
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

A Factored Approach to Deterministic Contingent Multi-Agent Planning

Shashank Shekhar
Department of Computer Science

Ben Gurion University
shekhar@cs.bgu.ac.il

Ronen I. Brafman
Department of Computer Science

Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information and Software Systems Eng.

Ben Gurion University
shanigu@bgu.ac.il

Abstract

Collaborative Multi-Agent Planning (MAP) under uncer-
tainty with partial observability is a notoriously difficult
problem. Such MAP problems are often modeled as Dec-
POMDPs, or its qualitative variant, QDec-POMDP, which is
essentially a MAP version of contingent planning. The QDec-
POMDP model was introduced with the hope that its sim-
pler, non-probabilistic structure will allow for better scala-
bility. Indeed, at least with deterministic actions, the recent
IMAP algorithm scales much better than comparable Dec-
POMDP algorithms (Bazinin and Shani 2018). In this work
we suggest a new approach to solving Deterministic QDec-
POMDPs based on problem factoring. First, we find a solu-
tion to a MAP problem where the results of any observation
is available to all agents. This is essentially a single-agent
planning problem for the entire team. Then, we project the
solution tree into sub-trees, one per agent, and let each agent
transform its projected tree into a legal local tree. If all agents
succeed, we combine the trees into a valid joint-plan. Other-
wise, we continue to explore the space of team solutions. This
approach is sound, complete, and as our empirical evaluation
demonstrates, scales much better than the IMAP algorithm.

Introduction
In many real-world problems agents collaborate to achieve
joint goals. For example, disaster response teams typically
consist of multiple agents that have multiple tasks to per-
form, some of which require the cooperation of multiple
agents. In such domains, agents typically have partial in-
formation, as they can sense their immediate surroundings
only. As agents are often located in different positions and
may possess different sensing abilities, their runtime infor-
mation states differ. Sometimes, this can be overcome us-
ing communication, but communication infrastructure can
be damaged, or communication may be costly and should
be reasoned about explicitly.

In this setting it is common to plan for all agents jointly
using a central engine. The resulting policy, however, is ex-
ecuted by the agents in a decentralized manner, and agent
communication is performed only through explicit actions.

Decentralized POMDPs (Dec-POMDPs) offer a rich
model for capturing such multi-agent problems (Bernstein

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2002; Oliehoek and Amato 2016), but Dec-POMDPs
solvers have difficulty handling larger problems. Qualitative
Dec-POMDP (QDec-POMDP) were introduced as an alter-
native model, replacing the quantitative probability distribu-
tions over possible states with qualitative sets of states (Braf-
man, Shani, and Zilberstein 2013). At least for determin-
istic problems, i.e., where partial observability plays the
key role, QDec-POMDP algorithms scale much better than
Dec-POMDP algorithms. The original translation-based al-
gorithm of (Brafman, Shani, and Zilberstein 2013) scaled
somewhat better than contemporary Dec-POMDP algo-
rithms, and the recent IMAP algorithm (Bazinin and Shani
2018) scales much better than current Dec-POMDP algo-
rithms (Bazinin and Shani 2018). In this paper, too, we focus
on deterministic QDec-POMDP problems, and demonstrate
even better scalability than previous methods.

The policy for a QDec-POMDP can be represented as a
joint policy tree (or graph), where nodes are labeled by joint
actions of all agents, and edges are labeled by joint observa-
tions. A solution to a QDec-POMDP is a policy tree, all of
whose leaf nodes correspond to goal states.

A single agent (a.k.a. local) policy tree contains only that
agent’s actions and observations. In the search for such trees,
the branching factor can be much smaller than that of the
joint-policy space. Thus, one would expect that generating
multiple local trees would be easier than a single joint pol-
icy, provided the overhead of ensuring that these local poli-
cies are properly coordinated is not too large. Indeed, the
approach used by the IMAP algorithm (Bazinin and Shani
2018) is to solve multiple single-agent problems until all
trees are coordinated. (At least abstractly, this is reminiscent
of the iterated best-response method used by the JESP algo-
rithm for Dec-POMDPs (Nair et al. 2003).) Roughly speak-
ing, in IMAP, each agent solves a single-agent problem in
a domain that contains all of its actions, as well as actions
belonging to other agents, as well as all original goal condi-
tions. The next agent solves a similar problem, but where its
goals are to perform all its actions that appear in the previous
agents’ solutions. If one agent is unable to solve its problem,
backtracking occurs.

In this paper we present an alternative approach for solv-
ing QDec-POMDPs in which single-agent problems are
solved repeatedly, too. This approach is motivated by the
ideas behind factored algorithms for classical planning in

419

which factoring was obtained by defining the problem as
a MAP problem (Brafman and Domshlak 2008). Not only
does this approach show superior empirical performance, it
is also cleaner algorithmically and hence comes with a sim-
ple completeness guarantee, has greater potential for con-
currency – allowing true distributed computation by a group
of agents, and is likely to be extendable to offer privacy pre-
serving properties, as well.

The approach works as follows: First, we solve a MAP
problem in which we assume that communication is free
and immediate. Hence, all agents ”see” each others’ obser-
vations. This is a single-agent planning problem in which
the actions available are the union of all agents’ actions, and
the observations are the union of all agent’s observation ac-
tions. Thus, while this problem is not as simple as that of
generating a policy for a single agent, because we have a
larger action and observation space, it is not a MA planning
problem: we need to track only a single belief state, and we
do not need to reason about multiple concurrent belief states
and to coordinate between agents with different states of in-
formation.1 We refer to this as the team planning problem.

