1 distance between EPs
resOG 2 cm Resolution of the OG
respath 1 cm Resolution of the path

mobile robots (Fleury et al. 1995; Brezak and Petrović 2011;
Kelly and Nagy 2003; Scheuer and Fraichard 1997). An it-
erative process has to take place in order to connect one
pose p0 to another p1 using a clothoid, because there is
no unique G1 fitting solution, see Figure 3 (bottom, right).
Extensive research has been done to find stable numerical
solutions to calculate the Hermite G1 interpolation with a
single clothoid curve, which can be formulated as a system
of three nonlinear equations (yielding multiple solutions),
see Equations 3 to 5. Walton and Meek (2009) designed
their algorithm to handle three different situations, straight
lines, circles and clothoids to then solve only one single non-
linear equation. However, when the solution of a clothoid
approaches the shape of a circle (κ′ ≈ 0) or a straight
line (κ = κ′ ≈ 0) the root of the nonlinear equation be-
comes ill-conditioned, resulting in numerical errors. Berto-
lazzi and Frego (2015) solve this problem by recasting the
problem into a well-conditioned zero of a unique nonlinear
equation. Moreover, their algorithm does not treat straight
lines, circles and clothoids differently and thus achieves ro-
bust results at the transition zones. Their solution has been
used without modification to generate the clothoids, see Fig-
ure 4 (a).

κ(s) = κ′s+ κ0, κ
′, change of curvature, constant (2)

θ′(s) = κ(s),where θ(0) = θ0, θ(l) = θ1 (3)

x′(s) = cos θ(s),wherex(0) = x0, x(l) = x1 (4)

y′(s) = sin θ(s),where y(0) = y0, y(l) = y1 (5)

By applying G1 interpolation, the smooth transition of cur-
vatures is not guaranteed; this would require (computation-
ally more expensive) G2 Hermite interpolation. As G1 con-
tinuity is acceptable for this application, G2 is not applied.
If G2 continuity is preferred, e.g. for the generation of lo-
cal paths for car-like vehicles, the use of piecewise clothoid
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curves is necessary, as developed in (McCrae and Singh
2009).

Figure 4: (left) Set of MPs based on clothoids, connecting
the origin with feasible states within the ROI. (right) Exam-
ple of the EP and ROI at [1.5, 1, 45◦]. CEPs are now linked
with the pose that the robot would have at that EP and not
with the origin.

Step 3 - Expansion points Finally, in order to obtain a
larger variety of paths, the procedure of connecting CEPs
to the set of MPs is repeated at certain discrete positions,
which we call Expansion Positions (EPs). EPs are defined as
reachable end poses directly connected to the origin, with a
Manhattan Distance (l1-norm) equal to a multiple of dxEP .
It should be noted that those discrete poses in the ROI (at
that EP) will be connected with the pose at that EP, and not
at the origin. There will be significantly less CEPs if the EP
is further away from the origin, due to the use of the MSG,
thereby reducing the number of paths leading far away from
the origin. Figure 4 (right) illustrates this procedure. Repeat-
ing this procedure for every EP results in a LSL, a set of
paths starting from the origin and connecting end poses in
the surrounding of the robot with feasible clothoidal trajec-
tories. This is illustrated in Figure 5. Algorithm 1 provides
an overview of the complete procedure. The output of this
algorithm is the LSL data structure as presented in Table 2,
containing all required information to reconstruct the set of
paths.

Figure 5: A LSL based on clothoids is obtained after repeat-
ing the procedure shown in Figure 4 (b) at every EP. This
connects every feasible end pose close to the robot whilst
moving forward with one or two clothoids. Backward move-
ments and on-the-spot-turning are also implemented but are
not illustrated in the present figure to maintain readability.

Step 4 - Offline construction of lookup table for collision
checking Once the set of feasible clothoidal trajectories
are defined, a lookup table is constructed offline to quickly
evaluate online which paths are collision-free and to adjust
their length if needed. The first step in the creation of the
lookup table is to calculate the occupancy grid (OG) of each
path. This is the space that the wheelchair will occupy when
moving along a particular trajectory. The LSL structure de-
fined in Table 2 contains all the information needed to recon-
struct the calculated paths. Matrix XYΘ contains all the
discrete poses the mobile robot will adopt while following
the path between the start pose p0 and the end pose p1. For
each pose along the path, the path length (s) and path curva-
ture (κ) at that position are in the table as well. The resolu-
tion for every curve is fixed at s(k)− s(k− 1) = respath <
resOG/2 to ensure that all cells of the OG are examined.

