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Abstract

Lazy search algorithms can efficiently solve problems where
edge evaluation is the bottleneck in computation, as is the
case for robotic motion planning. The optimal algorithm in
this class, LazySP, lazily restricts edge evaluation to only the
shortest path. Doing so comes at the expense of search ef-
fort, i.e., LazySP must recompute the search tree every time
an edge is found to be invalid. This becomes prohibitively
expensive when dealing with large graphs or highly cluttered
environments. Our key insight is the need to balance both edge
evaluation and search effort to minimize the total planning
time. Our contribution is two-fold. First, we propose a frame-
work, Generalized Lazy Search (GLS), that seamlessly toggles
between search and evaluation to prevent wasted efforts. We
show that for a choice of toggle, GLS is provably more efficient
than LazySP. Second, we leverage prior experience of edge
probabilities to derive GLS policies that minimize expected
planning time. We show that GLS equipped with such priors
significantly outperforms competitive baselines for many sim-
ulated environments in R2, SE(2) and 7-DoF manipulation.

1 Introduction
We focus on the problem of finding the shortest path on a
graph while minimizing total planning time. This is critical
in applications such as robotic motion planning (LaValle
2006), where collision-free paths must be computed in real
time. A typical search algorithm expands a wavefront from
the start, evaluating edges discovered until it finds the shortest
feasible path to the goal. The planning time then becomes
the sum of the time spent in two phases – search effort and
edge evaluation. While edge evaluation is generally more
expensive in motion planning (Hauser 2015), the actual ratio
of these times varieswith problem instances and graph sizes.
Our goal is to design a framework of algorithms that let us
balance this trade-off.

Unfortunately, current shortest path algorithms do not pro-
vide a framework flexible enough to traverse the pareto
curve between search effort and edge evaluation. On one
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Figure 1: The Generalized Lazy Search (GLS) framework
with two parameters - Event and Selector (blue)

end of the spectrum, A* and its variants (Hart, Nilsson,
and Raphael 1968; Yoshizumi, Miura, and Ishida 2000;
Korf 1985) evaluate edges as soon as they are discov-
ered. Hence although A* is optimal in terms of search ef-
fort, it is at the cost of excessive edge evaluations. On the
other hand, LazySP (Dellin and Srinivasa 2016) amongst
other lazy search techniques (Bohlin and Kavraki 2000;
Cohen, Phillips, and Likhachev 2014; Hauser 2015), expands
the search wavefront all the way to the goal before evaluating
edges. Hence LazySP is optimal in terms of edge evaluation
but has to replan everytime an edge is invalidated.

In this work, we propose a framework for algorithmically
toggling between search effort and edge evaluation. We are
guaranteed to find the shortest path as long as the follow-
ing holds true; the search tree must always be repaired to
be consistent, and edge evaluation must be restricted to the
shortest subpath in the tree. Our framework, Generalized
Lazy Search (GLS), has two modules - Event and Selector
(Fig. 1). The algorithm expands a lazy search tree without
evaluating any edges till the Event is triggered. A Selector
is then invoked to evaluate an edge on the shortest subpath
in the lazily expanded search tree. We show that by choosing
different Event and Selector pairs, we can recover sev-
eral existing lazy search algorithms such as LazySP (Dellin
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Figure 2: Mechanics of the GLS framework (Algorithm 1) for an ideal Event and Selector combination.

and Srinivasa 2016), LWA* (Cohen, Phillips, and Likhachev
2014) and LRA* (Mandalika, Salzman, and Srinivasa 2018).

What constitutes an optimal trade-off and can this be cap-
tured by GLS? Consider the ideal scenario, one with an om-
niscient oracle (Haghtalab et al. 2018) that knows ahead of
time which edges are valid or invalid. In fact, the oracle can
compute the minimal set of invalid edges I that must be in-
validated to arrive at the shortest feasible path. How can we
utilize such an oracle in GLS? A simple strategy is as follows;
as the search wavefront expands from start to goal, the oracle
monitors the new edges that are discovered and triggers an
Event if it belongs to I. A Selector then evaluates that
edge. This minimizes edge evaluation and curtails wasted
search effort.

