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Abstract

Robots operating in the real world encounter substantial un-
certainty that cannot be modeled deterministically before the
actual execution. This gives rise to the necessity of robust mo-
tion planning under uncertainty also known as belief space
planning. Belief space planning can be formulated as Partially
Observable Markov Decision Processes (POMDPs). How-
ever, computing optimal policies for non-trivial POMDPs is
computationally intractable. Building upon recent progress
from the search community, we propose a novel anytime
POMDP solver, Partially Observable Multi-Heuristic Dy-
namic Programming (POMHDP), that leverages multiple
heuristics to efficiently compute high-quality solutions while
guaranteeing asymptotic convergence to an optimal policy.
Through iterative forward search, POMHDP utilizes domain
knowledge to solve POMDPs with specific goals and an in-
finite horizon. We demonstrate the efficacy of our proposed
framework on a real-world, highly-complex, truck unloading
application.

1 Introduction
Motion planning is a well-studied problem in robotics with
applications in diverse domains (LaValle 2006; Halperin,
Salzman, and Sharir 2017). A key challenge for motion-
planning algorithms is accounting for uncertainty, especially
in real-world applications.

Consider, for example, the problem of unloading boxes
from truck trailers in a warehouse environment (Fig. 1),
which motivates this work. Here, we are required to plan
robust actions for a custom-build truck unloading robot
equipped with two end effectors–a manipulator-like tool
with suction-grippers as well as a scooper-like tool. The
planning algorithm needs to account for uncertainty as
the end effectors interacts with unstructured, unknown and
stochastic environments.

Planning such robust motions under uncertainty, also
known as belief space planning, is a crucial capability for
any robot to properly function in the real world. This prob-
lem can be formulated in a principled form by a Partially
Observable Markov Decision Process (POMDP) (Kaelbling,
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(a) A truck unloader robot is picking up boxes
using suction grippers at its arm end-effector.

(b) A simulated truck unloader robot is pulling
up boxes using conveyor belts on its scooper end-
effector.

Figure 1: Truck unloader robot.

Littman, and Cassandra 1998; Kochenderfer 2015). How-
ever, solving a POMDP is often intractable due to the curse
of dimensionality (Kaelbling, Littman, and Cassandra 1998)
and the curse of history (Pineau, Gordon, and Thrun 2003)
which correspond to an exponential complexity with the
number of states and the planning horizon, respectively.

One approach to solve POMDPs is using heuristic-search
such as RTDP-Bel (Geffner and Bonet 1998; Bonet and
Geffner 2009). Given informative domain knowledge, it ex-
hibits high sample-efficiency, which is especially beneficial
in robotic applications. However, it is often not easy to de-
sign a single heuristic from the domain knowledge that cap-
tures all the complexities of the problem and effectively
guides the search toward the goal. Moreover, a heuristic may
not be consistent and admissible, which is required to guar-
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antee theoretical bounds on the solution quality.
Another approach that proved to be very effective in solv-

ing complex domains is using point-based solvers that uti-
lize vector set representation of the value function and re-
strict its computation to a subset of the belief space. This, in
turn, corresponds to performing only local value updates for
this subset. However, both these approaches require access
to an explicit model of the POMDP probability distributions.

Returning to our motivating example of truck unloading
this assumption is clearly unrealistic—in our case we only
have access to a noisy generative model or simulator. Given
a state and an action, this simulator provides a sample of a
successor state, observation and reward. Monte-Carlo based
methods such as POMCP (Silver and Veness 2010) can be
applied to such settings. Their favorable traits can be at-
tributed, in part, to representing each belief state using a
set of particles and performing a Monte-Carlo tree search
on these set of particles. Such planners are typically more
suited to the Discounted POMDP problems where immedi-
ate actions (e.g., evasion from adversaries) are more heavily
rewarded than future ones (e.g., the agent’s location at the
end of execution).

However, in many robotic applications, robots are as-
signed for specific tasks to accomplish (e.g., navigate to a
target location, or unload all boxes from a truck). For these
problems, future actions are as important as immediate ones,
and the objective is to achieve the prescribed goals. It means
the planning horizon is unbounded, and effective guidance
to the goals is important. Such of POMDPs are called Goal
POMDPs, and they are what we tackle to solve in this work.

Our key insight is to incorporate recent advances in
heuristic search together with a particle representation.
Specifically, we make use of multiple heuristics to systemat-
ically guide our search algorithm in belief space for highly-
efficient planning under uncertainty. Utilizing a particle rep-
resentation of a belief state, our algorithm can be applied
to domains where only a generative model is available. We
demonstrate the efficacy of our approach on our truck un-
loading application, computing high-quality plans that re-
moves boxes from a trailer in a time-efficient and risk-averse
manner.

2 Related work
In this section, we review related work on belief space plan-
ning. Specifically, we detail the three primary approaches in
solving POMDPs Point-based methods (Sec. 2.1), Heuris-
tic search-based methods (Sec. 2.2) and Monte Carlo-based
methods (Sec. 2.3.

2.1 Point-based methods
Point-based methods have been one of the major approaches
to solve relatively large POMDP problems (Pineau, Gor-
don, and Thrun 2003; 2006; Smith and Simmons 2004;
2005; Kurniawati, Hsu, and Lee 2008; Ross and Chaib-Draa
2007). They represent the value function by a vector set of
sampled points and its piece-wise linear combination (also
known as α-vectors) (Smallwood and Sondik 1973). Key to
their efficiency is that instead of planning on the entire belief

space, they concentrate planning resources on beliefs that
are reachable from the initial belief.