Table 2: REPRESENTATION OF THE LSL DATA STRUC-
TURE FOR A SINGLE PATH. This structure includes all
necessary information to represent each path in the LSL
and comprises precomputed data (XYΘ, s,κ). These vec-
tors contain the position and orientation, path length and
curvature along each path, discretized in such a way that
sk+1−sk < respath. The blockIdx entry (used in the online
phase) represents the position index at which a certain path
is blocked, meaning that if the position index is increased by
one, the path will result in a collision with the environment.
Prior to taking obstacles into account, this index is put to
rowlength(XYΘ) + 1, meaning that the path should not
be shortened. Finally, each path has a unique ID.

p0 p1 Ltot κ0 κ′

1× 3 1× 3 0.516 0.78 -0.05
XYΘ s κ blockIdx ID
52× 3 52× 1 52× 1 53 14

Figure 6: (a) Occupancy grid (OG) of the wheelchair’s foot-
print. (b) The path OG is created by moving the robot along
the path. Each time a grid cell is visited for the first time, it
is stored along with the path-ID and position index along the
path. The distance between 2 path indices is at most equal
to respath < resOG/2 to ensure that no cells in the OG are
skipped along the path.

The OG of the robot at the origin is shown in Figure 6. As
the mobile robot moves along the path, grid cells that were
not visited during the previous steps are stored, along with
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the current position index and path ID. This procedure is
shown in Figure 6 (b). The reason for storing this position
index is to be able to efficiently adjust the path length in the
presence of obstacles in the online phase (step 5).

Step 5 - Online computation of collision-free paths The
lookup table is constructed based on the cells the robot oc-
cupies when following the clothoidal paths of the LPT. Each
entry in this table corresponds to a grid cell that, if that cell is
occupied, results in a collision with one or more paths from
the LSL. The pathID and position index of each trajectory
going through this cell are stored for that grid cell. In the on-
line phase, while navigating, for all occupied cells in the grid
map representing the robot’s environment, their correspond-
ing cells in the lookup table are retrieved. Next, each path
length is updated by the provided information of that cell
(pathID and position index). Note that this only takes place
if this reduces the path length. This procedure is displayed
in Algorithm 2. An example of the path length adjustment
is illustrated in Figure 7. A single entry of the lookup table
data structure can be found in Table 3.

Use of the LPT with Dynamic Obstacles
This section describes an extension of the clothoidal LPT to
deal with dynamic obstacles of which the motion is known.
Such a situation is shown in Figure 8. This work assumes we
have access to an algorithm that estimates both the path of
dynamic obstacles and their velocity profile along this path,
see e.g. (Bennewitz et al. 2005; Bascetta et al. 2011). To

Algorithm 1 LSL ALGORITHM computing the structure LSL
shown in table 2. Each new entry (row) in this structure represents
a feasible path P . Paths are added incrementally to the structure
in line 9 and 19. The dot-operator (.) is used to access individual
fields of each path in the LSL.
Input: userSettings to create matrix Pgrid containing all dis-

crete poses pgrid,k.
Output: LSL structure (LSL) with a set of feasible paths P .

% calculate feasible paths at origin
1: p0 ← [0, 0, 0]
2: Pgrid ← CREATEMULTISIZEGRID(userSettings)
3: for all pgrid,i ∈ Pgrid do
4: if ISINROI(pgrid,i,p0) then
5: p1 ← pgrid,i

6: [x,y,θ, s,κ]← GETCLOTHOIDDATA(p0,p1)
7: if ‖κ‖∞ ≤ κmax then
8: P ← [p0,p1,x,y,θ, s,κ]
9: LSL ← ADDPATHTOLSLSTRUCT(LSL,P)

% calculate feasible paths at Expansion Positions
10: for all P ∈ LSL do
11: if ISEXPANSIONPOSITION(P.p1) then
12: p0 ← P.p1 % end of path P is start of next paths
13: for all pgrid,i ∈ Pgrid do
14: if ISINROI(pgrid,i,p0) then
15: p1 ← pgrid,i

16: [x,y,θ, s,κ]← GETCLOTHDATA(p0,p1)
17: if ‖κ‖∞ ≤ κmax then
18: P ← [p0,p1,x,y,θ, s,κ]
19: LSL ← ADDPATHTOLSL(LSL,P)
20: LSL ← CLEANUPLSL(LSL) % Remove non-unique paths

