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Abstract

A service robot accepting verbal commands from a human
operator is likely to encounter requests that reference objects
not currently represented in its knowledge base. In domestic
or office settings, the construction of a complete knowledge
base would be cumbersome and unlikely to succeed in most
real-world deployments. The world that such a robot oper-
ates in is thus “open” in the sense that some objects that it
must act on in the real world are not described in its inter-
nal representation. However, when an operator gives a com-
mand referencing an object that the robot has not yet observed
(and thus not incorporated into its knowledge base), we can
think of the object as being hypothetical to the robot. This
paper presents a novel method for closing the robot’s world
model for planning purposes by introducing hypothetical ob-
jects into the robot’s knowledge base, reasoning about these
hypothetical objects, and acting on these hypotheses in the
real world. We use our implementation of this method on a
domestic service robot as an illustrative demonstration to ex-
plore how it works in practice.

Introduction
Service robots assist human users in day-to-day tasks. A user
may give a command such as “Get me the apple from the
kitchen” to a service robot. Reasoning about the steps of this
task is a classical type of planning problem. The classical ap-
proach requires adopting a “closed-world assumption,” pre-
supposing that everything the robot could possibly need to
reason about is already represented in its knowledge base.
In simulations and laboratory experiments, it is possible to
enumerate all of the objects that a robot could interact with
in its environment, but in most real-world service robot sce-
narios – like those that arise when interacting with people in
offices or homes – such a complete enumeration is impossi-
ble. The real world for a service robot is “open” in the sense
that, at any time, the next command it receives may refer to
an object that is not currently in its knowledge base.

Planning approaches that work in open-world scenarios
often find a way to close the world (Talamadupula et al.
2010b; Hanheide et al. 2017). This paper presents an ap-
proach to closing the world wherein the robot leverages the
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user’s command to cope with the openness of the real world
that it inhabits. The novel contribution of this paper is a pro-
cess by which a system: 1) closes its world by grounding
the object referred to by a human operator as “hypotheti-
cal;” 2) leverages domain knowledge represented as “con-
ceptual” knowledge in its knowledge base in order to create
predicates about the hypothetical object which can used for
planning; 3) uses novel “realizer” actions which a) explicitly
represent the robot’s search for the object, b) allow feasible
plans involving “hypothetical” objects, c) find concrete ob-
jects that fit the description of the “hypothetical” objects us-
ing the robot’s perceptual system; and 4) provides diagnostic
reasoning to falsify hypotheses that have been determined
to be incorrect based on observations made during plan ex-
ecution. This falsification of the robot’s hypotheses is used
both to guide the robot’s search for hypothetical objects and,
when necessary, to report back to the user that their com-
mand cannot be completed. At a higher level, we can view
the novel contribution of this paper as a method of formulat-
ing and reasoning about these hypotheses, and the design of
a world model that allows their formulation.

We have implemented this approach on a domestic ser-
vice robot, and will use this implementation to discuss the
method described in this paper with an illustrative demon-
stration. In this demonstration, a human operator gives a ver-
bal command to the robot, requesting that the robot perform
an object retrieval task. During execution, the robot may or
may not perceive the object referenced in the command, val-
idating or invalidating the hypotheses generated when the
user gave the command to the robot. The robot finally re-
trieves the desired object, or reports its failure to do so back
to the operator. This method could easily be implemented
in other scenarios where such hypothetical reasoning about
a human operator’s commands could be an enabling tech-
nique.

Related Work
Service robots are envisioned as devices that interact with
people and assist them in day-to-day tasks. There have been
research platforms, such as CoBot (Veloso et al. 2015), the
BWIBot (Khandelwal et al. 2017), and the Care-O-bot 3
(Reiser et al. 2009), designed wholly or in part by uni-
versity researchers for experiments in service-robot scenar-
ios, as well as a number of commercial platforms designed
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for hotels, hospitals, and homes. These systems are human-
interactive, autonomous, and designed to perform mundane
tasks and allow people to focus their attention elsewhere.