Point-based methods differ in how they select the core
subset of the belief space over which to compute the value
function, as well as on the order by which the value at
those beliefs are updated. It is important to note that point-
based methods maintain the value function using explicit
probability-distribution models and update the value func-
tion by considering all possible available actions. This re-
quires an explicit transition model and is often unscalable to
highly-complex domains. For a recent survey on point-based
POMDP methods, see (Shani, Pineau, and Kaplow 2013).

2.2 Heuristic search-based methods
Another major approach to belief-space planning is us-
ing heuristic search-based methods (see e.g., (Hansen and
Zilberstein 1998; 1999; 2001; Washington 1997; Geffner
and Bonet 1998; Bonet and Geffner 2000; Bonet 2002;
Geffner and Bonet 1998)). These methods utilize available
domain-specific knowledge to guide a search algorithm to
efficiently find the optimal solution. Similar to point-based
methods and unlike dynamic-programming methods such
as value iteration (Poole and Mackworth 2010), heuristic
search methods evaluate the value function for a small subset
of the belief space. These methods are derived from graph-
search algorithms in deterministic environments but operate
on graphs where probabilistic transitions along edges should
be considered.

A seminal work regarding heuristic search-based meth-
ods is the comparison of RTDP-Bel and point-based meth-
ods (Bonet and Geffner 2009). Here, the authors present
a method to convert a Discounted POMDP to an equiv-
alent Goal POMDP and compared RTDP-Bel with point-
based methods. With equivalence-preserving transformation
of the problem, many different benchmark tests showed that
RTDP-Bel is competitive and often superior to point-based
algorithms that utilize Sondik’s vector representation of the
value function (Smallwood and Sondik 1973).

2.3 Monte Carlo-based methods
Monte Carlo Tree Search (MCTS) is a heuristic search
method that uses random sampling to expand promising
actions and has been shown to be effective in solving
MDPs (Coulom 2006; Gelly and Silver 2007). Recently,
Silver et al. suggested Partially Observable Monte Carlo
Planning (POMCP), an MCTS-based method for solving
POMDPS (Silver and Veness 2010). This, in turn, led to
the development of multiple MCTS-based POMDP solvers
(see e.g., (Somani et al. 2013; Kurniawati and Yadav 2013;
Seiler, Kurniawati, and Singh 2015; Sunberg and Kochen-
derfer 2017)).

MCTS-based POMDP solvers convert the problem to an
MDP by representing a belief state as a set of particles. This
implicitly corresponds to sampling the belief state (allevi-
ating the curse of dimensionality) and the belief transitions
(alleviating the curse of history). Typically, this approach al-
lows for online computation which interleaves planning and
execution so that solution quality is improved while execu-
tion a computed policy.
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3 Preliminaries: POMDP formulation
In this section we briefly describe our problem formulation
assuming the reader is familiar with MDPs and POMDPs.
For a general introduction to the subject, see e.g., (Bertsekas
2005; Thrun, Burgard, and Fox 2005; Russell and Norvig
2010)

Let S,A, and Z denote the state, action, and obser-
vation spaces, respectively. We denote the motion model
T (s, a, s′) = P (s′ | s, a), which defines the probability of
being at state s′ after taking an action a in state s. The ob-
servation model Z(s, a, o) = P (o | s, a) is the probability of
receiving observation o after taking action a in state s.

A belief b(s) is a posterior distribution over all possible
states given the past actions and observations, i.e., bk(s) =
P (s | a0:k−1, o1:k) where the subscript k denotes the time
step. Note that a POMDP problem can be formulated as a
Belief MDP by taking b(s) as an MDP state, also referred to
as a belief state b ∈ B, where B is referred to as belief space.

Given ak−1, ok, and bk−1(s), the updated belief bk(s) can
be computed by Bayesian filtering, which can be divided
into two sub-steps as follows.

bk−1(s; ak−1) =
∑
s′∈S

T (s, ak−1, s
′)bk−1(s), (1)

bk(s; ak−1, ok) = ηZ(s, ak−1, ok)bk−1(s; ak−1), (2)
where η is a normalizing constant. For notational conve-
nience, let us denote bk−1(s; a) = bak−1 and bk(s; a, o) =
bk = baok−1 hereafter.

A policy π : B→ A maps each belief state b to a desirable
action a. The expected cost of an action for the true state can
be represented as a cost function in a belief space, c(b, a) ∈
R+. Given a policy π and a belief b ∈ B, we can compute
the value function,

V (b;π) = E

[ ∞∑
k=0

γkc(bk, π(bk))

]
, (3)

where b0 is the initial belief state and γ ∈ (0, 1] is a discount
factor that reduces the effect of later costs.

We can rewrite Eq. 3 in a recursive form, which is called
the Bellman equation.

V (b;π) = c(bi, π(b)) + γ
∑
b′∈B

τ(b, π(b), b′)V (b′;π), (4)

where τ(b, π(b), b′) =
∑
o∈Z P (b′|b, π(b), o)P (o|b, π(b)) is

the transition probability from b to b′ under π, which can be
derived from Eq. 1 and 2. For further details, see (Ross et
al. 2008). It is often convenient to define the so-called Q-
value function for an intermediate belief-action pair, (b, a)
or simply ba, as follows.

Q(ba;π) = c(b, a) + γ
∑
b′∈B

τ(b, a, b′)V (b′;π). (5)

We now restate our POMDP problem as an optimization
problem.