This insight extends to the more practical setting where we
have priors on edge validity that are learned from experience.
We derive Event and Selector that minimize the expected
planning time. This produces behaviors similar to the omni-
scient oracle (Fig. 2); the search proceeds until the Event is
triggered due to the appearance of low probability edges on
the current subpath; the Selector then selects these edges
to invalidate the subpath; and the process continues until the
shortest feasible path is found.

We make the following contributions:

1. We propose a class of algorithms, GLS (Section 4), that
minimize computational effort, defined as a function of
both edge evaluation and vertex rewiring (Section 3).

2. We recover different lazy search algorithms as instantia-
tions of GLS. We further prove that one such instantiation
is edge optimal and causes fewer rewires than LazySP
(Section 4, Theorem 4.3).

3. Wederive instantiations of GLS that exploit the availability
of edge priors to minimize expected computational effort
(Section 5, Theorem 5.2).

4. We show that GLS informed with edge priors can out-
perform competitive baselines on a spectrum of planning
domains (Section 6).

2 Related Work
Graphs lend powerful tractability to robotic motion plan-
ning (LaValle 2006). They can be explicit, i.e., constructed
as part of a pre-processing stage (Kavraki et al. 1996;
Karaman and Frazzoli 2011; Janson et al. 2015), or implicit,
i.e., discovered incrementally during search (Likhachev, Gor-
don, and Thrun 2004;Gammell, Srinivasa, andBarfoot 2015;
Salzman and Halperin 2015).
A* (Hart, Nilsson, and Raphael 1968) and its variants

have enjoyed widespread success in finding the shortest
path with an optimal number of vertex expansions. How-
ever, in domains where edge evaluations are expensive
and dominate the planning time, a lazy approach is of-
ten employed (Bohlin and Kavraki 2000; Hauser 2015;
Kim, Kwon, and Yoon 2018). In this approach, the graph is
constructed without testing if edges are collision-free. Only
a subset of edges are evaluated to save computation time.
LazySP (Dellin and Srinivasa 2016) extends the graph up
to the goal before checking edges. LWA* (Cohen, Phillips,
and Likhachev 2014) extends the graph a single step before
evaluation. LRA* (Mandalika, Salzman, and Srinivasa 2018)
trades off these approaches, allowing the search to proceed
to an arbitrary lookahead. We generalize this further by in-
troducing an event-based toggle.

Several works have explored the use of priors in search.
FuzzyPRM (Nielsen and Kavraki 2000) evaluates paths that
minimize the probability of collision. The Anytime Edge
Evaluation (AEE*) framework (Narayanan and Likhachev
2017) uses an anytime strategy for edge evaluation informed
by priors. POMP (Choudhury, Dellin, and Srinivasa 2016)
defines surrogate objectives using priors to improve any-
time planning. BISECT (Choudhury et al. 2017) and DI-
RECT (Choudhury, Srinivasa, and Scherer 2018) cast search
as Bayesian active learning to derive edge evaluation. E-
graphs (Phillips et al. 2012) uses priors in heuristics. We
focus on using priors to find the shortest path while minimiz-
ing expected planning time.

Several alternate approaches speed up planning by creat-
ing efficient data structures (Bialkowski et al. 2016), model-
ing belief over the configuration space (Huh and Lee 2016),
sampling vertices in promising regions (Bialkowski, Otte,
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and Frazzoli 2013; Burns and Brock 2005) or using spe-
cialized hardware (Murray et al. 2016). Other approaches
forego optimality and computing near-optimal paths (Salz-
man andHalperin 2016; Dobson and Bekris 2014). Our work
also draws inspiration from approaches that interleave plan-
ning and execution, such as LRTA* (Korf 1990) and LSS-
LRTA* (Koenig and Sun 2009).