Several projects have engineered knowledge representa-
tion (KR) systems into service robots to support execution
of human-specified tasks. Lemaignan et al. (2017) com-
bine Open Robot Ontology server (ORO) (Lemaignan et
al. 2012), a relational knowledge base, with an architecture
for executing tasks. The system models knowledge perspec-
tives for each agent in its environment, facilitating interac-
tive grounding for human-robot collaboration tasks. The use
of general-purpose planners to perform task-level control of
intelligent service robots is also well-established. The KeJia
robot leverages a symbolic planner and provides high-level
functions to understand and execute natural language com-
mands (Chen et al. 2010; 2013). Chen et al. (2016) extend
the system to plan to acquire task-oriented knowledge by
modeling possible states in an action language. The integra-
tion of planning and execution for service robot tasks has
also been studied. Sanelli et al. (2017) integrate conditional
planning and Petri Net Plans to plan and execute human-
robot interactions. The system presented in this paper is sim-
ilar to these systems, in that it combines a KR system with a
planner for task-level planning and execution.

Puigbo et al. (2015) deployed the Soar cognitive archi-
tecture (Laird 2012) to support understanding and executing
human-specified commands in a home setting, but did not
address the challenge of as-yet ungroundable object refer-
ences. Mininger and Laird (2016) used a Soar-based inter-
active task-learning system to learn strategies to handle ref-
erences to unseen objects. Their approach defines a “find”
subtask with a special postcondition so the system can suc-
ceed in planning for tasks requiring direct interaction with
unseen objects. Our system represents the concept of hypo-
thetical objects in its knowledge base and models perceptual
actions in a planning domain.

Most planning algorithms rely on the closed-world as-
sumption, which assumes that a logical statement is false if
it is not known to be true (Etzioni, Golden, and Weld 1997;
Talamadupula et al. 2010b). Open-world planning has been
investigated in the context of visual object search (Aydemir
et al. 2013; Hanheide et al. 2017) by leveraging assumptive
actions with probabilistic effects to make hypotheses about
object existence. Hanheide et al. (2017) extend this method
to explain failures by planning over explicitly modeled ad-
ditional action effects and assumptive actions. To plan in
the open world for human-robot teams in search and rescue
tasks, Talamadupula et al. (2010a; 2010b) developed an ap-
proach that uses open-world quantified goals and partial sat-
isfaction planning. This paper provides an open-world task
planning approach for service robots by forming hypotheses
implied by commands of operators.

Some systems have focused on KR for specific task
classes or functions. Work on KnowRob integrates seman-
tics with robot control and a cloud datastore to enable a
robot to execute complicated manipulation tasks (Tenorth
and Beetz 2013; Beetz et al. 2018). Chernova et al. (2017)
use an abstract knowledge base modeled as a Bayesian
Logic Network to enable a robot to make better inferences

about aspects of its environment. In contrast, probabilistic
models or cloud resources are complimentary to our repre-
sentation, but not necessary.

RoboCup@Home is a competition of domestic service
robots performing benchmark tasks in simulated home en-
vironments (Wisspeintner et al. 2009), and the work pre-
sented in this paper was initially motivated by attempts
to develop a general solution to a RoboCup@Home task
called Enhanced-Endurance General Purpose Service Robot
(EEGPSR). We distributed a survey to RoboCup@Home
participants, asking other teams how their systems would
handle the command, “Could you navigate to the kitchen,
spot the apple, and give it to Patricia at the couch.” Three
teams responded, saying that their systems did not rely on
a symbolic task planner, favoring pre-specified representa-
tions of what actions the robot should take in this and other
conditions. Two respondents described current or past re-
search efforts to integrate general purpose planning technol-
ogy into their systems, but ultimately did not deploy their
techniques in the competition. Though anecdotal, we believe
that most RoboCup participants took similar approaches. We
believe that our system is the only one to use a general pur-
pose planner to solve problems involving ungrounded ob-
jects that has been entered into this competition.