Algorithm 2 OBSTACLE-BASED LOOKUP TABLE (LUT) (online
phase)
1: for all P ∈ LSL do % initialize path P as free:
2: P.blockIdx← ROWLENGTH(P.XYΘ) + 1

3: for all C ∈ GETCELLSOCCUPIEDBYLSL(LSL) do
4: if GRIDMAPENVIROMENT(C) == occupied then
5: for all P ∈ LUTPATHSINCELL(C) do
6: if P.blockIdx > LUTBLOCKIDX(C,P) then
7: P.blockIdx← LUTBLOCKIDX(C,P)

Table 3: REPRESENTATION OF A SINGLE CELL OF THE
OBSTACLE-BASED LOOKUP TABLE DATA STRUCTURE.
The entries x and y represent the location of the occupied
grid cell by the robot (up to a resolution resgrid = 2cm) and
contain all the paths (represented by pathID) going through
this particular cell along with the position index along the
path XYΘ at which the robot occupies this cell for the
first time. In particular, this table contains the occupied cell
shown in Figure 7 at the top right corner.

x y pathID position index
3.90 m 2.96 m [763, 764, 779] [202, 192, 226]

avoid collisions with dynamic obstacles, an optimal speed
profile v(t) along the LPT paths is calculated by computing
a constraint optimization problem (COP). This method as-
sumes a given motion model for each obstacle and an OG
representing their shape. We do not impose any restriction
on the obstacle’s path or its shape (convex or concave), the
number of obstacles, the robot’s shape, or the environment’s
shape; this makes this approach flexible and generic. The

Figure 7: Example of fast online path length adjustment for
4 obstacle points. Each obstacle is exactly one grid cell (in-
flated in the figure for readability). For the top right obstacle,
the affected paths stored in the look-up table are shown.

next section first explains the creation of a distance-time col-
lision space (s, t space) where s is the distance along a fixed
path of the LPT. This collision space will be used for a COP,
using a dynamic model f of the wheelchair along with time-
varying separating hyperplanes to provide collision-free mo-
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tion by finding an optimal speed profile to reach the end of
a given path.

Figure 8: Dynamic obstacles potentially causing a collision
with the mobile robot.

Distance-time Collision Space
The s, t space can be seen as a grid, within which all colli-
sions between the robot positioned at a certain distance s
along the fixed path and the time-varying position of the
moving obstacle are calculated. This is computed with the
following procedure:

1. The full OG of the robot along the fixed path is used, to
determine the first and last impact time of the moving ob-
stacle. This will narrow the search space along the t-axis
(Figure 9 (a)).

Figure 9: First and last impact time and distance are cal-
culated to reduce the computational time of the individual
collision states in the s, t space.

2. The full OG of the moving obstacle is determined by inte-
grating its velocity. The first and last position on the fixed
robot-path colliding with the moving obstacle is calcu-
lated. This will narrow the search space along the s-axis
(Figure 9 (b)).

3. In the restricted space determined by [tfirst, sfirst] -
[tlast, slast], all discrete s, t collision states are calculated,
determined by the path resolution (s) and the time reso-
lution (t). An example at a fixed time t = 1.25 s for the
obstacle is shown in Figure 10 (a). Repeating this for ev-
ery time instance results in a s, t space grid, indicating
which s, t pair results in a collision, see Figure 10 (b).

4. Further optimization can be performed on the obtained
collision states. As time-varying separating hyperplanes
will be used in the COP, it will be more efficient to only

Figure 10: (a) The distance-time collision space is obtained
by calculating the distance along the robot path resulting in
a collision at a certain time with the moving obstacle. The
dashed vertical line at t = 1.25s in the right figure corre-
sponds to the situation shown on the left, where distances
yielding a collision along the robot-path are marked in red
for the position of the obstacle at t = 1.25s. These distances
correspond to occupied cells at t = 1.25s in the s, t distance-
time collision space at the right.

keep a convex shape of the obtained collision states. This
convex shape can be further simplified when applying
the following constraints: (i) assuming that the mobile
robot cannot move backwards and (ii) time always moves
forward. This results in a nearly rectangular shape de-
termined by [tfirst, sfirst] - [tlast, slast]. The resulting
shape of the obstacle in s, t space is not always rectangu-
lar, as can be seen in the (s, t - space) in Figure 11.