3 Problem Formulation
Our goal is to design an algorithm that can solve the Sin-
gle Source Shortest Path (SSSP) problem while minimiz-
ing computational effort. We begin with the SSSP prob-
lem. Let G = (V, E) be a graph, where V denotes the
set of vertices and E the set of edges. Given a pair of
source and target vertices (vs, vt) ∈ V , a path σ is repre-
sented as a sequence of vertices (v1, v2, . . . , vl) such that
v1 = vs, vl = vt,∀i, (vi, vi+1) ∈ E . We define a world
φ : E → {0, 1} as a mapping from edges to valid (1) or
invalid (0). A path is said to be feasible if all edges are valid,
i.e., ∀e ∈ σ, φ(e) = 1. Let w : E → R+ be the length of
an edge. The length of a path is the sum of edge costs, i.e.,
w(σ) =

∑
e∈σ w(e). The objective of the SSSP problem is

to find the shortest feasible path:

min
σ

w(σ) s.t. ∀e ∈ σ, φ(e) = 1 (1)

Given an SSSP, we define a shortest path algorithm
Alg(G, vs, vt, φ) that takes as input the graph G, the source-
target pair (vs, vt), and the underlying world φ. The algo-
rithm typically solves the problem by building, verifying and
rewiring a shortest path tree from source to target.

Maintaining the search tree and verifying the shortest fea-
sible path are primarily characterized by two atomic opera-
tions: edge evaluation and vertex rewiring.
Definition 3.1 (Edge Evaluation). The operation of querying
the world φ(e) to check if an edge e is valid.
Definition 3.2 (Vertex Rewiring). The operation of finding
and assigning a new parent for a vertex u when an invalid
edge is discovered.

The algorithm returns three terms, i.e, σ∗, Eeval, Vrwr =
Alg(G, vs, vt, φ). Here, σ∗ is the shortest feasible path, Eeval
is the set of edges evaluated during the search, and Vrwr is
the multiset1 of vertices rewired. Alg ensures the following
certificate:
1. Returned path σ∗ is verified to be feasible, i.e., ∀e ∈
σ∗, e ∈ Eeval, φ(e) = 1

2. All paths shorter than σ∗ are verified to be infeasible, i.e.,
∀σi, w(σi) ≤ w(σ∗), ∃e ∈ σi, e ∈ Eeval, φ(e) = 0

We now define the computational cost (planning time), of
solving the SSSP problem as a function of Vrwr and Eeval.
Let ce be the average cost of evaluating an edge, and cr be
the average cost of rewiring a vertex. We approximate the
total planning time as a linear combination:

C(Eeval,Vrwr) = ce |Eeval|+ cr |Vrwr| (2)

1Vrwr is a multiset since a vertex can potentially be rewired
multiple times during the planning cycle.

Algorithm 1: Generalized Lazy Search
Input : Graph G, source vs, target vt, world φ
Parameter : Event,Selector
Output : σ∗, Eeval, Vrwr

1 Eeval ← ∅,Vrwr ← ∅
2 Tlazy ← {vs} . Initialize
3 repeat
4 Tlazy ← ExtendTree (Event, Tlazy) . Add Vrwr

5 σsub ← GetShortestPathToLeaf (Tlazy)
6 EvaluateEdge (Selector, σsub) . Add Eeval
7 until shortest feasible path found s.t.∀e ∈ σ∗, φ(e) = 1;

Our motivation for defining the cost will become clearer in
the following section, where we propose a general framework
for Alg. This framework lets us explicitly reason about the
terms Eeval and Vrwr in order to balance them.

4 Generalized Lazy Search
We propose a framework, Generalized Lazy Search (GLS),
to solve the problem defined in Section 3. The general con-
cept idea is to toggle between lazily searching to a horizon
and evaluating edges along the current estimated shortest
path. This toggle must be chosen appropriately to balance
the competing computational costs of edge evaluation and
vertex rewiring.