From the policy tree obtained by solving the team prob-
lem, we extract for each agent a sub-tree that contains only
the actions of that agent that impact other agents. These
could be collaborative actions (i.e., actions that require joint
concurrent execution by multiple agents, such as lifting a
table or pushing a heavy box), or actions that supply pre-
conditions to other agents’ actions. We refer to this as the
agent’s projection of the policy tree.

Agent ϕi’s projection is not likely to be executable by it
for two possible reasons. First, it may require ϕi to perform
action a only when p holds, where p was observed before
in the original team policy by another agent ϕj . In the team
problem, ϕi learns the results of such observations imme-
diately and for free, but in the real domain, ϕi must some-
how obtain this information. Second, the projected solution
removes all ϕi’s action that are not needed by other agents.
Some of these removed actions may have supplied some pre-
condition to one of the remaining actions. Thus, the next step
in the algorithm is to let each agent turn its projected policy
into an executable policy. To do this, each agent solves a lo-
cal planning problem in which its goal is to perform all the
actions in its projection under the same conditions. Thus, its
solution would be a policy that the agent can execute (pro-
vided the other agents execute their actions in the team pol-
icy).

Of course, the single-agent problems may not be all solv-
able, in which case we must backtrack and seek a new team
solution. But if they are all solvable, then we can get a legal
joint policy for the original problem by taking the solutions
of each projected problem and aligning its actions properly
so that collaborative actions are executed at the same time,
and preconditions are supplied before their consuming ac-
tions. Thus, if the underlying single-agent contingent plan-
ner is able to generate all solutions (e.g., by using AO∗ as

1For flat models, single-agent contingent planning is in
PSPACE (Littman, Goldsmith, and Mundhenk 1998) and MA con-
tingent planning is NEXP-TIME hard (Bernstein et al. 2002).

the underlying search algorithm), then our method is com-
plete.

We implemented and tested this approach using the
single-agent CPOR planner, an off-the-shelf offline contin-
gent planner (Komarnitsky and Shani 2016) that generates a
solution in the form of a policy graph. We compare it with
IMAP on the two domains described in that paper, and on
a new disaster support domain. Our factored planning al-
gorithm scales better both as the number of objects in the
domain increase and as the number of agents increases. In
addition, it typically generated smaller, and more balanced
policy trees.

Model Definition
We start with the basic definition of a flat-space QDec-
POMDP, followed by a factored definition motivated by
contingent planning model definitions (Bonet and Geffner
2014).
Definition 0.1. A qualitative decentralized partially observ-
able Markov decision process (QDec-POMDP) is a tuple
Q = 〈I, S, b0, {Ai|i ∈ I}, δ, {Ωi}, O,G〉 where
• I is a finite set of agents indexed 1, ...,m. We often refer

to the ith agent as ϕi.
• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.
• Ai is a finite set of actions available to agent ϕi, and ~A =
⊗i∈IAi is the set of joint actions, where ~a = a1, ..., am
denotes a particular joint action.

• δ : S × ~A → 2S is a non-deterministic Markovian tran-
sition function. δ(s,~a) denotes the set of states the can be
reached when taking joint action ~a in state s.

• Ωi is a finite set of observations available to agent ϕi and
~Ω = ⊗i∈IΩi is the set of joint observation, where ~o =
o1, ..., om denotes a particular joint observation.

• ω : ~A× S → 2
~Ω is a non-deterministic observation func-

tion. ω(~a, s) denotes the set of possible joint observations
~o given that joint action ~a was taken and led to outcome
state s. Here s ∈ S, ~a ∈ ~A, ~o ∈ ~Ω.

• G ⊂ S is a set of goal states.

We do not assume here a finite horizon T , limiting the
maximal number of actions in each execution. We focus,
however, on deterministic outcomes and deterministic obser-
vations. In such cases a successful solution is acyclic, hence,
there is no need to bound the number of steps. Extension to
domains with non-deterministic outcomes with a bounded
horizon is simple, but extensions to infinite horizon and non-
deterministic outcomes is beyond the scope of this paper. We
assume a shared initial belief, like most Dec-POMDP mod-
els, which is most natural for an off-line centralized algo-
rithm (again, like most Dec-POMDP algorithms).

We will work with a factored representation of a
QDec-POMDP, specified using the following components:
〈I, P, {Ai|i ∈ I},Pre,Eff ,Obs, b0, G

′〉 where I is a set of
agents, P is a set of primitive propositions, ~A is a vector of
individual action sets, Pre is the precondition function, Obs

420

is an observation function, Eff is the effects function, b0 is
the initial state formula, and G is a set (conjunction) of goal
propositions.

We now explain the QDec-POMDP induced by such a
factored QDec-POMDP specification. First, its state space,
S, consists of all truth assignments to P , and each state can
be viewed as a set of literals. Its initial states and goals are
all states that satisfy the initial state formula and the goal
conjunction, respectively.

Its transition function δ is defined using Pre and Eff as
follows: The precondition function Pre maps each individ-
ual action ai ∈ Ai to its set of preconditions, i.e., a set of lit-
erals that must hold whenever agent ϕ executes ai. Precon-
ditions are local, i.e., defined over ai rather than ~a, because
each agent must ensure that the relevant preconditions hold
prior to executing its part of the joint action. We extend Pre
to be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

Brafman et. al. [2013] define an effects function Eff map-
ping joint actions into a set of pairs (c, e) of conditional
effects, where c is a conjunction of literals and e is a sin-
gle literal, such that if c holds before the execution of the
action e holds after its execution. Thus, effects are a func-
tion of the joint action rather than of the local actions, as
can be expected, due to possible interactions between lo-
cal actions. However, in line with (Bazinin and Shani 2018;
Shekhar and Brafman 2018), here we give more structure to
joint actions.