π∗(b) = argmin
Π0:∞

E

[ ∞∑
k=0

γkc(bk, πk(bk))

]
= argmin

Π0:∞

V (bk;πk). (6)

Algorithm 1 RTDP-Bel

Inputs: Initial belief b0, admissible heuristic h,
explicit motion/observation models T,Z

1: repeat
2: b← b0 . start iteration with initial belief
3: SAMPLE state s with probability b(s)
4: repeat
5: EVALUATE q(ba) for each action a using Eq. 5

. initialize v(bao) to h(bao) if not initialized
6: SELECT BEST ACTION a . a minimizes q(ba)
7: UPDATE v(b) to q(ba)
8: SAMPLE next state s′ . uses motion model T
9: SAMPLE observation o

. uses observation model Z
10: COMPUTE bao and set b← bao, s← s′

11: until bao is the goal belief
12: until CONVERGED()

Note that in this work we consider Goal POMDPs without
cost discounting, i.e., γ = 1, and thus, the value function
V (b;π) corresponds to the expected cost-to-goal from belief
state b under policy π.

For notational brevity in the algorithm description, let us
denote V (b;π) and Q(b;π) that are being learned/updated
during the belief space planning by v(b) and q(b), respec-
tively, in the following sections.

4 Algorithmic background

4.1 Real-Time Dynamic Programming in Belief
Space (RTDP-Bel)

In this section we briefly review Real-Time Dynamic Pro-
gramming in Belief Space (RTDP-Bel) (Geffner and Bonet
1998) which is an extension of RTDP for MDP (Barto,
Bradtke, and Singh 1995) to belief space planning.

RTDP-Bel, described in Alg. 1 performs a series of
searches until it converges to the optimal policy (see Eq. 6).
Each iteration (Lines 2-12) is a greedy search starting from
the initial belief b0 and terminating at a goal belief1. Every
iteration of the search consists of sampling a state within
our belief (Line 3), evaluating the effect of every action on
the sampled state (Line 5), selecting the best action (Line 6)
and updating the value function accordingly. We then sam-
ple the next state and observation (Lines 8-9) to compute the
new belief (line 10).

There are several important details to note here: (i) each
iteration is a path computed greedily from b0, (ii) to ensure
convergence to the optimal policy we require that the heuris-
tic function h(·) (Line 5) is admissible and that (iii) an ex-
plicit transition model is used (Lines 5,8,9).

1Here, for ease of description, we assume that there is always
a path to the goal state. In practice, this may not be the case and
an iteration may be terminated early when the greedy search to the
goal has no available action.
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4.2 Multi-Heuristic A* (MHA*)
Heuristic functions may have a dramatic effect on the perfor-
mance of heuristic search-based planners such as A*. How-
ever, in many applications, it is difficult to engineer one
heuristic function that can guide the search throughout the
entire environment. Furthermore, this heuristic function is
required to be admissible2 in order to guarantee bounds on
solution quality and completeness.

One approach to address these challenges is by simulta-
neously using multiple heuristic functions. One algorithm
that uses this idea is Multi-Heuristic A* (MHA*) (Aine et
al. 2016), which takes in a single admissible heuristic called
the anchor heuristic, as well as multiple (possibly) inadmis-
sible heuristics. For each heuristic, it runs an A*-like search,
and the expanded nodes of each search are shared among all
searches. This allows to automatically combine the guiding
powers of the different heuristics in different stages of the
search (for different applications of MHA*, see, e.g., (Kim
and Likhachev 2017; Ranganeni, Salzman, and Likhachev
2018; Islam, Salzman, and Likhachev 2018)).

MHA* uses the so-called anchor test to evaluate the
heuristic value of a state s. Specifically, given some ε > 1,
admissible and inadmissible heuristics hanchor and hinad, re-
spectively, the algorithm uses hinad for a state s only if
g(s) + hinad(s) ≤ g(s) + ε · hanchor(s). Here g(s) represents
the cost to reach state s from the initial state (also known as
the cost-from-start). It can be shown that using the anchor
test, the cost of solutions obtained by MHA* are no more
than ε the cost of the optimal solution.

5 Partially Observable Multi-Heuristic
Dynamic Programming (POMHDP)

5.1 Key ideas
Our algorithm can be seen as an adaptation of RTDP-Bel.
The first set of modification, which is the key contribution
of this work, is concerned with how the heuristic function
is used (Alg. 1, Line 5). The second set of modification,
which we consider a (non-trivial) implementation detail is
concerned with relaxing the algorithm’s requirement to use
explicit transition models (Alg. 1, Lines 5,8,9) and using a
particle representation of belief states. We omit further de-
tails and refer the reader to the appendix for detailed pseudo-
code describing the complete algorithm using a generative
model.

The first set of modifications makes use of the following
key ideas:
I1 Inflation of heuristic value.
I2 Incorporating one inadmissible heuristic with one admis-

sible heuristic.
I3 Incorporating several inadmissible heuristic with one ad-

missible heuristic.
As we will see shortly, ideas I1 and I2 are used to heuris-

tically improve how fast the path constructed by the algo-
rithm in each iteration reaches the goal belief. These im-

2A heuristic function is said to be admissible if it never over-
estimates the optimal cost of reaching the goal.