4.1 The Algorithm
Algorithm 1 describes the GLS framework for the shortest
path algorithmAlg(G, vs, vt, φ) referred to in Section 3. This
framework requires two functions: Event and Selector.
To solve the SSSP problem, we maintain a shortest path

search tree over G. We assume that every call to φ, which
populates Eeval, is expensive. Therefore, we initially assume
that all edges in G are valid and maintain this search tree
lazily. Our algorithm initializes the search tree Tlazy rooted
at vs (Line 1). It begins by iteratively extending Tlazy into G
(Line 4). The search is guided with an admissible heuristic
h(v, vt).
The procedure ExtendTree additionally takes as input a

function Event. Extending Tlazy triggers the Event by def-
inition. The algorithm, at this point, discontinues the exten-
sion of Tlazy and switches to validate the already constructed
search tree. Therefore, the Event acts as a toggle between
lazy seach and edge evaluation.
Definition 4.1 (Event). A function that defines the toggle
between extending the lazy search tree and validating it.

To solve the SSSP problem and validate Tlazy, the algo-
rithm picks the path, σsub, to a leaf vertex with the lowest
estimated total cost to reach the goal (Line 5). It then evalu-
ates an edge along σsub to validate the search tree (Line 6). In
addition to σsub, the procedure EvaluateEdge also takes as
input a function Selector. The Selector acts on σsub and
returns an edge belonging to it that the algorithm evaluates.
Definition 4.2 (Selector). A function that defines the strat-
egy to select an edge along a subpath to evaluate.
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Edge evaluation is followed by the extension of Tlazy until
the Event is triggered again. If the edge were invalid, the
subtree emanating from the edge has to be rewired. We can
do this efficiently using the mechanics of LPA* (Koenig,
Likhachev, and Furcy 2004).

This process of interleaving search with edge evaluation
continues until the algorithm terminates with the shortest
feasible path from source to goal, if one exists. While the al-
gorithm is guaranteed to return the shortest path, the frame-
work permits the design of Event and Selector to reduce
the total computation cost of solving the SSSP problem.

Algorithm 2: Candidate Event Definitions
1 v ← leaf vertex in Tlazy with least estimated cost to vt
2 Function ShortestPath()
3 if v = vt then
4 return true;
5 end
6 Function ConstantDepth(depth α)
7 σsub ← path from vs to v
8 αv ← number of unevaluated edges in σsub
9 if αv = α or v = vt then

10 return true;
11 end
12 Function HeuristicProgress
13 hmin ← min(u′,v′)∈Eeval h(v

′, vt)
14 if h(v, vt) < hmin or v = vt then
15 return true;
16 end
17 return;
18 Function SubpathExistence(probability δ)
19 σsub ← path from vs to v
20 p←

∏
e∈σ p(e)

21 if p ≤ δ or v = vt then
22 return true;
23 end

Algorithm 3: Candidate Selector Definitions
1 Function Forward()
2 return {first unevaluated edge closest to vs};
3 Function Alternate()
4 if Iteration Number is Odd then
5 return {first unevaluated edge closest to vs};
6 end
7 else
8 return {first unevaluated edge closest to vt};
9 end

10 Function FailFast()
11 return {argmin

e ∈σsub

p(e)};

4.2 Role of Event and Selector
Since the lazy search paradigm operates based on the concept
of optimism under uncertainty, the search tree is extended

assuming edges are collision free. However, extending the
search tree beyond edges that are in collision can waste com-
putational effort. The Event acts as a toggle to halt a search
deemed wasteful. The Selector aims to quickly invalidate
the path. Fig. 2 illustrates the ideal behavior of such an algo-
rithm. Interestingly, the framework can also capture existing
lazy search algorithms as different combinations of event and
selectors, as shown in Table. 1.

