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Abstract

This paper analyzes, from theoretical and algorithmic per-
spectives, a class of problems recently introduced in the lit-
erature of Markov decision processes—configurable Markov
decision processes. In this new class of problems we jointly
optimize the probability transition function and associated
optimal policy, in order to improve the performance of a
decision-making agent. We contribute a complexity analy-
sis on the problem from a computational perspective, where
we show that, in general, solving a configurable MDP is
NP-Hard. We also discuss practical challenges often faced
in solving this class of problems. Additionally, we formally
derive a gradient-based approach that sheds some light on
the correctness and limitations of existing methods. We con-
clude by demonstrating the application of different parame-
terizations of configurable MDPs in two scenarios, offering a
discussion on advantages and drawbacks from modeling and
algorithmic perspectives. Our contributions set the founda-
tion for a better understanding of this recent problem, and the
wider applicability of the underlying ideas to different plan-
ning problems.

1 Introduction
Planning under uncertainty assumes a model that specifies
the dynamics of the world, in terms of the probabilistic ef-
fects of a set of actions that can be executed. Given such
model, a planner determines a policy, i.e. a prescription of
the actions to be executed at each state, that maximizes a
reward function. Typical planning approaches assume this
model of the world to be fixed, and only describing the
changes to the world that are possible through the direct ex-
ecution of actions by the agent. Recently, we have seen a
shift in this paradigm, with new approaches that allow the
agent to explicitly reason at a “meta-level” about other pos-
sible configurations of the world—those configurations that
are achievable indirectly, through changes of environmen-
tal features controllable only before planning time. Experi-
mental evaluation of this new paradigm showed promising
results on different planning scenarios modeled as Markov
decision processes (Metelli, Mutti, and Restelli 2018; Silva,
Melo, and Veloso 2018).
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Markov decision processes (MDPs) typically assume the
world and its dynamics are represented by a static proba-
bility transition function known in advance. The aforemen-
tioned new approaches extend this idea, and model changes
to the original world configuration as modifications to this
probability transition function. As a result, these approaches
are able to explicitly reason about feasible alternative con-
figurations of the world and the possibly more rewarding
policies that can be executed in them. The problem of com-
puting the best world configuration is then formulated as a
joint optimization of the probability transition function and
associated optimal policy. Different approaches tackle this
optimization under different assumptions and through dif-
ferent solutions.

The approach proposed by Metelli, Mutti, and Restelli
(2018) assumes possible world configurations are limited to
the convex combination of a finite set of possible worlds
given a priori. Their approach optimizes over the convex
hull of that set of world configurations, searching for the
configuration that maximizes the expected rewards. Silva,
Melo, and Veloso (2018), on the other hand, model possi-
ble changes to the world through a generic parameterization
of the transition probabilities, and assume a cost function
that penalizes changes to the original world configuration.
Their approach uses local information (gradient) to optimize
over the given space of parameters, searching for the world
configuration that maximizes the trade-off between the ex-
pected rewards and the costs associated with the changes to
the world.

Despite the promising results, a theoretical analysis of
the problem is still lacking. Moreover, the gradient-based
method for solving this problem was introduced with no cor-
rectness analysis. This work provides such theoretical anal-
ysis. We adopt the general problem formulation proposed
by Silva, Melo, and Veloso, and contribute a complexity
analysis from a computational perspective. Specifically, we
show the problem is NP-Hard, even when assuming com-
mon cost functions, like linear or quadratic functions. We
also provide evidence that shows the problem is hard in
practice, due to the discontinuous nature of the optimal poli-
cies in MDPs. Secondly, we provide a formal derivation of a
novel gradient-based approach. This derivation sheds some
light on the correctness of the method proposed previously
by Silva, Melo, and Veloso. This derivation starts from the
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exact differentiation of the optimization problem with re-
spect to the transition probabilities, using the Karush-Kunh-
Tucker conditions. Then, we show that the gradient-based
method proposed before is actually an efficient alternative
to this first method, which exploits the linear program struc-
ture of the MDP formulation as an optimization problem. In
the end, we offer a discussion on different parameterizations
of the transition probabilities, shedding some light on their
advantages and drawbacks from both modeling and algorith-
mic perspectives.

2 Preliminaries
This section introduces the required background on Markov
decision processes, and formally describes the problem ad-
dressed in this paper.