Algorithm 2 SELECT BEST ACTION

Inputs: current belief b, admissible heuristic hanchor,
inadmissible heuristic hinad, approx. factor ε2

1: ainad = argmina∈A qinad(ba) . ba = SUCC(b, a)
2: aanchor = argmina∈A qanchor(b

a) . ba = SUCC(b, a)
3: if qinad(bainad) ≤ ε2 · qinad(baanchor) then
4: return bainad

5: return baanchor

provements come at the price of convergence to a policy that
is within a given bound of the optimal policy.

Idea I3 is motivated by the insight that a single heuristic
may drive the search into a region of the belief space where
it may be very hard to reach the goal belief. Roughly speak-
ing, this is because the heuristic value is in stagnation (see,
e.g., (Dionne, Thayer, and Ruml 2011; Islam, Salzman, and
Likhachev 2018))—namely, it is uninformative. In this case
we would like to use an alternative heuristic. The best state
to expand chosen by the alternative heuristic will generally
not be the state considered by the current heuristic. This
means that each iteration will now be a tree in belief space
rooted at the initial belief and the search will end when one
state of the tree reaches the goal belief. For visualization of
the approach, see Fig. 2.

5.2 Using an inadmissible heuristic (I1 & I2)
Let hanchor and hinad be admissible and inadmissible heuris-
tics, respectively and let ε1, ε2 > 1 be some constants.

Instead of using only the admissible heuristic for value
function initialization as in RTDP-Bel (Alg. 1, Line 5), we
inflate the admissible heuristic by ε1 (Idea I1). Instead of
choosing the best action according to the admissible heuris-
tic as in RTDP-Bel (Alg. 1, Line 6), we perform the anchor
test (Idea I2).

This requires (i) storing for each state two Q-values (one
for the admissible heuristic and one for the inadmissible one)
and performing the anchor test. For pseudocode depicting
how line 6 in Alg. 1 is now implemented, see Alg. 2.

Roughly speaking, Idea I1 is analogous to the way
weighted A* (Pearl 1984) uses an inflated heuristic and
Idea I2 follows the way MHA* ensures bounded sub-
optimality (see Sec. 4.2).

5.3 Using multiple inadmissible heuristics (I3)
To make use of multiple (inadmissible) heuristics we need
(i) a principled way to stop using one (inadmissible) heuris-
tic and start using another (inadmissible) heuristic and (ii) a
principled way to choose which state do we want to sample
from once we switch to a new (inadmissible) heuristic.

We choose to stop using one (inadmissible) heuristic
when we detect that it is no longer informative, or in stag-
nation. There are many ways to define heuristic stagnation
(see e.g., (Islam, Salzman, and Likhachev 2018)). Here, we
adopted the concept of momentum in stochastic gradient de-
scent (Qian 1999). For pseudo code, see Alg. 3.

To choose which state to sample from once we switch to a
new (inadmissible) heuristic, we maintain a priority queue,
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Figure 2: Illustration of forward search with a single (a, b) and multiple (c) heuristics. (a) Forward search with single heuristic
reaches the goal, (b) Forward search with single heuristic gets stuck at local minima. (c) Forward search with multiple heuristics
can switch from one heuristic to another until reaching the goal. Yellow and green regions represent the reachable belief space
from the start and the explored belief space by the forward search, respectively.

Algorithm 3 IS IN STAGNATION

Inputs: previous state v-value vpred,
inadmissible heuristic hinad, previous diff. ∆v

1: qsucc = mina∈A qih(b
a) where ba = SUCC(b, a)

2: ∆v ← η∆v + (qsucc − vpred)
3: if ∆v ≥ 0 then
4: return true
5: return false

OPENi, of belief-action pairs for each heuristic hi3. Belief-
action pairs in OPENi are ordered according to the sum of
the cost-from-start and cost-to-goal for i-th heuristic, i.e.,
KEY(ba, i) = g(ba) + qi(b

a).
When we switch to a new (inadmissible) heuristic hi, we

find the belief-action pair with the minimal key in OPENi.
To ensure that the iterative forward search yields bounded
suboptimal solutions, we apply the anchor test between
this belief-action pair and the one with the minimal key in
OPEN0. Furthermore, to guarantee that the algorithm con-
verges to optimal solution, we decrease the approximation
factors, ε1 and ε2, between iterations. For visualization, see
Fig. 3.

A high-level description of the algorithm is provided in
Alg. 4. Lines where the algorithm differs from RTDP-Bel

(Alg. 1) are marked in magenta.

5.4 POMHDP—Theoretical properties
In this section we highlight the theoretical properties of
POMHDP and provide sketches of proofs for these prop-
erties.

Recall that RTDP, which performs asynchronous dynamic
programming on an MDP, provides asymptotic convergence
to the optimal policy given an admissible heuristic (Barto,
Bradtke, and Singh 1995). RTDP-Bel, which approximates
a POMDP problem as a belief MDP through belief dis-
cretization, similarly provides asymptotic convergence to a

3In addition to OPENi, we also maintain two lists, denoted by
CLOSEDanchor and CLOSEDinad, for the anchor heuristic and the
inadmissible heuristics, respectively to detect duplicates. We omit
discussing these lists for clarity of exposition and refer the reader
to the description of MHA* (Aine et al. 2016) for further details.

b0

bg

B

R(b0)

(a) 2nd iteration

b0

bg

B

R(b0)

(b) 3rd iteration

Figure 3: Illustration of the anytime behavior of POMHDP.
After the first iteration of forward search (Fig. 2c), we grad-
ually relax the search space bounds (Alg 4, Line 18) and run
another forward search to improve the solution.

resolution-optimal policy (Bonet and Geffner 2009). For the
following theoretical analysis, we consider the optimality in
belief MDP as an alternative to the resolution-optimality in
POMDP (approximated by belief discretization or particle
representation). Note that the resolution-optimal policy con-
verges to the optimal POMDP policy as the discretization
decreases or the number of particles for belief state respre-
sentation increases (Silver and Veness 2010).