Event. When triggered, events must ensure that the short-
est subpath σsub in Tlazy has at least one unevaluated edge
(Theorem 4.1). Algorithm 2 defines some candidate events.

ShortestPath (SP) is triggered when a shortest path to
vt has been determined during the lazy extension of Tlazy.
Therefore, in every iteration, this Event presents the Selec-
tor with the candidate shortest path from vs to vt on G. Note
that ShortestPath exhibits algorithmic behavior similar to
LazySP and LazyPRM.

ConstantDepth (CD) is triggered when the procedureEx-
tendTree chooses to extend a leaf vertex v ∈ Tlazy such that
the subpath from vsto v has exactly α number of unevalu-
ated edges. Therefore, in every iteration, this Event presents
the Selector with σsub that is characterized by a constant
number of unevaluated edges.

HeuristicProgress (HP) is triggered whenever the search
expands a vertex whose heuristic value is lower than any
vertex whose incident edge has been evaluated. It does
so by recording the minimum heurisitic value of a ver-
tex with a parent that has been evaluated, i.e., hmin ←
min(u′,v′)∈Eeval h(v

′, vt). The event is triggered whenever
ExtendTree chooses to extend a leaf vertex v ∈ Tlazy with
a heuristic value smaller than hmin.

Selector. Selectors must ensure that they select at least
one unevaluated edge (Theorem 4.1). Algorithm 3 defines
some candidate selectors.

Given σsub, Forward (F) evaluates the first unevaluated
edge on σsub that is closest to vs. Given a forward search, this
constitutes one of the most natural Selectors available. Al-
ternate (A) toggles between evaluating the first unevaluated
edge closest to vs and vt in every iteration. This approach is
motivated by bi-directional search algorithms. Both Selec-
tors were first used in (Dellin and Srinivasa 2016).

Algorithm Event Selector
LazyPRM (2000) ConstantDepth (∞) Any
LazySP (2016) ConstantDepth (∞) Any
LWA* (2014) ConstantDepth (1) Forward
LRA* (2018) ConstantDepth (α) Forward

Table 1: Equivalence of GLS and to existing lazy algorithms

4.3 Analysis
For any choice of Event and Selector, GLS is complete and
correct.
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Theorem 4.1 (Completeness). Let Event be a function that
on halting ensures there is at least one unevaluated edge
on the current shortest path or that the goal is reached.
Let Selector be a function that evaluates at least one un-
evaluated edge (if it exists). GLS implemented using Ex-
tendTree(Event) and EvaluateEdges(Selector) on a finite
graph G is complete.
Theorem 4.2 (Correctness). If the heuristic h(v, vt) is ad-
missible, then GLS terminates with the shortest feasible path.
LazySP with the Forward selector was proved to be edge

optimal2 in the class of all shortest path algorithms that
use a Forward selector (Mandalika, Salzman, and Srinivasa
2018). We now show that GLS lets us derive another algo-
rithm that is also edge-optimal but reduces number of vertex
rewires.
Theorem 4.3 (Edge Optimality). GLS evaluates the same
number of edges Eeval as LazySP, i.e., is edge optimal, while
having a smaller number of vertex rewires Vrwr under the
following setting:
1. Heuristic: Distance on the unevaluated graph hG(v, vt)
2. Event: HeuristicProgress
3. Selector: Forward
Corollary 4.1. There is a graph G for which the number
of vertex rewires Vrwr for LazySP over GLS is linear over
logarithmic.

See (Mandalika et al. 2019) for details and formal proofs.

5 Leveraging Edge Priors in GLS
The GLS framework is powerful because one can optimize
Event and Selector to minimize computational costs while
still retaining guarantees. Here, we show its expressive power
in a scenario where we have additional side information, such
as priors on the validity of edges. Such information can be
collected from datasets of prior experience or generated from
approximations of the world representation.