Markov Decision Processes
A Markov decision process (MDP) is a tuple
(X ,A, P, r, γ, µ0), describing a sequential decision
problem under uncertainty. X is the set of states of the
world and A is the repertoire of actions of the agent. When
the agent takes an action a ∈ A while in state x ∈ X , the
world transitions to state y ∈ X with probability P (y | x, a)
and the agent receives an immediate reward r(x, a). The
discount factor γ ∈ [0, 1) sets the relative importance
of present and future rewards, and µ0 is the initial state
distribution. The goal of the agent is to compute a policy
π such that π(a | x) is the probability of selecting action
a ∈ A when in state x ∈ X—such that the value

V πP (x) , Eat∼π(xt)

[ ∞∑
t=0

γtr(xt, at) | x0 = x

]
is maximized at all states x ∈ X . V πP is called the value
function associated with policy π and world dynamics P .
When convenient, we may abuse this notation and omit the
subscript P , if the world is clear from the context. The value
function can be represented as a vector V π

P and computed
as the solution to the linear system

V π
P = rπ + γPπV π

P , (1)

where rπ is a column vector with x-th entry

rπ(x) =
∑
a∈A

π(a | x)r(x, a),

and Pπ is a matrix with element (x, y)

Pπ(y | x) =
∑
a∈A

π(a | x)P (y | x, a).

In particular,

V π
P = (I− γPπ)−1rπ, (2)

where I is the |X | × |X | identity matrix. The solution to (1)
is well-defined, since matrix (I−γPπ) is non-singular (Put-
erman 2014). Solving an MDP thus consists of computing a
policy π∗ such that,

V π
∗

P (x) ≥ V πP (x),

for all x ∈ X and all policies π. In general, there is at
least one optimal deterministic policy. This optimal pol-
icy can be computed using linear programming, dynamic
programming, stochastic approximation, among other ap-
proaches (Puterman 2014).

Finally, by definition, the optimal policy also maximizes
the expected value over the initial state distribution

JπP =
∑
x∈X

µ0(x)V πP (x) = µ0V
π
P ,

where µ0 is taken as a row vector.

Configurable MDPs
Configurable Markov decision processes are a class of
MDPs where the probability transition function P can be
modified. Different transition probabilities may be associ-
ated with more or less rewarding optimal policies. Conse-
quently, solving a configurable MDP corresponds to the joint
optimization of the probability transition function and asso-
ciated optimal policy.

In this paper we adopt a general formulation of config-
urable MDPs that optimizes the trade-off between the value
and cost of a world. We denote the value of a world P as

J(P ) = Jπ
∗

P

where π∗ denotes the optimal policy associated with world
P . Similarly, we letC(P ) denote the cost associated to shift-
ing the original world configuration P0 to the new world
configuration P . Formally, we consider

Problem 1. Given an MDP (X ,A, P0, r, γ, µ0), a cost func-
tion C, and a space of valid world configurations P , what
is the valid world configuration P that maximizes the trade-
off between the expected reward of the optimal policy in the
world modeled by P , and the cost of modifying the original
world P0 to P?

Problem 1 is formalized by the primal program

max
P

J(P )− C(P )

s.t. P ∈ P , (3)

We assume a generic feasibility space P that does not rely
on any specific parameterization of the transition probabili-
ties. The only constraint imposed is that P covers only valid
probability transition functions. Formally, if P ∈ P then
for all actions a ∈ A it must hold that the transition prob-
abilities matrix Pa associated with action a is in the space
of stochastic matrices1. We refer to Section 5 for a detailed
discussion on specific parameterizations.

3 Hardness
We study the complexity of Problem 1, both from a for-
mal, computational point of view, and from a more practical
standpoint. We argue that the problem is hard both in theory
and in practice.

1A stochastic matrix is a square matrix with non-negative en-
tries, where each row sums up to 1.
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Figure 1: The MDP formulation of an instance of the 3-SAT-
CNF problem with n = 4 variables and m = 2 clauses.
Circles depict the 4m+2 states. Arrows depict the transition
probabilities when executing the single action available. The
transitions of the absorbing states were omitted for clarity.