1. RTDP-Bel using Idea I1 asymptotically converges to
ε1-suboptimal policy. In belief MDPs, a cost-to-goal
for each belief state can be decomposed as v(b) =
vg(b) + ε1 · vh(b), where vg(b) and vh(b) are initial-
ized to zero and an admissible heuristic value h(b),
respectively (Chakrabarti, Ghose, and DeSarkar 1987;
Hansen and Zilberstein 1999). Eq. (4) can also decom-
posed into vg(b) = c(bi, a) +

∑
b′∈B τ(b, a, b′)vg(b

′) and
vh(b) =

∑
b′∈B τ(b, a, b′)vh(b′). Through iterative for-

ward search, vg(bg) = vh(bb) = 0 for the goal belief
is back-propagated to the predecessors, and once con-
verged, v(b) = vg(b) and vh(b) = 0 are satisfied for each
belief. Due to the greedy action selection scheme and in-
flated heuristic initialization, the forward search is biased
to the heuristic guidance, and vg(b) can be suboptimal but
bounded by a factor of ε1.

2. RTDP-Bel using Idea I2 asymptotically converges to
ε2-suboptimal policy. An inadmissible heuristic cannot
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Algorithm 4 POMHDP-EXPLICIT

Inputs: Initial belief b0, admissible anchor heuristic h0,
nh − 1 additional heuristics h1, . . . hnh

approx. factors ε1, ε2 decaying const. α
explicit motion/observation models T,Z

1: repeat
2: b← b0 . start iteration with initial belief
3: ∀i,OPENi ← ∅;

. start iteration with empty queues
4: curr← 1 . index of inadmissible heuristic
5: SAMPLE state s with probability b(s)
6: repeat
7: EVALUATE q0(ba), qcurr(b

a) for each action a
. initialize vi(bao) to ε1 · hi(bao) if not initialized

. updates OPEN0 and OPENcurr
8: if IS IN STAGNATION then . Uses Alg. 3
9: SWITCH HEURISTIC . updates curr

10: SELECT BEST ACTION a
. runs anchor test OPENcurr’s and OPEN0’s head

11: else
12: SELECT BEST ACTION a . Uses Alg. 2
13: UPDATE v0(b) to q0(ba) and , vcurr(b) to qcurr(b

a)
14: SAMPLE next state s′ . uses motion model T
15: SAMPLE observation o

. uses observation model Z
16: COMPUTE bao and set b← bao, s← s′

17: until bao is the goal belief
18: ε1 ← ε1e

−α; ε2 ← ε2e
−α

. decrease approx. factors
19: until CONVERGED()

provide any theoretic guarantees by itself, but with the
anchor test (Alg. 2, Line 3) it can be incorporated in the
forward search guidance without loss of theoretic guar-
antees. The anchor test allows the inadmissible heuristic
to be used for action selection only if its cost-to-goal es-
timate is not ε2-times larger than that of the admissible
heuristic. This action selection scheme provides subop-
timality bounds by a factor of ε2, locally, i.e., from the
current belief to the goal belief. By backward induction
from the goal belief with the true v(bg) = 0, the iterative
forward search can be shown to provide ε2-suboptimality
in the global sense.

3. POMHDP asymptotically converges to the opti-
mal policy. POMHDP leverages both of ε1-inflation of
heuristics (Idea I1) and ε2-factored anchor test (Idea I2).
In addition, it makes use of stagnation detection and re-
branching over multiple heuristics (Idea I3). Note that re-
branching helps to avoid stagnation during the forward
search and effectively reach the goal, and does not af-
fect the theoretical suboptimality bounds since it has no
distinction with the usual evaluation and update step in
terms of asynchronous dynamic programming. As a re-
sult, POMHDP converges to ε1 · ε2-suboptimal solution
for constant ε1 and ε2. With the step decreasing ε1 and ε2

(Alg. 4, Line 18), POMHDP converges to the optimal so-
lution.
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Figure 4: A toy example for truck unloading. POMHDP

conducted a forward search using one admissible heuristic
and two inadmissible heuristics in the following order: b0→
b2→ (heuristic switch; rebranch)→b1→b11→bg . Heuristic
switch and rebranching of the forward search helped to get
out of the stagnation quickly and reach the goal. (The op-
timal cost-to-goal values in red color are presented just for
reference.)

6 Putting it all together–Illustrative example
Fig. 4 illustrates how POMHDP works on a simplified truck
unloading problem. In this toy example, there is a stack of
boxes in a truck, and the goal is to remove all the boxes from
the truck. Box masses are unknown and unobservable— ac-
cording to the prior belief, the boxes are heavy with a 60 %
chance and light with a 40 % chance.

There are three available actions for the truck unloader
robot; pickup high (a1), pickup low (a2), and scoop (a3).
The first two actions are to pick up boxes using its arm and
release them onto the conveyor belt to remove them from the
truck, where pickup high and pickup low try to pick up
boxes from the 4th row and 2nd row, respectively. The third
action is to use its scooper to lift boxes from the floor and
pull back using the conveyor belts. The cost of each action is
two, two, and three, respectively (here, a scoop action costs
more than a pick action as it requires moving the base of
the robot which takes more time than only moving the end
effector).