The most related systems to the best of our knowledge are
compared in Table 1. The table assesses the features of each
system based on a representative corresponding publication
and further notes characteristics present in any robot demon-
strations. Systems that represent and update information in a
graph of entities and their relations during execution are de-
noted as having a dynamic semantic network. Systems that
are capable of generating plans that reference objects un-
known to the robot are considered to have open-world plan-
ning capabilities. Systems that are able to identify and report
inconsistencies in their knowledge to a human operator as
well as systems which produce plans deterministically are
also noted. In Table 1, systems that have been demonstrated
on a robot platform performing tasks that require numerous
capabilities - including at least object manipulation, naviga-
tion, and human interaction - are considered to support gen-
eral purpose capabilities. Systems with evaluations showing
that the robot does not remain idle for more than thirty sec-
onds at a time are considered to be responsive.

Algorithm
The essence of this approach is to generate hypotheses of un-
seen objects that a general, closed-world planner can reason
over. The planner uses realizer actions that look for evidence
to support the hypotheses. At execution time, perception
modules report concrete objects. When the existence and
relations of the hypothetical object are realized, replanning
uses the concrete object. If no object is found, the robot’s di-
agnostic rules engage to attempt to reason about which hy-
potheses were invalid.

Task Representation
A robot task planning problem is defined by the tuple (S0,
G, A), where S0 is the initial state, G is the goal condition,
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Functionality
Dynamic semantic network X - X X X X

Open-world planning X X X - X X
Reports inconsistent information X - X X - -

Deterministic planning X X - X X X

Demonstration
General purpose capabilities X X - - - X

Responsiveness X X - X - -

Table 1: Comparison of Approaches to Task Planning and Execution on a Mobile Robot

Location

Placement

Table

Scanned

Object

Container

Bottle

Graspable

is placed

Concept
Instance
Relation

instance of

Bottle
Ketchup

Bottle
Water

Table
Dining

Figure 1: An illustration of how a water bottle sitting on
a dining table is represented in our knowledge base after
perception. Arrows represent relations between two entities,
and their labels give the name of the relation. Unlabeled ar-
rows refer to “is a” relations. The labels on each concept
depict the value of their “name” attribute.

and A is a set of rules defining the preconditions and effects
of available actions. A plan Π is a sequence of actions that
satisfy G. Each state s is represented as (C, I , P ), where
C is a set of concepts, I is a set of object instances, and
P is a set of predicates describing the attributes and rela-
tions of concepts and instances. The state is derived from the
knowledge K in the robot’s knowledge base, which is a se-
mantic network made up of entities, attributes and relations.
Entities can be either concepts – intangible, general ideas –
or instances – things that are at least partially tangible. Re-
lations describe the connections between entities, defining,
for example, which concepts an instance inherits from. At-
tributes provide a means of attaching data to entities, and

can be used to store information such as the name of a con-
cept or instance. For example, Figure 1 visualizes part of a
state describing a water bottle and a ketchup bottle sitting on
a dining table. This representation provides a unified store of
situated and general knowledge. Using it, a robot may lever-
age specific knowledge about its environment as well as its
ontology, enabling inference across types of knowledge. For
example, by representing a water bottle instance perceived
on a dining table, the system can draw inferences such as
“there is a container on a table.” This is required for a gen-
eral purpose reasoner to handle commands such as “clean all
containers on the table.”

Closing the World with Hypotheses
When all the objects, concepts, and predicates are assumed
to be known a priori, the planning problem is considered
to be a closed-world problem, and this is the regime under
which most off-the-shelf planners are designed to operate.
We present Algorithm 1 as an approach to closing the robot’s
planning scenario by encoding hypotheses derived from the
operator’s instruction. As input to Algorithm 1, a set of un-
known objects referenced by the operator, OH ,1 is extracted
from the instruction, as is a set of hypotheses, PH ,2 and the
goal condition, G. We assume that the necessary concepts
to describe the unknown objects are modeled in K. For in-
stance, the concept of a “water bottle” is modeled, but the
concrete instance of the water bottle is not represented in K.