Computational Complexity
Before analyzing the complexity of Problem 1 we recall that
for every optimization problem we can build an associated
decision problem. In the case of Problem 1, the associated
decision problem is that of determining whether given an
MDP (X ,A, P0, r, γ, µ0), a cost function C and a lower-
bound b, there is a probability transition function P such that
the optimization problem has an optimal value larger than or
equal to b.

The decision problem associated with Problem 1 is NP-
Hard, even when no cost function is present. This shows
that the hardness in Problem 1 is intrinsic in the selection of
the transition function P that maximizes the expected value
J(P ), and not due to the presence of a cost function. This
observation is made formal in Theorem 1.
Theorem 1. The decision problem associated with Prob-
lem 1 is NP-Hard, even when C(P ) ≡ 0 is the identically
zero cost function.

Proof. We reduce from 3-SAT-CNF, a well-known NP-
Complete problem (Karp 1972). A boolean formula is said
to be in 3-CNF if it is made up of a conjunction of clauses,
and each clause is a disjunction of 3 literals. A literal cor-
responds to either a variable (positive literal) or the com-
plement of a variable (negative literal). A 3-CNF formula is
satisfiable if there is an assignment of truth values such that
the formula evaluates to TRUE. The formula at the bottom
of Figure 1 is satisfiable since (x1 = 1, x2 = 1, x3 = 0,
x4 = 0) is a satisfying assignment. The 3-SAT-CNF decision
problem is that of assessing if a 3-CNF formula is satisfiable.

Given an instance of 3-SAT-CNF with n variables
{x1, . . . , xn} and m clauses, we construct (in polynomial

time in n and m) an instance of Problem 1. This construc-
tion is depicted in Figure 1 for an example formula. The in-
stance is constructed as follows. First, we let the state space
X consist of 4m + 2 states. For each clause i we create 3
states si1, s

i
2, s

i
3, one for each of the 3 literals in the clause,

and an initial state si0. The two remaining states are absorb-
ing and denoted as sfail and sgoal. The action space A con-
sists of a single action a. The reward function is always 0
except at state sfail where it is −1. The probability transi-
tion function Pa is constructed as follows. For clause i, the
initial state si0 transitions with probability 1 to the first lit-
eral in the same clause, si1. Each state sik (k = 1, 2) may
transition to state sgoal or the next state in the clause sik+1.
State si3 may transition to sgoal or sfail. Specifically, if state
sik is associated with a positive literal xj , we let Pa(sgoal |
sik) = εj . If sik is associated with a negative literal, x̄j , we let
Pa(sgoal | sik) = 1− εj . The remaining transition probabili-
ties are computed as Pa(sik+1 | sik) = 1−Pa(sgoal | sik) and
Pa(sfail | si3) = 1−Pa(sgoal | si3). In total we have n param-
eters εj (one for each variable), and use the same parameter
εj on all states associated with variable xj ∈ {x1 . . . xn}.
The discount factor γ can be picked arbitrarily, as long as it
is larger than 0. The initial distribution µ0 is the uniform dis-
tribution over the initial states si0. Finally, we let P be such
that εi ∈ [0, 1] for all i ∈ {1, . . . n}.

We now show that a solution to the 3-SAT-CNF problem
exists if and only if Problem 1 attains a value larger than
or equal to b ≡ 0. This implies that the decision problem
associated with Problem 1 is at least as hard as the 3-SAT-
CNF decision problem, completing the reduction.

(⇒) We start with the if direction. Suppose the 3-
SAT-CNF instance has a satisfying truth assignment A =
(A1, . . . , An). We show our algorithm returns YES by con-
structing a probability transition function P such that the
value of the optimization problem, J(P ), is larger than or
equal to 0. To construct such probability transition function
we simply let εi = Ai for all i ∈ {1, . . . , n}. Since a sat-
isfying assignment makes at least one literal in every clause
take value 1, by construction, in every clause there will be at
least one state transitioning to sgoal with probability 1. Since
sgoal is reached with probability 1, we must have J(P ) = 0.

(⇐) Moving to the only if direction, we start by suppos-
ing the decision problem associated with Problem 1 returns
YES, that is, there exists a transition probability P such that
J(P ) ≥ 0. By construction, no state can transition to sfail

with positive probability, or J(P ) would be negative. Hence,
for every clause there must exist at least one state that transi-
tions to sgoal with probability 1, and consequently the ε pa-
rameter associated with that transition is in {0, 1}. We can
build a satisfying assignment as follows. For each variable
xi ∈ {x1, . . . , xn}, we let Ai = εi if εi ∈ {0, 1}, or we let
Ai = 0 otherwise. Furthermore, by the way we constructed
P , is is immediate to conclude that this truth assignment sat-
isfies the logical formula.