We assume that single-agent actions executed concur-
rently do not interact, unless specified explicitly. Such inter-
actions are then modeled by collaborative actions. Collabo-
rative actions have the same form as single-agent actions, ex-
cept that they have multiple agent parameters. Thus, an agent
may have a single-agent move action, as well as participate
in a collaborative, two-agent action, joint-lift, for lifting a
table. One can think of joint-lift as two concurrent single-
agent lift actions (e.g., as modeled in (Shekhar and Brafman
2018)). If a collaborative action such as joint-lift exists, and
single-agent lift exist, too, then it is forbidden for the planner
to schedule two separate single-agent lift actions at the same
time. If it wishes to perform the two lift actions concurrently,
it must use the joint-lift action. For a deeper discussion of
the issue of defining joint actions, see (Shekhar and Braf-
man 2018). We remark here that, when one does not allow
concurrent actions that delete one another’s preconditions or
object capacity constraints (Crosby, Jonsson, and Rovatsos
2014), then one can consider only joint actions that consist
of a single (possibly collaborative) action at each step with
all other agents performing no-ops, greatly simplifying the
process. Later, the plan can be made more compact in post-
processing, e.g., using the technique of (Crosby, Jonsson,
and Rovatsos 2014).

For every joint action ~a and agent ϕ, Obs(~a, i) =
{p1, . . . , pk}, where p1, ..., pk are the propositions whose
value agent ϕ observes after the joint execution of ~a. The
observation is private, i.e., each agent may observe different
aspects of the world. We assume that the observed value is
correct and corresponds to the post-action variable value. In
our domains, we will separate actions into observation and

non-observation actions. The former do not affect the world
state, and the latter have an empty set of observations. Every
action can be separated into a non-observation and an ob-
servation action by adding suitable propositions forcing the
two to appear consecutively in every plan.

While QDec-POMDPs allow for non-deterministic action
effects as well as non-deterministic observations, we focus
in this paper only on deterministic effects and observations,
and leave discussion of an extension of our methods to non-
determinism to future research.

Policy Trees
We can represent the local plan of an agent ϕ using a pol-
icy tree τi, which is a tree with branching factor≤ |Ω|. Each
node of the tree is labeled by an action, and edges that follow
an observation are labeled by an observation. To execute the
plan, each agent performs the action at the root of the tree
and then uses the subtree labeled with the observation it ob-
tained for future action selection. If τi is a policy tree for
agent ϕ and oi is a possible observation for agent ϕ, then
τioi denotes the subtree that is rooted by the child of the root
of τi that is reached via a branch labeled by oi.

Let ~τ = 〈τ1, τ2, · · · , τm〉 be a vector of policy trees,
also called a joint policy. We denote the joint action at
the root of ~τ by ~a~τ , and for an observation vector ~o =
o1, . . . , om, containing each agent’s observation, we define
~τ~o = 〈τ1o1

, . . . , τmom
〉.

Because (unlike Dec-POMDPs) actions may have precon-
ditions, a joint policy tree is executable only if the precondi-
tions of each action hold prior to its execution. To check this,
we must maintain the sets of states possible at each point in
time during the execution of the joint policy. This is usu-
ally referred to as the belief state. Notice that this is the be-
lief state of the entire system, not of a single agent. Online,
each agent will have less information, because it cannot dis-
tinguish between all branches of the joint-policy. However,
here we are taking the point of view of the off-line planner.
To follow policy ~τ , we first consider the action ~a~τ given the
current belief state b. It must be the case that b |= pre(aτ).
In that case, we say that ~a~τ is executable in b. After the
agents execute aτ and observe ~o, their new belief state is
tr(b, ~o,~aτ) = {aτ (s)|s ∈ b, aτ (s) |= ~o}.

We say that joint policy ~τ is executable given initial belief
b if (1) ~a~τ is executable in ~b; (2) if aτi is a part of a col-
laborative action and j is another agent participating in that
collaborative action, then aτj contains j’s part of that action;
(3) For every possible joint observation ~o, ~τ~o is executable
given tr(b, ~o,~a~τ).

A joint policy is called a solution if it is executable, and
for all leaf nodes in the tree

⋂
i bi |= G, i.e., the set of possi-

ble states given the joint local beliefs of the agents satisfy the
goal. Note that unlike Dec-POMDPs, for QDec-POMDPs
there is no obvious notion of optimal policy, or optimization
criterion, although one could strive to find trees with smaller
depth, or trees that minimize the maximal branch cost.

Example 1. We now illustrate the factored QDec-POMDP
model using a simple box pushing domain (Figure 1). In this
example there is a one dimensional grid of size 3, with cells

421

Figure 1: Illustration of Example 1 showing the box pushing
domain with 2 agents and a possible set of local plan trees
that produce a solution. Possible agent actions are sensing
a box at the current agent location (denoted SB), moving
(denoted by arrows), pushing a light box up alone (denoted
P), jointly pushing a heavy box (denoted JP), and no-op.

marked 1-3, and two agents, starting in cells 1 and 3. In each
cell there may be a box, which needs to be pushed upwards.
The left and right boxes are light, and a single agent may
push them alone. The middle box is heavy, and requires that
the two agents push it together.

We can hence define I = {1, 2} and P =
{AgentAt i,pos,BoxAtj,pos,Heavyj} where pos ∈ {1, 2, 3}
is a possible position in the grid, i ∈ {1, 2} is the agent in-
dex, and j ∈ {1, 2, 3} is a box index. In the initial state
each box may or may not be in its corresponding cell —
b0 = AgentAt1,1∧AgentAt2,3∧ (BoxAtj,j ∨¬BoxAtj,j)
for j = 1, 2, 3. There are therefore 8 possible initial states.