Due to the unobservable box masses, transition between
belief states is stochastic. If the boxes are light (ol),
pickup high or pickup low can lift four boxes in each col-
umn of the stack, but if they are heavy (oh), only two boxes
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in each column can be lifted. Regardless of the box masses
(ohl), scoop is not successful if the number of boxes in each
column is larger than two (scooping more than two boxes
causes them to fall to the sides of the robot, which in turn,
requires manual intervention).

For this truck unloading problem, we have one admissible
heuristic, h0(b), and two inadmissible heuristics, h1(b) and
h2(b) as follows.

h0(b) =

{
3 (∀b ∈ B\{bg})
0 (b = bg)

(7)

h1(b) = E[(# of all boxes left)] (8)
h2(b) = E[3·max(# of boxes in each column)] (9)

where hi(b) =∞ for ∀i if there is any box fallen out of the
robot. h0(b) refers to a trivially admissible heuristic which
assumes a one-time scoop action can unload the all boxes.
h1(b) and h2(b) are simple heuristic functions that depend
on the configuration of remaining boxes and take average of
them over the sampled states in the belief.

As shown in Fig. 4, the first forward search starts from the
initial belief, b0, with the heuristic reference index, ih = 1.
Let us assume ε1 = 1, ε2 = 5, and η = 0. After evaluating
the successor belief-action pairs, ba20 with q1 = 6.8 seems
to be the best among the successors. Note here that vi(b) is
initialized by ε1 ·hi(b). When sampling a successor belief
from ba20 , b2 is selected for the next evaluation. However, it
turns out that all the successor belief-action pairs of b2 have
higher q1-values than ba20 , which means the forward search
is in stagnation.

Thus, the forward search rebranches from the best belief-
action pair in OPEN2, which is ba10 , after switching ih to 2.
After the evaluation, ba21 with q2 = 5 is chosen for the next
iteration. When b11 is sampled and evaluated, the successor
of ba311 , i.e., b16, reaches the goal, and then the first forward
search terminates. Note that in Fig. 4 the updated vi(b) and
qi(b

a) are not visualized due to the space limit, and the op-
timal v∗(b) and q∗(ba) are added for the reference.

In this simple example, the solution policy has converged
to the optimal after the first forward search (with the ex-
pected cost-to-goal of 7), thanks to the heuristic switch and
rebranching. Without rebranching, it would need at least two
iterations (more specifically, until ε2 decreases enough to ex-
pand ba10 based on the admissible heuristic).

7 Simulation results
In this section, we present simulation results in the truck un-
loader domain to demonstrate the efficacy of the proposed
framework. Note that the results in other robotic applications
are not included in this paper due to the space limit.

7.1 Problem description
The truck unloader problem—a robot needs to remove boxes
from a truck, where there is only limited prior information
about the box dimensions and masses—is a highly complex,
real-world domain. It is in continuous action/observation
space with high stochasticity especially when handling the
boxes.

We formulated this problem as a Goal POMDP. A state
s = (Tr, q1:16, {Tb, lb, mb}1:Nb

) ∈ S is a tuple of the robot
base pose, Tr, and joint configuration, q1:16, and the pose,
Tb, dimensions, lb, and mass, mb, of Nb boxes. Note that
the box mass is unknown and unobservable. Then a belief
state b = {s}1:Npart ∈ B is presented by a set of sampled
states, i.e., particles. The goal condition is satisfied when all
the boxes are out of the truck in all (or almost by a certain
threshold) particles.

The action space is discretized into 12 macro actions, such
as pickup high left, pickup low right, or scoop, consid-
ering the frequent motions during the truck unloading opera-
tions. The observation space is also discretized into 18 cases
based on the box poses, such as box pile midhigh left,
box pile low, or box pile none, taking account of the
macro action’s capability. In the presented simulation re-
sults, we assume that we have access to the exact box poses
instead of estimating them from simulated visual sensor data
and a virtual perception module. Note that even with this as-
sumption, the unobservable box mass and the added noise to
the dynamics simulator make the action execution to be still
very stochastic.

We defined a cost function and multiple heuristic func-
tions in a similar way with the toy example presented above.
The pickup actions have a cost of 2, and the scoop action
has a cost of 3. The admissible and inadmissible heuristic
functions used in the evaluation are the same as in Eq. 7-9.

7.2 Experiment setup
For evaluation of the proposed work, we first created a
simulation model of the truck unloader system in V-REP
simulator from Coppelia Robotics GmbH (Fig. 1). Recall
that a dynamics simulator serves as the generative model in
our framework. To provide feasible solutions for the real-
world system, high-fidelity simulation is a strong require-
ment, while it induces very expensive computational costs.
(The real-time factor of this simulation model is approxi-
mately 0.3.)

As the baseline algorithms, POMCP and a variant of
RTDP-Bel were used. POMCP is considered to be one of
the state-of-the-art online POMDP solvers. It intrinsically
accepts generative POMDP models and allows us to initial-
ize the value function using any (single) heuristic function.
Unlike POMHDP, however, it does not bootstrap with the
initialized values during the rollout phase and usually uses a
random policy in favor of unbiased exploration. RTDP-Bel
is a heuristic search-based algorithm with a single heuris-
tic and shown to be competitive to point-based algorithms
(Bonet and Geffner 2009). However, it cannot accommodate
generative POMDP models, so we used a modified version
by our own, namely RTDP-Part, that uses particle represen-
tation of a belief state. In addition to the admissible heuristic
as in Eq. 7, we also present the results of RTDP-Part with
one of the inadmissible heuristics in Eq. 8-9, denoted by
RTDP-Part(hi).