Theorem 1 immediately implies that that there cannot ex-
ist a polynomial algorithm that can solve all instance of
Problem 1. This remains true even if the cost function is con-
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strained to be polynomial, linear or constant in P .

Practical Complexity
In the previous section we formally proved the complexity
of the problem from a computational point of view. We now
provide evidence that shows the problem is also hard in prac-
tice. For that purpose, we consider the following scenario.

Corridor We consider the simplified version of the COR-
RIDOR scenario introduced by Silva, Melo, and Veloso
(2018), and depicted in Figure 2a. An autonomous robot
operates on a 2 × 2 grid world, where cells A and G are
separated by a closed door. The robot is able to move in
four directions (UP, DOWN, LEFT, RIGHT) or stay in place
(STAY). Each move action moves the agent deterministically
to an adjacent cell, factoring in obstacles. The agent collects
a reward of −1 for all state-action pairs, except (G, STAY),
where it receives 0. In this particular scenario, the only pos-
sible modifications to the world consist in the opening of the
door that separates A and G. This translates into a param-
eterization of the transition probabilities, where θ denotes
how much the door is opened (θ = 0 denotes the door is
fully closed, θ = 1 denotes the door is fully opened):

Pθ(G | A, DOWN) = Pθ(A | G, UP) = θ

Pθ(A | A, DOWN) = Pθ(G | G, UP) = 1− θ

Slightly abusing our notation, and letting V ∗θ denote the
optimal value function for the transition probabilities Pθ we
arrive at the following system



V ∗θ (A) = max {−1 + γV ∗θ (B),

−1 + γ ((1− θ)V ∗θ (A) + θV ∗θ (G))}

= max
{
−1− γ − γ2, − 1

1−γ(1−θ)

}
V ∗θ (B) = −1− γ
V ∗θ (C) = −1

V ∗θ (G) = 0

.

In the computation of V ∗θ (A) we only consider the actions
RIGHT and DOWN as all other actions result in the agent re-
maining in A, which is suboptimal. Moreover, V ∗θ (B) does
not depend on θ because moving from B to G always takes
2 steps in the optimal case.

Figure 2b depicts V ∗θ (A) as a function of θ, when assum-
ing a discount factor γ = 0.9. Note that this function is
flat in the region [0, θ′), with θ′ ≈ 0.3. This makes it hard
to use methods based on local information. Unfortunately,
these flat regions may be common in general. In fact, these
flat regions occur when the optimal policy selects actions as-
sociated with transition probabilities that are not affected by
the changes to the world. In the aforementioned CORRIDOR
scenario, the flat region occurred while the optimal policy
was to select action RIGHT when in state A. For θ ∈ (θ′, 1]
the optimal policy becomes to select action DOWN in that
state, and consequently, the value V ∗θ grows with θ since the

A B

G C

(a)

θ
Vθ(A)

θ′ 1

−2.71

−1

(b)

Figure 2: 2a depicts the layout of the simplified version of
the CORRIDOR scenario. 2b plots V ∗θ (A) as a function of θ,
for this scenario.

chances of this action moving the agent to state G are in-
creasing. Finally, note that when θ = θ′ there are two deter-
ministic optimal policies that differ on the action selected in
state A. One selects action DOWN, the other action RIGHT.
Consequently, there are infinite stochastic optimal policies
(any convex combination of those two deterministic optimal
policies).

4 Expected Reward Gradient Computation
We formally derive a gradient-based approach for solving
the optimization problem (3). This approach builds upon the
gradient of the objective function with respect to the transi-
tion probabilities P

∇P [J(P )− C(P )] .

We focus on the gradient of the expected discounted
rewards J(P ), since the cost function is task dependent.
Specifically, we derive a method for computing ∇P J(P ).
This method follows from the differentiation of a linear
program with respect to P using the Karush-Kuhn-Tucker
(KKT) conditions.

KKT-Based Method
We now show how to compute the gradient of the expected
discounted rewards of the optimal policy in an MDP, as a
function of the transition probabilities.