The algorithm first incorporates concepts, instances, at-
tributes, and relations from the current knowledge base in
the initial state S0 (Line 2-4). Then, a new instance is created
for each unknown object referenced by the operator (Line 6).
The instance is represented by adding an inheritance relation
with its corresponding concept,3 and an inheritance relation
with the concept of “hypothetical” (Line 7-9). For each hy-
pothesis that references the unknown object, the reference
is replaced by the new hypothetical instance (Line 10). For

1For example, there is a “water bottle”
2For example, the “water bottle” is on the kitchen table
3For example, the concept of a “water bottle”
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each goal condition that references the unknown object, the
reference is replaced by its corresponding concept (Line 11).
Referring to the object by its concept allows the planner to
use a known object of the same class if it can satisfy the
goal conditions. The modified hypotheses are then incorpo-
rated into the predicates in the initial state (Line 13). At that
point, a closed-world planner can be used to generate an ex-
ecutable plan. This method adds

∥∥OH
∥∥ objects and

∥∥PH
∥∥

predicates representing hypotheses to the domain. The com-
plexity of the final problem depends on the specific problem
and encoding, and off-the-shelf solvers can be leveraged.

Algorithm 1 Initial State and Goal Construction
Input: Current knowledge K, unknown objects OH , hy-

potheses PH , goal conditions G
Output: Initial state S0, goal conditions G′

1: S0 = (C, I, P ), G′ = G
2: C = {e : e ∈ K, e is a concept}
3: I = {e : e ∈ K, e is an instance}
4: P = {p : p ∈ K, p is an attribute OR relation}
5: for each object name o ∈ OH do
6: add new instance i to I
7: co = concept with name o
8: ch = concept with name hypothetical
9: add inheritance relation of i with co and ch to P

10: replace references to o in PH with i
11: replace references to o in G′ with co
12: end for
13: P = P ∪ PH

14: return S0, G′

Realizer Actions
In order to make physical observations of hypothetical ob-
jects and their attributes and relations, we introduce realizer
actions. These actions have preconditions that rely on the
hypotheses produced by Algorithm 1, and produce predi-
cates that concretely describe the attributes or relations of
the object. For example, if the operator thinks there can
be a water bottle on the kitchen counter, a realizer action
perceive surface has the effect that the hypothetical
water bottle is on the kitchen counter. Note that the realizer
actions correspond to physical perceptual behaviors that the
robot performs. Thus, the robot may not actually find a con-
crete instance that matches the hypothetical object, and at
the same time it may find other types of objects. If execution
fails because the hypotheses are wrong, a set of diagnos-
tic rules D derive negations of hypotheses from the robot’s
current knowledge base to facilitate error reporting. The di-
agnostic rules are further illustrated in the next section.

Executing Plans with Hypotheses
Given the initial state and goal, Algorithm 2 shows the
replanning execution strategy for accomplishing the goal
while detecting if the hypotheses are invalid. Until the goal
is satisfied, a plan is generated. Each action in the plan is
dequeued and executed, resulting in updates to the state, S.
After each action, the reasoner is queried to verify that the

remainder of the current plan Π applied to the current state
would still accomplish the goal. This monitor query will re-
port failure when, for example, the action did not actually
result in the effects necessary to continue executing the plan.