The allowed actions for the agents are to move left
and right, to push a light box up, or jointly push a
heavy box up with the assistance of the other agent.
There are no preconditions for moving left and right,
i.e. Pre(Left) = Pre(Right) = φ. For agent ϕ
to push up a light box j, agent ϕ must be in the
same place as the box. That is, Pre(PushUpi,j) =
{AgentAt ′i,j¬Heavyj ,BoxAtj}. For the collaborative joint
push action the precondition is Pre(JointPushj) =
{AgentAt1,j ,AgentAt2,j ,Heavyj ,BoxAtj}.

The moving actions transition the agent from one position
to the other, and are independent of the effects of other
agent actions, e.g.,
Right i = {(AgentAt i,1,¬AgentAt i,1 ∧
AgentAt i,2), (AgentAt i,2,¬AgentAt i,2 ∧AgentAt i,3)}.
The only joint effect is for the JointPush action —
Eff (PushUp1,2, a2) where a2 is some other action, are
identical to the independent effects of action a2,
while Eff (PushUp1,2,PushUp2,2) = {(φ,¬BoxAt2,2)},
that is, if and only if the two agents push the heavy box
jointly, it (unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxi,j , with
precondition
Pre(SenseBoxi,j) = AgentAti,j , no effects, and

Obs(SenseBoxi,j) = BoxAtj,j . The goal is to move all
boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

In the following we will use the term projected sub-tree
(or graph) to denote a (policy) tree that is obtained from the
original tree by removing some nodes. Whenever a node is
removed, its parent becomes the parent of the children of the
removed node. If we have a policy tree containing actions
of two types A and B, and we want to look at the projected
sub-tree containingA nodes only, we can imagine iteratively
removing all B nodes, until none are left.

A Factored Approach to Solving
QDec-POMDPs

We now present a very general scheme for factored planning
in QDec-POMDPs. In fact, in principle, with suitable modi-
fications and a suitable single-agent contingent planner, this
approach works for non-deterministic domains, as well.

The high-level structure of the algorithm is described be-
low in Algorithm 1.

Algorithm 1: Factored Planning for QDEC-POMDP

1: Input: QDec-POMDP 〈I, P, ~A, Pre,Eff,Obs, b0, G〉
2: Set Pteam = 〈P,∪mi=1Ai, b0, G〉)
3: while unexplored solutions to Pteam exist do
4: τteam = Contingent-Solve-Next(Pteam)
5: for all agent ϕi do
6: τi = Project(τteam, ϕi)
7: Pi = Generate-Contingent(τi)
8: τ ′i = Contingent-Solve(Pi)
9: if unsolvable Pi then

10: GOTO 4
11: end if
12: end for
13: (τ ′′1 , . . . , τ

′′
m) = Align(τ ′1, . . . , τ

′
m)

14: return (τ ′′1 , . . . , τ
′′
m)

15: end while
16: Fail

First, we generate the single-agent team problem. This is
simply obtained by taking the original MAP problem, treat-
ing all actions as if they are executed by a single agent
and all observations are observed by a single, ”combined”
agent. This results in a team solution tree denoted τteam.
Next, τteam is projected to each agent, obtaining τi for
i = 1, . . .m. Now, each agent solves a planning problem
whose goal is to generate an executable local policy that
contains τi as a projected sub-tree. That is, each action in
τi is executed in this local policy under the same conditions
and in the same order. If all problems are solvable then we
align the actions in their solution and return a solution. If one
of the agents cannot solve its local problem, we generate a
new team solution and repeat the process. If no new team
solution remains, we fail.

The Team Problem Generating the team problem is easy.
We take the original QDec-POMDP and simply treat all
agents as objects under the control of some super-agent. This

422

super-agent also receives all the observations. This team
problem is now a single-agent contingent planning domain.

The Single-Agent Problems Once we have a solution
τteam to the team problem, we generate one projection τi
of it for every agent. The projection is obtained by remov-
ing from the tree all non-observation actions except those
executed by agent ϕi. Among the actions of agent ϕi, we
leave only actions that impact other agents directly. An ac-
tion impacts another agent directly if either (1) it is a collab-
orative action; (2) it supplies a precondition to an action of
another agent; or (3) it achieves a goal proposition. In fac-
tored planning such actions are often referred to as public
actions, while the remaining actions are called private (Braf-
man and Domshlak 2008). Similarly, a proposition that ap-
pears in the description of multiple agents is called public,
and a proposition that appears in the description of only a
single agent’s actions is called private. For example, ignor-
ing collaborative actions for the moment, in the Box Pushing
example, the push actions of different agents are public, as-
suming multiple agents can push the same box. The move
actions, however are private. Similarly the location of a box,
which can be influenced by multiple agents is public, while
the location of an agent, that can be influenced only by its
move actions, is private.

Collaborative actions are a bit more subtle. A joint-push
action is performed by multiple-agents. We treat it as a pub-
lic action. However, when considering whether a proposition
is private or not, we consider only its part of the action. Thus,
joint-push requires both agents to be located in the same po-
sition, making an agent’s location appear public. However,
since we will ensure that joint-actions are respected by all
participating agents, the other agents need not be concerned
with the preconditions of these actions that are otherwise
private to other agents. Thus, one agent need not know or
care about the location of the other agent – this is the latter
agent’s problem – as long as that agent executed the collab-
orative action at the same time.