The value function V ∗ associated to the optimal policy
can be computed as the solution to the linear program

V :


min
V

1>V

s.t. V (x) ≥ r(x, a) + γ
∑
y∈X

P (y | x, a)V (y)

∀x ∈ X , a ∈ A

Any primal-dual solution (V ∗,λ∗) of the problem V
above minimizes the Lagrangian

L(V ∗,λ∗) = 1>V ∗

−
∑
x∈X
a∈A

(
V ∗(x)− r(x, a)− γ

∑
y∈X

P (y | x, a)V ∗(y)

)
λ∗x,a,
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and respects the stationary-complementary slackness (SCS)
conditions, a subset of the Karush-Kuhn-Tucker condi-
tions (Boyd and Vandenberghe 2004). In our case, the SCS
conditions are

1−
∑
a∈A

λ∗x,a + γ
∑
y∈X

∑
a∈A

λ∗y,aP (x | y, a) = 0

∀x ∈ X

λ∗x,a

V ∗(x)− r(x, a)− γ
∑
y∈X

P (y |x, a)V ∗(y)

= 0

∀x ∈ X , a ∈ A
where λ∗x,a ∈ R+ is a non-negative scalar for each x ∈
X , a ∈ A. Notice that the SCS conditions can be seen as
a level set g(P,V ∗,λ∗) = 0 ∈ R|X |+|X ||A|, which in turn
defines an implicit function h : P 7→ (V ∗,λ∗).

Let us fix a transition probability function P̄ and let
(V̄
∗
, λ̄
∗
) = h(P̄ ) be the corresponding primal-dual solu-

tion of problem V . Applying the implicit function theorem,
we know that the derivative of h at P̄ is given by[
∂h

∂P

∣∣∣∣
P̄

]
= −

[
∂g

∂(V ∗,λ∗)

∣∣∣∣
P̄ ,V̄ ∗,λ̄∗

]−1 [
∂g

∂P

∣∣∣∣
P̄ ,V̄ ∗,λ̄∗

]
,

(4)
where [∂g/∂(V ∗,λ∗)|P̄ ,V̄ ∗,λ̄∗ ] is the Jacobian of g relative
to variable (V ∗,λ∗), evaluated at the point (P̄ , V̄

∗
, λ̄
∗
).

Notice that we treat (V ∗,λ∗) as the vector of “dependent
variables” in g, and as such the Jacobian is a square ma-
trix of dimension |X |+ |X ||A|. Similarly, [∂g/∂P |P̄ ,V̄ ∗,λ̄∗ ]
is the Jacobian of g relative to variable P , evaluated at
point (P̄ , V̄

∗
, λ̄
∗
). This Jacobian is a matrix of dimensions

(|X |+ |X ||A|)× |X ||A||X |.
Equation (4) is equivalent to solving the linear system

AX = B, where

A =

[
∂g

∂(V ∗,λ∗)

∣∣∣∣
P̄ ,V̄ ∗,λ̄∗

]
, B = −

[
∂g

∂P

∣∣∣∣
P̄ ,V̄ ∗,λ̄∗

]
,

and X = ∂h/∂P |P̄ is the Jacobian we wish to compute.
This Jacobian includes the partial derivatives of V ∗ with re-
spect to the transition probabilities P . These partial deriva-
tives can, subsequently, be used in the computation of the
gradient of the expected rewards, J(P ), with respect to the
transition probabilities. Finally, note that since g has such a
simple representation, involving only sums and a few mono-
mials, computing A and B is easy.

Fixed Policy Differentiation
While the KKT-based method correctly computes the gra-
dient as a function of the transition matrix, in practice, it is
somewhat slow, since the Jacobians required to solve (4) be-
come very large for MDPs with big state and action spaces.

We now introduce a more computationally efficient
method that exploits the linear program structure of V . Do-
ing so will allow us to reduce the size of the Jacobians re-
quired to compute the gradient of the expected discounted

π∗

π̄∗

P̄

ε

Figure 3: Close-up on a space of transition probabilities,
with two different optimal policies. Depicts how policy π̄∗
remains optimal in a neighborhood of probability transition
function P̄ .

reward of the optimal policy of an MDP relative to the prob-
ability transition function.