Critically, this case will occur after executing any real-
izer action. Because realizers are only applied to hypothet-
ical instances (as enforced by line 10 of Algorithm 2) –
and because an executor will never actually produce ob-
servations of the hypothetical instance – the effects of the
realizer are not achieved. The observations made by the
realizer are of concrete instances, which are incorporated
into the robot’s knowledge base. For example, executing
perceive surface will not result in a new state where
the hypothesized target object is on the surface, but it may
result in a new state where a real object that fits the de-
scription of the hypothetical object is on the surface. Thus,
upon re-planning in this scenario, the robot now has concrete
knowledge of a real-world instance of the object, and a plan
is constructed using this knowledge rather than a formulated
hypothesis in this subsequent planning attempt.4

Algorithm 2 Plan Execution
Input: Initial state S0, Goal conditions G, action rules A,

diagnostic rules D
1: S = S0

2: while G not achieved do
3: Π = plan(S,G,A)
4: if planning failed then
5: diagnose(S, S0, D)
6: return
7: end if
8: while Π not empty do
9: a = dequeue Π

10: S = execute(a)
11: if not monitor query(S, Π, G, A) then
12: break
13: end if
14: end while
15: end while

System Design
This section introduces the components of our fully im-
plemented knowledge representation and reasoning system.
Given a task description, these components carry out the task
and enable the robot to report inconsistent information that
it identifies during execution.

The system is underpinned by an expressive knowledge
base, which combines an ontology capable of describ-
ing conceptual information as well as of representing
execution-time knowledge and the current robot state.

4Note that there is also a body of work on plan repair that could
further optimize the system. However, while it may seem that the
plan could be repaired by simply swapping the ID of the hypotheti-
cal object for the observed object, it may not be so straightforward.
For example, if a bottle is open when perceived, plan repair must
consider inserting an action to close the bottle to satisfy the pre-
conditions of picking up.
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The composer takes simplified, parametric descriptions of
tasks, such as bring me(object="water bottle",
location="dining table"), and leverages the
knowledge base to construct instances of the “hypothetical”
concept for referenced objects and produce a goal for use
with a symbolic task planner. An executor carries out the
goal and replans as the robot gathers additional knowledge
about the environment. If no feasible plan can be found, a
diagnostic reasoning process is used to identify whether the
failure can be attributed to inconsistent hypotheses, and if
so, which ones.

Knowledge Base
The knowledge base is implemented in a SQL database that
stores the semantic network in tables of entities, attributes,
and relations. To enable importing hand-specified knowl-
edge from existing ontologies, it supports a subset of OWL2
EL corresponding to the features present in our semantic net-
work. Custom parsers are also provided in order to load an-
notated map information. All of this knowledge is available
to programs via C++ and Python interfaces for SQL access.
An additional interface enables retrieving stored information
in the form of facts usable by the planner.

Goal and Hypothesis Composer
Given a description of a task, the system needs to produce
a planning goal in the representation of the planner. The
system component that implements Algorithm 1 is the goal
and hypothesis composer. Because the robot is operating
in an open world, where it may not have full knowledge
of all the objects in the environment, the composer creates
hypothetical instances to represent the unknown objects,
and add all hypothetical relationships that can be inferred
from the command. For instance, the command parser may
return the task description bring me(object="water
bottle", location="dining table"), for
which the composer would create an instance entity
that inherits from the “water bottle” and “hypothetical”
concepts, and the predicate can be placed(<new
instance ID>, <dining table ID>). Finally,
the composer generates a goal describing the task. For this
scenario, the goal is is delivered(<concept ID>,
<operator ID>). The goal and hypotheses are task
dependent, and a template is pre-specified for each task.
Currently the system assumes all locations are known, but
the algorithm has no such restriction and the system can be
extended to handle unknown locations.

Planning
The planning module takes the current state of the knowl-
edge base and finds a sequence of symbolic actions that
satisfy the goal. The action knowledge is encoded in the
Answer Set Programming (ASP) language (Lifschitz 2002).
The incremental solving mode of the ASP solver CLINGO is
used as the reasoner and task planner (Gebser et al. 2011).

Table 2 lists the preconditions and effects of a subset of
actions in the system, demonstrating navigation, manipula-
tion, and human-robot interaction. Each precondition or ef-

fect is described as a rule in ASP semantics.5 For example,
rule (1) describes that the precondition of navigating to L1

from L2 at timestep n is to be near L2 at timestep n− 1.