Thus, each projection τi is a tree containing observation
actions, possibly by other agents, and the public actions of
agent ϕi. Furthermore, if a is an action in τi, we remove
from it any public precondition, that is, one supplied by an-
other agent in τteam.

Next, we must ensure that all observations are necessary.
Consider, for example, a case in which τi includes sensing
the value of p, but the agent acts identically whether p is
true or false. The reason the observation for p exists in the
original team solution τteam is probably because some other
agent needs to differentiate between these two cases. If we
leave this distinction in place, we risk losing completeness
if our agent is unable to observe p.

To remove redundant observations, we apply standard
graph algorithms: Moving bottom-up, whenever the two
sub-trees below an observation node are identical, we re-
move the observation and retain just one of the sub-trees.
When comparing sub-trees, two sensing actions by different
agents that sense the same proposition are treated as identi-
cal, and only the ”single-agent” element of the collaborative
actions is considered – i.e., we do not distinguish between

two lift-table actions in which the other agents collaborat-
ing with ϕi are different, because the action ϕi executes in
this collaboration is the same. An example of a team solu-
tion, its projection, and the compacted projection is given in
Figure 2.

The projected tree is typically not executable by the agent.
It contains observation actions that are not its own, and some
actions are not supplied with their preconditions by previous
actions. Our goal is to extend this tree, by replacing the ob-
servation actions of other agents by the agent’s observation
actions, when relevant, and adding private actions that sup-
ply missing preconditions. Note that only private actions are
added – if an agent adds a public action that requires that
another agent will supply it with a precondition, or one that
changes the value of a public proposition, this might impact
the other agents, either requiring them to modify their plan,
or destroying a precondition they need.

Under the assumptions that all other agents execute their
public actions in their projection, this tree is executable be-
cause all actions have the preconditions supplied either by
other agents or by the agent. The resulting policy tree, τsoli ,
should have the property that, when projected to contain
only observations and public actions of ϕi, it is identical to
τi, with the exception that observations of other agents are
replaced by those of ϕi.

Thus, the next step is to take the compact policy tree ob-
tained (which is also denoted τi) and generate a single-agent
contingent planning problem. The goal of solving this prob-
lem is to generate an executable policy tree that contains all
the actions in the projected tree, where these actions are exe-
cuted under the same conditions and in the same order. This
planning domain is generated as follows:

1. The set of actions contains all ground actions appearing
in τi and all private action of ϕi;

2. Preconditions that other agents achieved in τteam are re-
moved;

3. Each action in a leaf node has the added effect done; in
case of a branch in which execution terminates after an
observation, a dummy action that achieves done is ap-
pended.

4. Each non-leaf action a has a special added effect pa;

5. Each non-root action a has an added precondition pa′ ,
where a′ is the parent of a in the tree;

6. The first action in a branch following an observation has
the appropriate value of the observation as an added pre-
condition. If there are multiple consecutive observations
without intermediate actions, then the value of all of them
in this branch have to be in its preconditions.

7. Initially, all added propositions are false;

8. The goal of the planning problem is done.

Example 2. Consider the projected tree in Figure 2(C). For
this tree, we generate a planning domain for agent 2 with
the following actions:

• The original description of Agent 2’s private actions – in
this domain these are the various movements of the agent.

423

out

SenseBoxb1,a1

in

in out

JointPushb2

MoveRight1

PushUpb1,a1

SenseBoxb2,a1

Done

MoveLeft2

out

JointPushb2

MoveRight1

SenseBoxb2,a2

Done

MoveLeft2

in

out

SenseBoxb1,a1

in

in out

JointPushb2

1 2

SenseBoxb2,a1

Done

out

JointPushb2

SenseBoxb2,a2

Done

in

out

JointPushb2

SenseBoxb2,a2

Done

in

(A) (B) (C)

box2box1

Figure 2: (A) A team solution plan for a problem with two agents, a light box and a heavy box that need to be outside the grid in
the goal state. (B) Its projection to Agent 2. Notice that observations include those of Agent 1, too. (C) Compacted projection
– no sensing is required by Agent 1.

• The action SenseBox2 ,2 with an added effect:
observedbox2,a2.

• The action Dummy-Out with preconditions
SensedBox2,2 and ¬BoxAt2 (the observed value).
Its only effect is done.

• The action JointPush2. Its preconditions contain Agent
2’s private preconditions, i.e., AgentAt2,2 and the obser-
vation value for this branch: BoxAt2. Its effects are the
original effects and done.

The added propositions: SensedBox2 ,2 and done are ini-
tially false.

Alignment If all projected problems are solvable, we still
need to align them to ensure that the joint-policy is exe-
cutable. This is done by concurrently going over all trees
level by level and ensuring that all actions are executable and
that all collaborative actions are executed at the same step.
If an action is not executable at the current step, or if only
one part of a collaborative action is scheduled to a time-step,
a no-op is added to the relevant branch so that the execution
of the action is delayed to the next step. We show that this is
possible in the next section.

Soundness and Completeness
Theorem 1. The factored planning algorithm is sound if the
underlying single-agent contingent planner is sound.

Proof. First, we observe that the joint policy contains all
public actions that appear in the team solution. If some ac-
tion is missing then we cannot achieve done in the branches
that contain it. Because we add branch conditions as pre-
conditions, only execution of branch actions in sequence can
make it true.