Let us start by defining gπ : P 7→ V π as the function that
maps probability transition functions to the value function
associated with policy π. From (2),

gπ(P ) = (I− γPπ)−1rπ.

Now, given a probability transition function P̄ , let π̄∗ be an
optimal policy for the MDP modeled by P̄ . In most circum-
stances, π̄∗ remains optimal in a neighborhood B(P̄ , ε) of
P̄ , for a small enough positive constant ε (Figure 3). This
results from the continuity of the problem with respect to
each entry of the probability transition function. When this
is the case we say π̄∗ is neighborhood optimal, and we have

V ∗P = gπ̄
∗
(P ), ∀P ∈ B(P̄ , ε).

But then,
∂V ∗P̄
∂P

=
∂gπ̄

∗
(P̄ )

∂P
,

where the functions are guaranteed to be differentiable.
The partial derivative of gπ̄

∗
(P̄ ) relative to a specific entry

of the probability transition function can be computed as

∂gπ̄
∗
(P̄ )

∂P (y|x, a)
=γ(I− γP̄π̄∗

)−1 ∂P̄π̄
∗

∂P (y|x, a)
(I− γP̄π̄∗

)−1rπ̄
∗

= γ(I− γP̄π̄∗
)−1 ∂P̄π̄

∗

∂P (y | x, a)
V π̄∗

P̄ ,

(5)
By definition of Pπ , it follows that the Jacobian[
∂P̄π̄

∗
/∂P (y | x, a)

]
is a |X | × |X | sparse matrix where

entry (x, y) has value π̄∗(a | x). As such, we can further
extend the result in (5) as

∂gπ̄
∗
(P̄ )

∂P (y | x, a)
= γπ̄∗(a | x)V π̄∗

P̄ (y)(I− γP̄π̄∗
)−11x, (6)

where 1x ∈ R|X | denotes the indicator vector with x-th en-
try as 1. The Jacobian

[
∂gπ̄

∗
(P̄ )/∂P (y | x, a)

]
can thus be

computed by solving a linear system AX = B, where

A =
(
I− γP̄π̄∗

)
, B = γπ̄∗(a | x)V π̄∗

P̄ (y)1x,

and consequently, A is a square matrix of dimension |X |
and B a vector of dimension |X |. The computation of the
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full Jacobian
[
∂gπ̄

∗
(P̄ )/∂P

]
follows a similar flavor, with

B extended as the horizontal stacking of (6) for all states
x, y ∈ X and actions a ∈ A, resulting in a |X | × |X ||A||X |
matrix. The size of the linear system that needs to be solved
is significantly smaller than that of the KKT-based method.
As we will see in the next section, however, in practice we
typically only need to compute the partial derivatives with
respect to some (x, a, y) triplets.

The derivation above lets us conclude that, when π̄∗ is
neighborhood optimal for P̄ , we can compute the exact gra-
dient∇P J(P̄ ) by fixing the optimal policy and ignoring its
dependency with respect to P̄ . Formally,

∂J(P̄ )

∂P (y | x, a)
= µ0

∂ V π̄∗

P̄

∂P (y | x, a)

= γµπ̄
∗

P̄

∂P̄π
∗

∂P (y | x, a)
V π̄∗

P̄ .

, (7)

where, for compactness, given a policy π and world P we
define µπP = µ0(I − γPπ)−1. This matches the gradient
step of the method proposed previously by Silva, Melo, and
Veloso (2018). The gradient step of this method was intro-
duced as an approximation. However, our derivation shows
it is actually exact when the optimal policy remains optimal
in a neighborhood of the current transition probabilities.

One may now wonder what happens when π̄∗ does not
remain optimal in a neighborhood of P̄ . Unfortunately, the
value function is no longer guaranteed to be differentiable
when this is the case. This is depicted in Figure 2b, which
plots the value function as a function of the transition prob-
abilities P , on the CORRIDOR scenario. As discussed be-
fore, at θ = θ′ there are multiple optimal policies, and
we can observe that the function is not differentiable in
that point. In practice, the set of points where the func-
tion is non-differentiable has null Lebesgue measure (Neu
and Szepesvári 2007). Furthermore, one can always resort
to a subgradient method when these points are problem-
atic (Bertsekas 1999).