⊥ ← navigate to(L1, n), is near(self, L2, n− 1). (1)

For compactness, preconditions that restrict variables to
be instances of certain concepts as well as the timestep vari-
able “n” in fluents are omitted here.

Besides the action rules, the planning domain also mod-
els static and dynamic reasoning rules. Static rules make in-
ferences on facts in the knowledge base and planning time
hypotheses. For example, the following rule allows the rea-
soner to derive the new hypothesis that an object can be at
any placement in the room if it is assumed to be in the room.

can be placed(O,L)← can be placed(O,R),

is in(L,R), has concept(R, “room”),

has concept(L, “placement”). (2)

Dynamic rules derive facts at a later time step from earlier
time steps. For example, the following rule defines the iner-
tia that the robot remains near the same locations unless it is
explicitly moved.

is near(self, L, n)← is near(self, L, n− 1),

not ¬is near(self, L, n). (3)

Plan Execution and Monitoring
The system integrates a replanning executor that implements
Algorithm 2. Given a goal, the executor creates an initial
plan. After executing a step, the executor integrates any ob-
servations collected into the knowledge base and formulates
an ASP query to verify that the remaining plan can still sat-
isfy the goal. This infusion of knowledge permits the system
to gracefully incorporate information that was not available
when the executor initially formulated a plan and is key to
enabling the system to plan and reason with hypothetical in-
stances. The initial plan may include actions on hypotheti-
cal instances, but at execution time, when the robot observes
(or observes the absence of) real instances, plan verification
fails because the preconditions for acting on the hypothetical
instance are not actually satisfied.

For example, the robot has planned to
perceive surface(<hypothetical instance
ID>, <dining table ID>) and then
pick up(<hypothetical instance ID>,
<dining table ID>), but after executing per-
ceive surface, plan verification will fail because
is placed(<hypothetical instance ID>,
<dining table ID>) is not true. Replanning com-
mences, and if the robot did in fact observe a real instance
of the concept specified in the goal, a new plan would be
generated using its instance ID. Otherwise, the robot fails
to generate a plan, reasons about which hypotheses were
invalid, and returns to the operator.

5ASP encodings in this paper follow the style of the planning
examples in the CLINGO guide: https://github.com/potassco/guide
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Action Preconditions Effects

navigate to(L1, L2)
is connected(L1, L2) is near(self, L1)
is near(self, L2) is facing(self, L1)

¬is near(self, L2)

pick up(O,L)
is placed(O,L) is holding(self,O)
is facing(self, L) ¬hand empty(self)
hand empty(self) ¬is placed(O,L)

put down(O,P )
is holding(self,O) is placed(O,P )
is facing(self, P ) ¬is holding(self,O)

hand empty(self)

hand over(O,P )
is holding(self,O) is delivered(O,P )
is facing(self, P ) ¬is holding(self,O)

hand empty(self)

perceive surface(O,L)
is facing(L) scanned(L)
not scanned(L) is placed(O,L)
can be placed(O,L)

find person(P,L)
is near(self, L) is facing(self, P )
can be located(P,L) is located(P,L)

Table 2: Action knowledge in our system, organized into preconditions and effects.

Diagnostics
In the case that the robot fails to generate a plan, the system
engages a diagnostic reasoning process to assess whether the
failure can be attributed to false hypotheses. This is accom-
plished by formulating an ASP query that attempts to deduce
the negation of the hypothesis based on the robot’s current
knowledge. For example, if the robot had hypothesized that
a water bottle existed and was placed on the dining table, the
diagnostic program uses rule (4), specifying that a hypothet-
ical instance cannot be placed on a surface if the surface has
been scanned and no instances that descend from the hypo-
thetical’s other concepts were detected.

¬can be placed(O1, L)← scanned(L),

has concept(O1, “hypothetical”),
has concept(L, “placement”),#count{is placed(O2, L) :

instance of(O1, C), instance of(O2, C)} = 0. (4)

Because the operator generally has perception and knowl-
edge that are more reliable than the robot’s, hypotheses im-
plied by human commands are given the benefit of the doubt,
and the system formulates the diagnostic as an optimiza-
tion query which seeks to maximize the number of valid
hypotheses. If the diagnostic derives a set of inconsistent hy-
potheses, the robot can then use this information to provide
an explanation for why it could not achieve the task.