5.1 Modified Problem Formulation
We assume that the validity of each edge is an independent
Bernoulli random variable. We are given a vector of prob-
abilities p ∈ [0, 1]|E|, such that P (φ(e) = 1) = p(e), i.e.,
for each edge e, we have access to p(e), which defines the
probability of the edge being valid in the current world φ.

We allow the shortest path algorithm Alg(G, vs, vt, φ,p)
to leverage knowledge of edge probabilities p to minimize
the expected computation cost as follows:

min Eφ∼p [C(Eeval,Vrwr)]

s.t. Eeval, Vrwr = Alg(G, vs, vt, φ,p)
(3)

5.2 Event and Selector Design
Event. The Event restricts lazy search from proceeding
beyond a point when the search is likely to be ineffective, i.e.
to a point that potentially increases the amount of rewires

2See (Mandalika, Salzman, and Srinivasa 2018) for the formal
computational model

Vrwr. One such case is when the current shortest subpath is
likely to be in collision, i.e., the probability of being valid
drops below a threshold δ. We describe this event, Sub-
pathExistence (SE), in Algorithm 2. We show that we can
bound the performance of this event.
Theorem 5.1. For any Selector, the expected planning time
of SubpathExistence (δ) can be upper bounded as:

K

(
ce

1

(1− δ)
+ cr

b log(δ)

log(pmax)

)
(4)

whereK is the number of shortest-paths that are infeasible,
b is the maximum branching factor, and pmax is the maximum
value of an edge prior.

Low values of δ result in lower edge evaluations but more
edge rewiring, and vice-versa.
Corollary 5.1. There exists a critical threshold δ ∈ (0, 1)
that upper bounds the expected computational cost.

Selector. The Selector invalidates as many subpaths as
quickly as possible, which restricts the size of Eeval. One
strategy for doing so is to invalidate the current subpath as

Figure 3: Samples and the prior for the TwoWall dataset.
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est and Maze. In all except the Forest dataset, SubpathExis-
tence with FailFast performs best.
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Figure 6: All valid (blue) and invalid (red) edges evaluated at
termination of GLS with Forward (49 edges) and FailFast
(32 edges) with SubpathExistence.

quickly as possible. We describe a selector, FailFast (FF),
in Algorithm 3 that evaluates the edge on the subpath with
the highest probability of being in collision. We show that
this selector is the optimal strategy to invalidate a subpath.
Theorem 5.2. Given a path σ, FailFast minimizes the ex-
pected number of edges from σ that must be evaluated to
invalidate σ.

See (Mandalika et al. 2019) for details and formal proofs.

5.3 Hypotheses
Based on our theoretical analysis and insight, we state three
hypotheses that we intend to test:

Table 2: Planning Times (in seconds) of GLS, LazySP and
LRA* on SE(2), R7 problems.

GLS LazySP LRA*

Piano Movers’
Total Planning Time 0.595 0.877 0.742
Edge Evaluation Time 0.129 0.035 0.248
Vertex Rewire Time 0.466 0.842 0.494

HERB Task 1
Total Planning Time 1.235 1.618 2.069
Edge Evaluation Time 0.423 0.388 1.422
Vertex Rewire Time 0.813 1.230 0.647

HERB Task 2
Total Planning Time 1.737 2.100 2.999
Edge Evaluation Time 0.448 0.362 1.967
Vertex Rewire Time 1.292 1.738 1.032

H1. For any Selector, the event SubpathExistence requires
less planning time compared to ShortestPath andConstant-
Depth.

This follows from Theorem 5.1, which upper bounds the
planning time for SubpathExistence. ShortestPath corre-
sponds to δ = 0 and can increase planning time. Constant-
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Figure 7: (a) Pareto curve obtained by varying δ in SubpathExistence (b) Planning times as the size of the graph in TwoWall
is increased. (c) Planning time as the density of obstacles in Forest is increased (d) Planning time in R7 problem.
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Figure 8: (a) Edge priors: darker edges have higher prior. (d) Solution path on the graph. Second and Third columns visualize
the search and evaluation by LazySP(top) and GLS(SubpathExistence) (bottom). (b) and (e): subtree of vertices rewired in the
first iteration (12,495 and 1235 resp. at termination). (c) and (f): edges evaluated at termination (63 and 171 resp.).