5 Analysis on Parameterizations
We now analyze different parameterizations for the proba-
bility transition matrices. We classify parameterizations as
being either local or global. Local paramaterizations allow
the parameterization of specific elements of the transition
probabilities, providing a finer control over the definition of
possible changes to the world. Global parameterizations, on
the other hand, focus on the specification of a space of pos-
sible world configurations, by parameterizing the transition
probabilities as a combination of possible world configura-
tions known in advance.

In practice, both types of parameterizations can be used
for modeling a planning problem. The choice, however,
comes with consequences in terms of modeling and algo-
rithmic complexity.

Local Parameterizations
We consider a local parameterization that which parameter-
izes specific elements of the probability transition function.

The simplest parameterization of this kind takes the form

Pθ(y | x, a) = θ

Pθ(z | x, a) = 1− θ, (8)

for θ ∈ [0, 1], arbitrary states x, y, z, and arbitrary action
a. The transition probabilities remain stochastic, since both
elements Pθ(y | x, a) and Pθ(z | x, a) remain necessarily
non-negative and sum up to 1. More precisely, this is only
guaranteed if there is a probability 1 of moving from state
x to one of y or z in the original world configuration P0. In
order to avoid this additional assumption, this parameteriza-
tion can be extended as

Pθ(y | x, a) = ξx,a θ

Pθ(z | x, a) = ξx,a (1− θ),
where ξx,a = P0(y | x, a) + P0(z | x, a) is a normalization
constant.

The CORRIDOR scenario presented in Section 3 illustrates
an application of this parameterization. Two remarks are in
order. First, for longer versions of the CORRIDOR scenario,
on 2 × N grids, the number of parameters grows linearly
with the number of doors. Secondly, this parameterization
has the disadvantage of imposing a bounded domain on θ,
which may require more complex solution methods. For ex-
ample, a projection step may be necessary in gradient-based
approaches (Silva, Melo, and Veloso 2018).

In order to avoid the need for a projection operator, a soft-
max parameterization can be used instead. We consider a pa-
rameterization where entries (x, a, y) of the transition prob-
abilities are associated with parameters θx,a,y . For an arbi-
trary state-action pair (x, a), we define Xx,a as the set of en-
tries (x, a, y),∀y ∈ X that are associated with parameters.
The transition probabilities are then formulated as

Pθ(y | x, a) = ξx,a
exp(θx,a,y)∑

z∈Xx,a exp(θx,a,z)
,

where ξx,a =
∑
z∈Xx,a P0(z | x, a), is a normalization con-

stant. This parameterization does not impose a bounded do-
main on parameters θ.

Local parameterizations have been successfully applied
to other scenarios, including the TAXI domain and a robotic
water pouring task (Silva, Melo, and Veloso 2018).

Global Parameterization
We consider a global parameterization that which parame-
terizes the transition probabilities as a combination of pos-
sible world configurations known in advance. An example
is when the transition probabilities are parameterized as a
convex combination of a finite set of M world configura-
tions, each represented as a probability transition matrix Pi,
i = 1 . . .M

Pθ =

M∑
i=1

θiPi,

where parameters θ lie on the M − 1 simplex, that is, all
elements of θ are non-negative and sum up to 1.
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This paramaterization also requires a bounded domain for
the parameters. It is possible to avoid this by extending the
parameterization, similarly to what we did before:

Pθ =

M∑
i=1

ui(θ)Pi, ui(θ) =
exp(θi)∑M
j=1 exp(θj)

.

We illustrate an application of a global parameterization
on a concrete planning problem.

Racetrack We consider the RACETRACK scenario in-
troduced by Metelli, Mutti, and Restelli (2018). An au-
tonomous race car is to race on a track. The car is pro-
vided actions that increase/decrease the velocity (up/down
to a maximum/minimum values), or do nothing. In this sce-
nario, the world can be changed in terms of two components:
the aerodynamics profile of the car, or its engine setting. The
aerodynamics profile can be set to LOW-SPEED or HIGH-
SPEED, denoting the speeds at which the car is more sta-
ble. Stability translates to the probability of a random action
being executed. The dynamics of the world for these set-
tings are established by the transition probabilities Pls and
Phs. The engine setting can be set to NO-BOOST or BOOST.
The latter setting allows the car to reach higher speeds at
the expense of lower reliability. Reliability translates to the
probability of a failure of the engine that prevents the car
from racing. These dynamics of the world are established by
the transition probabilities Pnb and Pb. The combinations of
aerodynamic profile and engine setting leads to the a finite
set of possible worlds {Pls,nb, Pls,b, Phs,nb, Phs,b}. This trans-
lates to a parameterization of the transition probabilities

Pθ = θ0Pls,nb + θ1Pls,b + θ2Phs,nb + θ3Phs,b,

where θ lies on the 3-simplex.
Note that the number of vertex world configurations to

be specified grows exponentially with the number of envi-
ronmental features that can be tuned. In this scenario, there
were only two environmental features, aerodynamics profile
and engine setting, but 4 parameters were necessary.