Evaluation
The system is evaluated as implemented on a Toyota Human
Support Robot (HSR). The system also underpinned our en-
try in the General Purpose Service Robot (GPSR) and En-
hanced Endurance General Purpose Service Robot (EEG-
PSR) tests of the RoboCup@Home competition in 2018.

During these tests, robots are given verbal commands and
must carry out tasks combining numerous skills, includ-
ing navigation, human-robot interaction, object recognition
and manipulation. Since the challenges this paper aims to
address—such as partial and erroneous task information—
are present in GPSR and EEGPSR tests, the system is eval-
uated in conditions that resemble these tests.

The system is portable and has been identically imple-
mented on the BWIBot platform (Khandelwal et al. 2017) in
an office environment. The physical capabilities of the plat-
form are different, however the capabilities of the knowledge
system and plan execution are the same.

Demonstration
This demonstration shows how the system supports the ex-
ecution of tasks in the home environment by examining it
running a command under varying conditions. Here, we ex-
pand on the implementation of the system, then show that
the robot can receive the command, plan its actions, and
smoothly execute the task.6

Platform Our evaluation uses a Toyota Human Support
Robot (HSR), a domestic service robot with an omnidirec-
tional base, an arm, and an RGB-D sensor. To provide fast
object recognition, an external laptop with an Nvidia GTX
1080 GPU is mounted to the back of the robot. The laptop
runs an instance of YOLO (Redmon and Farhadi 2017), and
the detections are used to populate a 3D map with labeled
objects and their centroids. The robot’s various software
modules are implemented and integrated with ROS (Quigley
et al. 2009).

6A video of the demonstration is available at https://youtu.be/
TLXGQDTAZvA.
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1. Take 
command

2. Go to 
cupboard

3. Scan 
cupboard

4. Go to table

5. Scan table

6. Pick up 
apple

7. Go to couch

8. Find 
operator

9. Deliver 
apple

Action Knowledge Plan

A hypothetical 
instance of apple 

hypothetically 
located in the 

kitchen, operator 
at couch

Go to cupboard, scan 
cupboard, pick up 
hypothetical apple, go 
to couch, find operator,  
deliver hypothetical 
apple

Facing cupboard

No apple on the 
cupboard

Facing table

Concrete apple on 
the table

Holding concrete 
apple

Facing couch

Facing operator

Concrete apple 
delivered to 

operator

Go to table, scan table, 
pick up hypothetical 
apple, go to couch, 
find operator, deliver 
hypothetical apple

Pick up concrete apple, 
go to couch, find 
operator, deliver 
concrete apple

Figure 2: A timeline showing the execution for the command “Bring me the apple from the kitchen.” The “action” column
describes the primary actions undertaken by the top-level state machine (action 1) and the plan exectuor (actions 2-9). The
information that is entered into the knowledge base stemming from observations after action execution are depicted in the
“knowledge” column. The executor’s current plan, which may change as a result of knowledge updates, is shown in the “plan”
column.

System Implementation Top-level control of the system
is implemented as hierarchical state machines in SMACH.7
At the start of a task, a dialog module is triggered to take
a verbal command from an operator. For these demonstra-
tions, a parser which outputs parameterized tasks based on
the RoboCup@Home GPSR command grammar is used.
The command-taking state machine uses a pre-specified
template to generate a confirmation sentence from the task
description. After the operator confirms the task, the robot
also makes sure there are no ambiguities in the task pa-
rameters by checking if the concepts have more specific
child concepts in the knowledge base. For example, if the
command mentions “bottle”, and there are child concepts
“ketchup bottle” and “water bottle” as shown in Figure 1,
the robot would ask the operator to clarify the bottle type.