Depth has a fixed lookahead and does not adapt as priors
change.
H 2. For any Event, FailFast evaluates fewer edges than
Forward and Alternate.
This follows from Theorem 5.2, which shows that Fail-

Fast is optimal in expectation for eliminating a path. From
H 1 and H 2, we hypothesize that the combination of Sub-
pathExistence and FailFast will have the lowest planning
time.
H3. The performance gain of SubpathExistence over Short-
estPath increases with both graph size and problem diffi-
culty.

ShortestPath assumes that Vrwr is negligible. As graph
size increases, the size of vertices Vrwr that ShortestPath
rewires also increases. Similarly, as problem difficulty in-
creases, so does the number of shortest paths that Short-
estPath must invalidate, which also increases Vrwr. Sub-
pathExistence, on the other hand, makes no such assump-
tion.

6 Experiments
Algorithm Details. We implemented 3 Events and 3 Se-
lectors described in Algorithms 2 and 3 to get a total of
9 algorithms. To analyze the trade-offs, we test on a diverse
set of R2 datasets. We then finalize on 3 algorithms: LazySP
(ShortestPath, FailFast), LRA* (ConstantDepth, Fail-
Fast) and GLS (SubpathExistence, FailFast). We evaluate
these on a Piano Movers’ problem in SE(2) and manipula-
tion problems in R7 using HERB (Srinivasa et al. 2009), a
mobile robot with 7DoF arms. 3

Analysis onR2 datasets. Weuse 5 datasets ofR2 problems
from (Choudhury et al. 2017). Each dataset corresponds to
different parametric distribution of obstacles from which we
sample 1000 worlds. A graph of 2000 vertices is sampled
using a lowdispersion sampler (Halton 1964)with an optimal
connection radius (Janson et al. 2015). Priors are computed

3Code is publicly available as an OMPL Planner at:
https://github.com/personalrobotics/gls
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(c) (d)

Figure 9: Search and evaluation by LazySP (top) and
GLS(SubpathExistence) (bottom). (a), (c): subtree of ver-
tices rewired in the first iteration (21,178; 11,342 resp. at
termination). (b), (d): edges evaluated (136; 243 resp.).

by collision checking the graph on the training data and
averaging edge outcomes.Wepick one representative dataset,
TwoWall, to show detailed plots. The prior and some samples
from TwoWall is shown in Fig. 3.

We choose evaluation metrics (a) number of edge eval-
uations (b) number of vertex rewires and c) total planning
time: weighted combination of (a), (b) (see Eq. 2). Since R2

problems are not expensive to evaluate, we choose weights
based on empirical data from manipulation planning prob-
lems in R7 (avg. eval time: 3.35 × 10−4s, avg. rewire time
1.1× 10−5s, ratio 29.04).
Finally, for parameter selection, we choose δ in Sub-

pathExistence from the pareto curve of vertices rewired vs
edges evaluated computed on the training data. The slope of
the line is the ratio of their relative cost – the point of intere-
section corresponds to the δ : 0.01 that minimizes planning
time. For ConstantDepth, we use the recommended value
from (Mandalika, Salzman, and Srinivasa 2018).