Optimal Speed Profile Calculation
A COP can be formulated to find an optimal speed profile
given a distance-time collision space compliant with kine-
matic and dynamic constraints of the mobile robot and an
objective, which is to arrive within the minimum amount of
time at the end of the path. This is shown in Equation 6.
This results in finding a path in the s, t - space, from po-
sition [0, 0] to [s(end), t(end)] without colliding with the
simplified convex hull of the collision states. This is shown
in Figure 11.

minimize
(x1:N ,u1:N ,a1:N ,b1:N ,T )

T (6)

subject to

xk+1 = I(f(xk, uk, h)), k = 1 . . . N,

aT
k vi − bk > 0, i = 1 : Nvertices,

aT
k xk − bk 6 −rsafe,
x1 = [0, vstart],

xN,1 = s(end),

0 6 xk,2 6 vmax,

umin 6 uk 6 umax,

T > 0,

‖ak‖ 6 1

The COP is formulated based on the multiple-shooting
approach, resulting in the discretization of the state along the
path (x(t) = [s(t), v(t)]) and force input u(t) over a finite
grid of N samples. The model representing the wheelchair
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dynamics (f ) is then integrated with an integrator function
(I). For this solution, a simple mass-damper model was
used. The time (T ) needed to arrive at the end of the path
(s(end)) is kept as a decision variable, therefore an extra
variable is defined, the variable time step h = T/N . Al-
though not explicitly formulated in the COP, there is one
time-varying hyperplane for every moving obstacle, each re-
quiring two parameters a(t) and b(t). vi are the fixed ver-
tices (positions) defining the simplified convex hull of the
(s, t)-space. rsafe is a safety factor, enforcing a minimum
distance in the s, t-plane between obtained path and the sim-
plified convex hull. Start conditions are enforced on both
start distance and speed, but only an end distance is set as
a constraint for the end state. The followed approach is de-
scribed in detail in (Mercy, Loock, and Pipeleers 2016).

Figure 11: Motion planning among dynamic obstacles is
achieved by finding a path in the s, t-plane without intersect-
ing the occupied cells. This results in an optimal collision-
free speed profile that also adheres to the robot’s dynamic
constraints.

Evaluation
This section evaluates the performance of the clothoidal LPT
by comparing it with its predecessor, the circular LPT. Two
different path planning scenarios will be presented (door and
elevator), requiring the planner to plan a trajectory through a
narrow opening. These scenarios were chosen because these
are often encountered by wheelchair drivers, and we experi-
enced difficulties with these scenarios in the past when using
circular paths. In order to objectively compare both LPTs,
identical curvature constraints on the path are applied to the
circular LPT and the clothoidal LPT. For the circular LPT,
paths are generated starting from 500 discrete input velocity
pairs (v, ω) but paths yielding a curvature κ > κmax are dis-
carded. This results in a circular LPT composed of 250 tra-
jectories (both forward and backward), shown in Figure 12.
The clothoidal LPT used for this evaluation is the same as
shown in Figure 5 and is composed of 1500 trajectories (for-
ward and backward).

Path Planning Performance
The first benchmark consists of driving forward through a
doorway; for the second benchmark, the wheelchair has to
drive backwards into an elevator.

Figure 12: Input velocities (left) integrated over a period of
t = 4 s to obtain 250 circular paths complying with the kine-
matic constraints (right).

Forward driving through a doorway In this situation,
the mobile robot has to drive through a doorway to exit a
room. Figure 13 (top) shows a successful, collision-free path
going through the doorway using both LPTs.

A uniform set of start poses is generated to assess the
planning performance of both LPTs. This is shown in Fig-
ure 13 (bottom, left), where the test region (red polygon)
contains the set of uniformly spaced start poses. If a path of
the LPT originating from a start pose reaches the goal region
(green polygon), that pose is defined as successful. Success-
ful start poses are divided in three cases: (1) only the circular
LPT achieved to plan a path reaching the goal area, (2) both
LPTs achieved to plan a path, (3) only the clothoidal LPT
achieved to plan a path.

The final outcome when following this procedure is
shown in Figure 13 along with a histogram of the occurrence
of the three different cases. The unique successful start poses
based on circular, common and clothoidal LPTs are shown
respectively in red, black and green. The width of the door-
way from the corridor to the robot laboratory is 80 cm while
the width of the wheelchair is 60 cm.