7http://wiki.ros.org/smach

Based on the task type, the state machine that implements
the composer formulates the hypotheses and goal in an ASP
query. The hypotheses and goal specifications are sent to the
plan executor using the ROS action interface. The plan ex-
ecutor calls the ASP solver, sequences the actions, and mon-
itors the execution. If no feasible plan can be found during
execution, the plan executor triggers the diagnostic reason-
ing process, and reports the inconsistent hypotheses (if any)
to the task-control state machine. If plan execution cannot
make progress because the same action fails to achieve the
planned effects multiple times, the executor also reports the
failure through the ROS action interface.

If the goal is not achieved, the task-control state machine
either tries to recover from the error or formulates a report
to the operator, depending on the type of error. For exam-
ple, if the “pick up” action fails, the recovery state attempts
to ask a nearby person to place the object directly into the
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robot’s gripper. If the recovery is successful, the task control
reissues the task goal. If the error is irrecoverable, the robot
delivers a verbal report to the operator stating the failed ac-
tion or inconsistent hypotheses. 8

Object Retrieval Task This section details the behavior
of the system as it executes a task in two scenarios. Both
scenarios are shown in the supplemental video, and Figure 2
shows robot actions, important knowledge updates and plan
changes of the first scenario along with frames in the video.

The task is initiated by a person asking the robot to “Bring
me the fruit from the kitchen.” The dialog module resolves
the ambiguous reference to “fruit” by asking a clarifying
question, then transforms the parsed command into the para-
metric task description bring me(object="apple",
location="kitchen").

The composer encodes the implied existence
of an apple somewhere in the kitchen by creat-
ing a hypothetical apple instance and a predicate
can be placed(<hypothetical apple ID>,
"kitchen"). The composer then produces the goal
is delivered("apple", <operator ID>).

The replanning executor receives the goal and creates an
initial plan to deliver the hypothetical apple from the cup-
board in the kitchen. This planning leverages the static rule
shown in (2) to infer that the hypothetical instance can be
placed on any surface in the kitchen.

Once the robot finishes navigating to and perceiving the
cupboard, the replanning executor discovers that the remain-
der of the plan can no longer be executed because the pre-
condition that the hypothetical apple be placed on the cup-
board is not satisfied. The executor replans to deliver the
hypothetical from the table. After perceiving the table, the
executor once more finds that the hypothetical instance is
not placed on the table. This time however, the planner is
able to make use of a concrete instance of an apple that was
perceived on the table. The robot plans to deliver the con-
crete instance. This plan is executed without any incident,
so no replanning is required.

If the apple had not been on the table, the robot would
have replanned to deliver the hypothetical apple from the last
remaining unscanned surface in the kitchen, the bar. When
the robot does not observe an apple on the bar, replanning is
unable to generate any plans for the goal. Diagnostic reason-
ing, leveraging the rule shown in (4), deduces that, because
the robot scanned every surface in the kitchen and did not
observe an instance of apple, the hypothetical apple could
not be placed in the kitchen. The robot uses the dialog mod-
ule to report the inconsistent hypothesis to the operator.

Summary The robot demonstrations show that the system
achieves our goal of servicing commands which involve un-
seen objects and hypotheses about such objects by represent-
ing hypotheses, replanning with knowledge of concrete ob-
jects, and identifying hypotheses that are inconsistent with
knowledge.

8Our implementation of knowledge representation and plan ex-
ecution can be found at http://doi.org/10.5281/zenodo.2629308

Conclusion
We have presented a novel approach that reasons and plans
in the open-world for service robots by leveraging an on-
tology to represent an operator’s hypotheses. Our demon-
stration highlights our fully implemented system’s ability to
handle a realistic request that requires the robot to plan with
ungrounded objects, and to identify inconsistent hypotheses
in the case of planning failure, all while maintaining respon-
siveness. In the future, we intend to extend the planning do-
main to model additional aspects of human-robot interaction
and incorporate probabilistic models to plan under uncer-
tainties of hypotheses.
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