Next, we observe that the solution plan is executable. All
preconditions supplied originally by other agents are sup-
plied by them by the observation above. All other precon-
ditions have to be supplied by the agent itself to obtain a
valid plan, and soundness of the single-agent planner im-
plies its validity. Of course, other agents’ actions that supply
an agent’s preconditions must be scheduled before and can-
not be destroyed. Let k be the maximal number of actions
inserted between any two public actions of any branch in
any agent’s plan. Consider the original team plan, but now
with k no-ops inserted between any two consecutive actions.
This plan remains a valid team plan. Now, we have enough
time steps to insert all the additional private plans in between
these actions without impacting the relative order of pub-
lic actions. Note that this also ensures that collaborative ac-
tions are executed at the same time. Since no new public ac-
tions can be added when solving the projected problems, one
agent’s solution cannot introduce actions that might delete a
precondition. Hence the solution is executable.

Finally, since all goal achieving actions are public, then by
the above they will be executed and the goal will be achieved
in all branches, hence this policy is a solution.

Theorem 2. The factored planning algorithm is complete
provided the single-agent contingent planning algorithm
can exhaustively generate all possible team policies.

Proof. Suppose that the multi-agent planning algorithm has
a solution. It is also a solution to the single-agent algorithm,
and hence it will be generated by it at some point. Its pro-
jection will contain all the public actions and observations
that the agent executes in the solution. Since there is a so-
lution, the local projections are solvable, and their solution
contains all needed additional private actions. As explained
in the soundness proof, there is a simple, less efficient vari-

424

ant of the alignment algorithm that is guaranteed to succeed
if there is a team solution.

We observe that we do not need to generate the multi-
agent solution as a team solution to generate a valid solution.
It is enough that we generate a team solution that contains
all the public actions of the solution of the MAP problem
and that these actions will appear under the conditions in
which they appear in the MAP solution. As discussed earlier,
we can obtain an exhaustive single-agent solver either by
running an algorithm such as AO∗ or by using a complete
solver and augmenting the domain with constraints that rule-
out past solutions.

Note, however, that if the single-agent algorithm gener-
ates only plans with non-redundant actions, the algorithm is,
in general, incomplete. We discuss this and related issues in
the next section.

Compromises for Efficiency
A top level that exhaustively searches the space of team poli-
cies is unlikely to work in practice. To make the algorithm
more efficient, we have made a few compromises. We ex-
plain them and their implications for completeness.

Backtracking Algorithm 1 requires that solutions be gen-
erated one after another. In principle, this is easy to do with
a systematic tree-generation algorithm such as AO∗. How-
ever, currently CPOR (Komarnitsky and Shani 2016) does
not support AO∗-based search, and we suspect that a AO∗
planner for contingent planning is likely to be inefficient due
to the lack of good heuristics for such problems. An alterna-
tive is to augment the planning domain to reflect learned no-
goods so that previously generated solutions are no longer
solutions for the new domain. As this only causes us to prune
inappropriate team solutions, this does not affect the algo-
rithm’s completeness.

The fundamental problem is to change the domain of a
single-agent contingent planner so that a previous solution
will not be generated again. Consider team solution τ which
was not extendable to a joint plan. We want to make sure that
no future solution will be τ , or τ with some of its branches
extended with new actions.

This requires that at least one branch of τ will not appear
as a branch prefix in a following solution. Given a specific
branch, we can ensure that it is not part of future solutions
by adding suitable preconditions and effects to the actions
in this branch, so that if they are executed in sequence, we
reach a dead-end. We can then force the planner to select a
specific branch of τ by requiring the first action in the plan
to be one of a set of actions, each of which essentially selects
one branch. However, this approach is not scalable, as this
modification is required following each backtrack.

For efficiency, we actually add a weaker, but simpler con-
straints (albeit, ones that are still not very scalable). The
main source of failure on the projected problem is the need
to branch on some condition p that is not observable by the
agent, followed by sub-trees that are different depending on
the reason for failure. Hence, our first step is to traverse the
projected sub-tree and find such branch points.

Suppose we have an asymmetric sub-tree rooted in an ob-
servation of p. Suppose that a is an action that appears on
one branch following the observation, but not on the other
branch. We would like to add a constraint that forces a to
appear on both branches, or not to appear at all. We add a
special action commit-p that can only appear before the ob-
servation of p. This action has a special effect that is add as
a precondition to a. Thus, if p was observed, a cannot be
executed unless, earlier, we executed commit-p. This action
commits to performing a on all branches following the ob-
servation: it has an effect that negates a goal proposition, and
this effect can be negated by a only.

Signalling
Consider a problem in which agent ϕ1 can observe p and
agent ϕ2 can observe q, but not p, and that the solution re-
quires that agent ϕ2 will act differently depending on p’s
value. In general, the problem is unsolvable. However, sup-
pose that ϕ1 can control the value of q. It can then signal to
ϕ2 the value of p by manipulating q. In theory, if we gener-
ate every possibly team policy, we can generate such a pol-
icy as well. There is a caveat, though. The team solution will
branch on p, ϕ1 will align the value of p with q and then it
will branch on q. For our algorithm to remove branching on
p in ϕ2’s projection, the two sub-trees that correspond to the
two possible values of p must be identical. A decent single-
agent contingent planner will not insert a redundant observa-
tion – and since observing q adds no value in this case, it is
redundant. Furthermore, even if it does, the branches given
p ∧ ¬q and ¬p ∧ q will be left empty, as they never occur.

One ad-hoc way of addressing this is using signalling
procedures to replace observations. That is, if the projected
problem for ϕ2 requires sensing p, we can try to replace it
in the plan by some signalling sub-routine/macro followed
by an observation of the signal. This undermines the sepa-
ration between the team solution and local solutions, since
signalling involves two agents. However, it is likely to be
practical. Another option is to try to keep track of the belief
states of agents during the team planning. To some extent,
this can be done syntactically, and was done in earlier work
on compiling conformant and contingent planning into clas-
sical planning (Palacios and Geffner 2009). However, this
approach does not scale too well, and this issue remains a
key challenge for our method.