7.3 Results
As shown in Table 1, POMCP took significantly longer time
than the other algorithms, and thus, sufficient data for further
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Figure 5: Snapshots of truck unloading task execution based
on the solution policy of POMHDP.
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Figure 6: Number of evaluations over the forward search
iterations by RTDP-Part with an individual heuristic, and
POMHDP with multiple heuristics, respectively.

statistical analysis could not be collected. This is because in
the initial forward search iteration only the random rollout
policy is being used to select the next action, and thus, it can
easily lead to an suboptimal region. Once it enters a dead-
end state, e.g., when a box fell into the side of the robot,
there is no action that the robot can take to recover from it
and achieve the goal. Then the forward search indefinitely
keeps expanding in dead-end region.

Fig. 6 shows the number of evaluations per each forward
simulation iteration, which can be considered as the effec-
tiveness of guiding the search toward the goal. At the ear-
lier iterations, POMHDP needs slightly more evaluations
because of rebranching behavior when falling into stagna-
tion. However, considering the small variance of its evalu-
ation numbers over the iterations, the rebranching is shown
to provide effectiveness to guide the search in many differ-
ent scenarios. Note that RTDP-Part with a single heuristic
(especially h0 and h1) suffers from stagnation and requires
many evaluations to reach the goal.

In Fig. 7, the number of boxes in different states after ex-
ecuting a solution policy is presented, where the anytime
performance of each algorithm can be inferred from. Com-

Table 1: Average time for the first forward search iteration

Algorithm POMCP

RTDP-Part

(h0) (h1) (h2) POMHDP

Time [min] ≥ 60 1.86 4.83 3.86 6.18
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Figure 7: Number of boxes in different states (unloaded, not
unloaded, or dead-ended) after executing a solution policy
obtained from each number (on the x-axis) of the forward
search iterations.

pared to RTDP-Part(h0), RTDP-Part(h1) is relatively con-
servative (many boxes are not unloaded), so that the solution
would not lead to a dead-end. RTDP-Part(h2) is rather ag-
gressive to achieve the goal (more boxes unloaded), but may
fall into a dead-end. POMHDP automatically takes advan-
tage of multiple heuristics and achieves higher number of
unloaded boxes, while reducing the chance of failures.

8 Conclusion
In this paper, we proposed a novel belief space planning
framework that leverages multiple inadmissible heuristics
to solve Goal POMDPs with an infinite horizon. Multi-
ple heuristics can provide effective guidance of the forward
search even in the case that the heuristics are possibly unin-
formative and suffer from search stagnation. From the condi-
tion check with an admissible heuristic, it can still guarantee
the asymptotic convergence of the suboptimality bounds of
the solution. It is an anytime algorithm which can improve
the solution quality as time permits by relaxing the search
space bounds. The simulation results showed that this ap-
proach is also empirically meaningful and can outperform
the state-of-the-art methods in robotic problems that can be
modeled as Goal POMDPs.

An interesting extension of this work is the online plan-
ning version that interleaves replanning and execution. On-
line POMDP solvers usually have a finite but receding hori-
zon, so they are subject to the local minima problem. Thus,
multiple heuristics can be more beneficial to alleviate that
problem and achieve better performance.

Another promising revenue of future research is to in-
corporate the heuristics suggested in the point-based ap-
proaches. For example, a heuristic that guides the forward
search to the region with a larger gap between the upper and
lower bounds can be used as one of inadmissible heuristics
in our framework. It would be interesting to investigate the
synergetic effects when different approaches in belief space
planning are combined together.
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Appendix: Detailed pseudocode
We present a detailed description of POMHDP, including
how we use a particle representation of beleif states. The
pseudocode of POMHDP is presented in Alg. 5 and detailed
in Alg. 6-12. To incorporate multiple heuristics, we maintain
the value function and the Q-value function for each heuris-
tic, denoted by vi(b) and qi(b) for i = 0, ..., nh, respectively.
Note that we have access to one admissible heuristic (with
index i = 0) and nh inadmissible heuristics.

After the initialization, POMHDP iterates the forward
search (line 6-23) until the convergence or timeout. Start-
ing from the given initial belief b0, the forward search 1)
evaluates the successor beliefs, 2) backs up (update) the
value function, and 3) choose the next belief state to repeat
these steps until reaching the goal belief. Once each forward
search terminates, i.e., reaches the goal, ε1 and ε2 values are
reduced exponentially (line 24).

During the evaluation step, successor belief states are gen-
erated using a generative model (a black box simulator) if
not yet done (line 3-20 in Alg. 8). Then qi(ba) for the cur-
rent belief b and possible action a pair is updated as in (5)
(line 26 in Alg. 8). The minimal qi(ba) over ∀a ∈ A is used
to set vi(b) in the backup step (Alg. 9).

At the end of the evaluation step, the algorithm inserts
or updates the intermediate belief-action pair ba ∈ BA in
OPEN0 and/or OPENi for i = 1, ..., nh if some conditions
are met (line 30-35 in Alg. 8). OPENi here denotes a priority
queue for each heuristic sorted by key values defined as in
line 2 in Alg. 8. Notice that POMHDP maintains multiple
priority queues for the heuristics, while RTDP-Bel with a
single heuristic does not have any.