Fig. 4 shows the mean planning time of all 9 algorithms
on 4 of the datasets (lighter implies lower planning times).
We observe that GLS(SubpathExistence, FailFast) outper-
forms all other possible instantiations of algorithms on ma-
jority of datasets. We will use this to analyze each hypothesis
in Section. 5.3. We found evidence to supportH 1 - for every
column in Fig. 4, SubpathExistence has the lowest plan-
ning times. Fig. 5 shows a comparison of the events Short-
estPath, ConstantDepth and SubpathExistence (for the
Forward selector)on a problem from the TwoWall dataset.
We can see thatShortestPath checks small number of edges
but rewires significant portion of the search tree. The trend is
reversed in ConstantDepth when using a depth of 1. Sub-
pathExistence is able to balance both by exploiting priors
- it triggers events when the search reaches the walls thus
reducing rewires.

We found partial evidence to support H 2 - FailFast has
the lowest planning time for ShortestPath and SubpathEx-
istence. However, the exception was ConstantDepth for
the Forest dataset - we attribute this to an artifact of the event
dataset combination. Fig. 6 shows a comparison of Forward
and FailFast (for ShortestPath event) - FailFast quickly
eliminates paths by checking the weakest link (supporting
Theorem 5.2).

We found strong evidence to support H 3. Fig. 7b shows
that as graphs get larger, planning times of ShortestPath
grows at a faster rate than SubpathExistence. Fig. 7c shows
that as the density of obstacles increase, the planning times
of ShortestPath grows linearly while SubpathExistence
eventually saturates.

Analysis on SE(2) problems andR7 problems. We con-
sider the Piano Movers’ problem in SE(2) from the Apart-
ment scenario in OMPL (Şucan, Moll, and Kavraki 2012).
For theR7 environment, we consider two manipulation tasks
with a 7-DoF arm (Srinivasa et al. 2009) in a cluttered kitchen
environment. We used graphs of 8000 vertices and 30,000
vertices for the SE(2) and R7 problems respectively (Man-
dalika et al. 2019).

In Table 2 we see that GLS(SubpathExistence, FailFast)
outperforms the other algorithms in planning time on all
three problems. Additionally, Fig. 7d shows a breakdown
of the planning time for each of the three events on HERB
Task 2. GLS significantly lowers rewiring time while having
a minimal increase in evaluation time.

Figures 8, 9 compare the performance of LazySP and GLS
with FailFast selector. They illustrate the savings of GLS
on the Piano Movers’ problem (Fig. 8) and on a simplified
manipulation scene (Fig. 9). In both cases, LazySP has to
rewire a large search tree everytime a path is found to be in
collision. GLS, on the other hand, halts the search as soon as
it enters a region of low probability, eliminates the paths and
hence drastically minimizes rewiring time at the cost of few
additional edge evaluations over LazySP.

7 Discussion
We presented a general framework for lazy search (GLS).
The staple framework interleaves two phases, search and
evaluation. In the search phase, it extends a lazy shortest-path
tree forward without evaluating any edges until an Event is
triggered. It then switches to evaluation phase. It finds the
shortest subpath to a leaf node of the tree and invokes a
Selector to evaluate an edge on it. Careful choice of Event
and Selector allows the balance of search effort with edge
evaluation to minimize overall planning time.

The framework, quite expressive, lets us capture a range of
lazy search algorithms (Table 1). While it draws inspiration
from prior work interleaving search and evaluation, such as
LRA* (Mandalika, Salzman, and Srinivasa 2018), the key dif-
ference lies in our definition of the Event, which makes the
algorithm adaptive. This lets us derive new algorithms that
are edge optimalwhile saving on search effort (Theorem 4.3).

In future work, we plan to examine more sophisticated Se-
lector policies (Choudhury, Srinivasa, and Scherer 2018)
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that exploit correlations amongst edges to minimize evalua-
tion cost.We also plan to extend GLS to an anytime paradigm;
this would let us use heuristics that exploit edge priors to
guide the search through regions of high probability (Nielsen
andKavraki 2000), for significant speed-ups. Finally, we plan
to explore problems where multiple lazy estimates of weight
functions are available, e.g., in kinodynamic planning, where
different relaxations of the boundary value problem can be
obtained. We believe GLS can interleave search efficiently
over multiple resolutions of approximation.
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