Empirical Evaluation
In this section we provide an empirical analysis that shows
that our approach scales much better than IMAP. The
IMAP paper considers two domains: Box-Pushing (BP) and
Rovers, and we add a novel domain called Heavy-Structural-
Damage (HSD) domain. We describe the domains below.

Box-Pushing In this domain there are boxes spread in a
grid like structure. Each box must be moved to its destina-
tion at the edge of the grid, basically the end of the column it
appears in. Each box is either at some location or at the goal
location. An agent needs to be in the same grid cell where
a box exists, to sense/observe the box, and to push it. Boxes
are either heavy or light, and to push a heavy box two agents

425

are required to perform a collaborative push action while a
single agent can push a light box. In addition, an agent can
move to adjacent locations (four primary directions). In this
domain we have uncertainty about the locations of the boxes.

Heavy-Structural-Damage This domain captures a sce-
nario where in a grid like locality, due to an earthquake, sev-
eral buildings have been collapsed. Debris is scattered all
around and there is the possibility that underneath some pil-
lar/beam of a collapsed building there is a victim. Agents
need to search the victims and rescue them. An agent can
sense a patient. If the patient is underneath a pillar or a roof
beam, the patient will be rescued to a safe location. If the
patient is an adult a joint rescue operation will be performed
by more than one agent. Agents can move to connected lo-
cations in the maze. The goal is to rescue all the victims.

Rovers This is an adaptation of multi-agent Rovers do-
main, in which multiple rovers (agents) must collect together
measurements of soil and rock. A rover navigates between
two waypoints on a map and to collect a measurement the
rover must be present at some waypoint that is unknown
to the rover initially. A rover at a waypoint can attempt a
measurement, but whether the rover would measure things
successfully is actually based on if the waypoint is appro-
priate for that measurement. Images of rocks and samples of
soils can be collected by a single rover. For rock samples it
requires two rovers working jointly. After taking measure-
ments, the rovers must broadcast them back to the ground
station.

Experiments Both planners were run on a Windows 10,
64 bit machine with i7 processor, 2.8GHz CPU, and 16Gb
RAM. Both our factored approach and IMAP are imple-
mented in C#. For IMAP, we used the code by Bazinin and
Shani (2018).

The results are shown in Table 1. We describe the running
time, and size of the resulting plan tree which is measured in
terms of the number of branches and the height. The num-
ber of branches is also indicative of the number of sensing
actions performed, as branching occurs following an obser-
vation. We depict only the maximum values of width and
height of individual plan trees obtained for all the agents.
Table 1 shows that the factored planning approach scales
better than IMAP. Specifically, the increase in the number
of objects had minor impact on running time, as opposed
to IMAP. Even more markedly, increasing the number of
agents had a much smaller influence on the running time of
the factored planning algorithm. Thus, except for the small-
est problem, the factored planning algorithm is faster than
IMAP and scales to much larger problems. And, except for
only a few problems, the policy trees generated by the fac-
tored planning algorithm are smaller. In fact, upon examin-
ing the policies generated, we observe that the factored plan-
ning approach often generates more balanced trees for dif-
ferent agents, while IMAP generates trees with significantly
different sizes. Finally, in the HSD domain, we can also see
that increasing the number of agents does not have a major
impact on run-time of the factored planning approach.

In most of the tested domains, the agents are homogenous

Domain Ins (#agt) Size Factored Approach vs IMAP
Max Width Max Height Time (sec)

B
ox

-P
us

hi
ng P01 (3) 12 8 8 10 11 1.7 8.7

P02 (3) 15 16 16 26 15 4.6 18.8
P03 (4) 16 4 8 5 17 1.4 44.6
P04 (5) 19 4 32 4 15 1.6 97.5
P05 (5) 21 38 - 20 - 13.6 -
P06 (6) 25 4 128 9 31 2.7 130.2
P07 (9) 36 64 - 24 - 25.3 -
P08 (10) 37 90 - 29 - 41.1 -
P09 (12) 46 64 - 23 - 33.9 -
P10 (12) 46 128 - 24 - 43.8 -
P11 (12) 48 128 - 26 - 60.2 -

HSD

P01 (3) 14 8 8 11 9 1.2 7.1
P02 (3) 14 6 8 15 12 2.4 8.6
P03 (4) 20 8 20 9 14 5.1 70.7
P04 (6) 32 4 64 7 29 3.2 208.9
P05 (7) 36 4 128 7 33 3.8 402.8
P06 (7) 36 112 - 31 - 35.6 -
P07 (8) 40 110 - 29 - 53.8 -
P08 (8) 42 148 - 36 - 81.5 -
P09 (9) 47 128 - 31 - 88.3 -
P10 (9) 47 127 - 34 - 129.5 -

R
ov

er
s

P01 (1) 12 2 2 9 9 0.5 0.4
P02 (2) 14 2 2 8 8 0.7 0.8
P03 (1) 12 4 4 15 15 0.8 1.5
P04 (2) 17 11 12 21 43 3.1 20.8
P05 (2) 17 12 - 24 - 3.5 -
P06 (2) 17 27 27 43 52 7.2 267.6
P07 (2) 28 35 - 35 - 8.5 -
P08 (2) 28 31 - 37 - 7.6 -

Table 1: Performance comparison of our factored approach
and IMAP approach. Ins is instance number with the number
of acting agents in the brackets. Size denotes the number
of objects considered in each problem. Maximum Width and
Maximum Height respectively show the values of maximum
number of branches and maximum height of all individual
solution trees obtained for the agents. Time is in seconds.