This is for rebranching when the forward search falls into
stagnation. When choosing the next belief to evaluate and
back up, the algorithm first checks for stagnation which im-
plies that the cost-to-goal along the forward search is not
decreasing (Alg. 6). In such a case, it switches the heuris-
tic reference index ih to another in a round-robin fashion
(Alg. 7), and then invokes OPENih to choose the belief with
the minimal key value (Alg. 10). This is referred to as re-
branching since the forward search stops growing the cur-
rent belief tree branch and restarts in the middle of the ex-
isting branch(es). On the other hand, if the forward search
is not in stagnation and has more than one valid successor
belief-action pairs, the algorithm selects the best one with
the minimal cost-to-goal among the successors (Alg. 11),
which results in growing the current branch.

When choosing the belief-action pair with the minimal
key value or cost-to-goal value, we have a certain condition
called anchor check (line 2 in Alg. 10 and line 5 in Alg. 11,
respectively). It basically compares the best candidates ac-
cording to the admissible and inadmissible heuristic and de-
cides which one to use. If the key value or cost-to-goal of
the inadmissible’s candidate is not larger (i.e., worse) than
that of the admissible’s one multiplied by ε2, the inadmissi-
ble’s candidate is used. Otherwise, admissible’s one is used.
In fact, Alg. 10 and 11 are mostly equivalent except that the
former considers the whole belief tree from the start, while
the latter considers only the partial tree rooted at the current
belief. The myopic action selection scheme in Alg. 11 may

Algorithm 5 POMHDP::MAIN

1: procedure MAIN()
2: g(b0) = 0; g(bg) =∞ . cost-from-start
3: for i = 0, ..., nh do
4: vi(b0) = hi(b0); vi(bg) = 0 . cost-to-goal
5: repeat
6: for i = 0, ..., nh do
7: OPENi ← ∅
8: CLOSEDanchor ← ∅; CLOSEDinad ← ∅
9: b← b0; ih ← 1; ∆v ← ∆v0

10: while ¬REACHEDGOAL(b, bg) do
11: vpred ← vih(b)
12: EVALUATE(b)
13: BACKUP(b)
14: if OPEN0 = ∅ then
15: break
16: if CHECKSTAGNATION(vpred, ih) or
17: GETSUCCS(b) = ∅ then
18: ih ← SWITCHHEURISTIC(ih)
19: ba

∗← NEXTBELACTFROMOPEN(ih)
20: ∆v ← ∆v0

21: else
22: ba

∗← NEXTBELACTFROMSUCCS(b,ih)
23: b← SAMPLEBELIEFFROMBELACT(ba

∗
)

24: ε1 ← ε1e
−α; ε2 ← ε2e

−α

25: until CONVERGED() or TIMEOUT()

Algorithm 6 POMHDP::CHECKSTAGNATION

1: procedure CHECKSTAGNATION(vpred, b, ih)
2: qsucc = mina∈A qih(b

a) where ba = SUCC(b, a)
3: ∆v ← η∆v + (qsucc − vpred)
4: if ∆v ≥ 0 then
5: return true
6: else
7: return false

Algorithm 7 POMHDP::SWITCHHEURISTIC

1: procedure SWITCHHEURISTIC(ih)
2: ih ← mod(ih, nh) + 1 . round-robin
3: return ih

not lead to the optimal solution at first but is still effective for
asymptotic convergence to the optimal over the iterative for-
ward search. The action selection in Alg. 10 is non-myopic
and may find a better path from the start to a certain belief,
but rebranching at every time does not provide a good con-
vergence rate in practice because it takes more time to reach
the goal which is the only belief with the true cost-to-goal
(trivially, V ∗(bg) = 0) at the beginning.

Once a belief-action pair ba ∈ BA is selected, POMHDP

samples an observation and gets a corresponding succes-
sor belief b ∈ B for the next evaluation/backup iteration
(Alg. 12).
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Algorithm 8 POMHDP::EVALUATE

1: procedure KEY(ba, i)
2: return g(ba) + qi(b

a)

3: procedure EXPAND(b)
4: for all a ∈ A do
5: for all o ∈ O do
6: bao ← ∅
7: for Npart times do
8: s ∼ b
9: (s′, o′) ∼ G(s, a) . G: generative model

10: for all o ∈ O do
11: if o = o′ then
12: bao ← bao ∪ {s′}
13: for all o ∈ O do
14: SUCC(ba, o) = bao

15: τ(b, a, bao) = |bao|
|b| . transition probability

16: g(bao) =∞
17: for i = 0, ..., nh do
18: vi(b

ao) = ε1 ·hi(bao)
19: SUCC(b, a) = ba

20: g(ba) = g(b)

21: procedure EVALUATE(b)
22: if b was never expanded then
23: EXPAND(b)
24: for all a ∈ A do
25: for i = 0, ..., nh do
26: qi(b

a) = c(b, a)+
∑
o∈O τ(b, a, bao) vi(b

ao)
. cost-to-goal when taking action a

where ba = SUCC(b, a) and bao = SUCC(ba, o)
27: for all o ∈ O do
28: if g(bao) > g(b) + c(b, a) then
29: g(bao) = g(b) + c(b, a)

30: if ba /∈ CLOSEDanchor then
31: Insert/update ba in OPEN0 with KEY(ba, 0)
32: if ba /∈ CLOSEDinad then
33: for i = 1, ..., nh do
34: if KEY(ba, i) ≤ ε2 ·KEY(ba, 0) then
35: Insert/update ba in OPENi with

KEY(ba, i)
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