The following conclusions can be drawn:
• The majority of the paths from start poses at the lower

end of the figure are achieved by the circular LPT. This
is because those paths only require a circular arc to en-
ter the doorway. Since the circular LPT is composed of a
uniformly spread set of circular trajectories, this LPT is
favoured, compared to the clothoidal LPT.

• From the moment the required trajectory is more complex
(for example, Figure 13 (top, right) the clothoidal LPT is
the only LPT able to plan a path.

• As per the histogram provided in Figure 13, the majority
(87%) of the poses with a successful path are generated
by the clothoidal LPT, which demonstrates that for this
first benchmark, the lack of uniformly spread circular tra-
jectories is not so crucial, as only 13% of the total amount
of successful start poses are uniquely found by using the
circular LPT.

Backwards driving in an elevator In this situation, the
mobile robot must drive backwards from a corridor into an
elevator. The width of the elevator is 90 cm while the width
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Figure 13: (top) Visual inspection of a collision-free path
going through the doorway. (bottom, left) Successful start
poses for each LPT finding a path through the doorway. (bot-
tom, right) Histogram showing the outcome of the different
cases of driving through the doorway. There are in total 3604
successful start poses, of which 1708 are common to both
LPTs, whereas 460 are only of the circular LPT and 1436 of
the clothoidal LPT.

of the wheelchair is 60 cm. Figure 14 (top) shows a success-
ful, collision-free path going in reverse through the doorway
of the elevator whilst using both LPTs. The same procedure
as provided in Figure 13 is applied for this benchmark. It
can be concluded that from the moment the start pose of the
wheelchair is located farther away in the corridor, only the
clothoidal LPT manages to find a trajectory to the elevator.
This is confirmed by the histogram shown in Figure 14 (bot-
tom, right). Nearly all start poses are successful when using
the clothoidal LPT (98%).

Time Performance
The clothoidal LPT has six times more paths than the circu-
lar LPT. In order to verify that this does not come at a too
high computation cost, the mobile robot is positioned at sev-
eral places in the environment as shown in Figure 14 (bot-
tom, left). The presented benchmarks were run on a com-
puter with an Intelr CoreTM i5-4460 quad core 3.20GHz
CPU with 16GB of memory. Benchmark scripts were writ-
ten in MATLAB. Figure 15 (left) shows a histogram of the
execution time needed to adapt each path from the LPTs.
The median execution time of the circular LPT is 29 ms
compared to 114 ms for the clothoidal LPT; the clothoidal
LPT is therefore 3.9 times slower. Figure 15 (right) shows
the execution time of the path length adjustment over the
number of occupied cells.

Conclusions and Future Work
This paper proposed various improvements to a circular lo-
cal path template (LPT) that we have designed in the past

Figure 14: (top) Visual inspection of a collision-free path for
backwards driving through an elevator. (bottom, left) Suc-
cessful start poses for each LPT planning a path backwards
into an elevator. (b) Histogram illustrating the outcome of
the different cases for planning a path backwards into an el-
evator. There are in total 2904 successful start poses, from
which 1224 are common to both LPTs. Whereas 64 are only
from the circular LPT and 1616 from the clothoidal LPT.

to estimate driver intents and to provide navigation assis-
tance in wheelchair applications. Using two performance
criteria, path planning capability and time performance, the
clothoidal LPT was compared with the existing circular
LPT. The clothoidal LPT allows the use and tuning of more
complex paths, resulting in an improved path planning per-
formance; however, it has a higher computation time. In
sparse environments, the circular LPT will prove more effi-
cient. One could choose the LPT type depending on the con-
text the robot is in, or implement a switching between both
LPTs if one LPT fails in finding a path. In our intent estima-
tion framework, we plan to only use the clothoidal LPT as
the impact on computation time is minor. Future work will

Figure 15: Execution time needed to adapt the path length
of the circular and clothoidal LPT for a simulated envi-
ronment. (left) Histogram of the resulting execution time.
(right) Computation time as a function of the number of oc-
cupied cells.

include an implementation in C/C++ and an optimization of
the position of the EPs to reduce the number of clothoidal
paths. Furthermore, we will investigate the use of this LPT
for fast collision checking in path planning algorithms.
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Hüntemann, A.; Demeester, E.; Nuttin, M.; and Van Brussel,
H. 2008. Online user modeling with gaussian processes for
bayesian plan recognition during power-wheelchair steering.
In Proceedings of the IEEE/RSJ international conference on
Intelligent Robots and Systems (IROS), 285–292.
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