– they have the same actions. In these domains, backtracking
is not needed. The instances P02 and P05 in the Box-Pushing
domain, and the instances P02 and P03 in the HSD domain
contain non-homogenous agents. This causes backtracking
to occur in all of these problems because when an agent is
asked to act differently following a sensing action’s results,
and the agent cannot perform this sensing action, then agent
roles must be changed. We can see that in Box-Pushing P05,
the need to backtrack caused the planner to take more time
than a slightly larger problem that does not require back-
tracking (P06). Similarly, in HSD, P03 takes more time than
the slightly larger P04. Nevertheless, the running times were
still quite reasonable and in all these instances, the factored
planner did much better than IMAP.

Recall that IMAP was compared to Dec-POMDP algo-
rithms on the BP domain, and scaled much better. Thus,
one can reasonably conclude that, for the special class of
deterministic Dec-POMDPs where the uncertainty is only
w.r.t. the initial state, our factored approach is able to handle
much larger instances than Dec-POMDP algorithms.

Summary
We described a factored approach to solving multi-agent
contingent planning problems. The problems were modelled
using the qualitative QDec-POMDP model, and the solution

426

approach works by taking a team solution – i.e., one in which
all agents have immediate access to every other agent’s ob-
servations – and fixing it so that it becomes executable by
all agents. In our experimental evaluation we compared the
factored planning algorithm with IMAP, a recent algorithm
that, at least on deterministic problems, scales to much larger
domains than current algorithms for Dec-POMDPs. The fac-
tored planning algorithm is almost always faster, and often
much faster than IMAP, scales better with increased agent
numbers, and typically generates smaller policy trees.

Problem factoring is a key element in MAP in general
(e.g., (Ephrati and Rosenschein 1997)) and in many al-
gorithms for Dec-POMDPs (e.g., (Oliehoek et al. 2008;
Witwicki and Durfee 2010; Kumar, Zilberstein, and Tous-
saint 2011; Oliehoek, Witwicki, and Kaelbling 2012). It is
particularly natural to factor the problem among the differ-
ent agents, yielding a distributed algorithm. In particular, we
believe it is natural to study algorithms in which the infor-
mation exchanged by agents centers on their commitments
to other agents. This is essentially what our algorithm does
– each agent tries to plan to fulfil its commitments in the
team plan. While commitments bring to mind the idea of
influences, studied in the Dec-POMDP literature (Witwicki
and Durfee 2010; Oliehoek, Witwicki, and Kaelbling 2012),
they are different. Influences are used to separate the belief
state of one agent from all other information – they capture
the variables that directly influence the agent. Distributions
representing variables external to the agent can be marginal-
ized to these influences, reducing the states space that an
agent needs to consider, e.g., when computing best response.
Commitments can be viewed as an analogous concept at the
level of the policy – they refer to the actions that an agent
performs in order to facilitate the actions of another agent.

The factored planning approach has a number of advan-
tages: it is conceptually simple, and hence easy to analyse
theoretically; the second stage of the algorithm generates in-
dependent sub-problems for all the agents, and can be par-
allelized; and since each agent solves a local planning prob-
lem, it is likely that a privacy preserving variant can be for-
mulated. On the other hand, a method that tries to generate
a MA policy directly, instead of first committing to a team
plan, may lead to better solutions. Moreover, efficient back-
tracking and signalling are still quite challenging, and it was
not tested on non-deterministic domains. So while it scales
significantly better than Dec-POMDP solvers on determinis-
tic problems, more work is needed to extend its applicability
to more complex situations.

Acknowledgments We thank the reviewers for their use-
ful comments. This work was supported by ISF Grant
1210/18, the Israel Ministry of Science and Technology
Grant 54178, the Helmsley Charitable Trust through the
Agricultural, Biological and Cognitive Robotics Center of
Ben-Gurion University of the Negev, and the Lynn and
William Frankel Center for Computer Science

References
Bazinin, S., and Shani, G. 2018. Iterative planning for de-
terministic QDec-POMDPs. In GCAI 2018, 15–28.

Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27:819–840.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
J. Artif. Intell. Res. 50:923–970.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In AAAI’13.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In ECAI, 237–242.
Ephrati, E., and Rosenschein, J. S. 1997. A heuristic tech-
nique for multi-agent planning. Ann. Math. Artif. Intell.
20(1-4):13–67.
Komarnitsky, R., and Shani, G. 2016. Computing contingent
plans using online replanning. In AAAI’13, 3159–3165.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scalable
multiagent planning using probabilistic inference. In IJCAI
2011, 2140–2146.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. Journal
of AI Research 9:1–36.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In IJCAI 2003.
Oliehoek, F. A., and Amato, C. 2016. A Concise Introduc-
tion to Decentralized POMDPs. Springer Briefs in Intelli-
gent Systems. Springer 2016.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlassis,
N. A. 2008. Exploiting locality of interaction in factored
Dec-POMDPs. In AAMAS 2008, 517–524.
Oliehoek, F. A.; Witwicki, S. J.; and Kaelbling, L. P. 2012.
Influence-based abstraction for multiagent systems. In
AAAI.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Intell. Res. (JAIR) 35:623–675.
Shekhar, S., and Brafman, R. I. 2018. Representing and
planning with interacting actions and privacy. In ICAPS
2018, 232–240.
Witwicki, S. J., and Durfee, E. H. 2010. From policies to in-
fluences: a framework for nonlocal abstraction in transition-
dependent Dec-POMDP agents. In AAMAS’10, 1397–1398.

427