Global parameterizations have been applied to other sce-
narios, including a STUDENT-TEACHER domain (Metelli,
Mutti, and Restelli 2018).

Modeling Considerations
When modeling a planning problem, the choice between a
local or global paramaterization should take into account
the nature of the possible changes to the world. If the possi-
ble changes to the world are specific to certain elements of
the transition probabilities and mostly independent among
themselves, it should be easier to build a local parameteriza-
tion. For example, on the CORRIDOR scenario the local pa-
rameterization required a single parameter for each possible
change—the opening of a door—and this parameter had an
expressive meaning—how much the door is opened. On the
other hand, a global parameterization would require defining
the transition probabilities for all combinations of possible
worlds—all doors closed, only one door opened, only two
doors opened, and so on. This combinatorial explosion of
models that need to be specified can become cumbersome.

In scenarios where environmental features impact multi-
ple entries of the transition probabilities, it tends to be easier
to build a global parameterization instead. For example, the
BOOST feature of the RACETRACK scenario impacts mul-
tiple entries of the transition probabilities in order to in-
troduce the stochastic reliability component at high speeds.
Modeling this feature with a local parameterization requires
the BOOST parameter to be considered in all states asso-
ciated with high speeds. Additionally, when multiple envi-
ronmental features impact the same states, complex param-
eterizations may be necessary in order to encode the desired
stochastic transitions.

Algorithmic Considerations
The nature of the parameterization also has an impact at an
algorithmic level. When the possible changes to the world
are independent it can actually be more efficient to use a lo-
cal parameterization. As discussed before, in the CORRIDOR
scenario the local parameterization leads to a linear number
of parameters with the number of possible changes to the
world, while in the global parameterization we observe a
combinatorial explosion. Computing and storing all the pos-
sible combinations can quickly become intractable.

Additionally, the gradient of the simple local parameteri-
zation in (8) can also be efficiently computed

∂J(Pθ)

∂θi
=

∂J(Pθ)

∂Pθ(y | x, a)
− ∂J(Pθ)

∂Pθ(z | x, a)

= γπ∗(a | x)µπ
∗

Pθ
(x)
(
V π

∗

Pθ
(y)− V π∗

Pθ
(z)
)
,

where we used (6) and (7).
Computing the gradient of local parameterizations may,

however, become expensive when the same parameter is
used in the parameterization of multiple entries of the transi-
tion probabilities. This can be observed from the chain rule

∂J(Pθ)

∂θi
=
∑
x,y∈X
a∈A

∂J(Pθ)

∂Pθ(y | x, a)

∂Pθ(y | x, a)

∂θi
,

where the partial derivative [∂Pθ(y | x, a)/∂θi] will be non-
zero for all entries of the transition probabilities that θi im-
pacts, and consequently needs to be computed. This can be
problematic in the softmax parameterization, since multiple
parameters are used in the computation of the normalization
denominator. In particular, for a state-action pair (x, a) the
gradient for this parameterization is

∂J(Pθ)

∂θx,a,y
=

∑
z∈Xx,a

∂J(Pθ)

∂Pθ(z | x, a)

∂Pθ(z | x, a)

∂θx,a,y

= γπ∗(a|x)µπ
∗

Pθ
(x)

∑
z∈Xx,a

V π
∗

Pθ
(z)

∂Pθ(z | x, a)

∂θx,a,y
,

which can become expensive to compute as |Xx,a| grows.
A good indicator that a global parameterization is better

suited is actually when a single parameter impacts many en-
tries of the transition probabilities. In global parameteriza-
tions the impact of a parameter is bounded by the number of
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vertex world configurations of the feasibility model space. In
fact, for the softmax version of the global parameterization,
we can analytically compute the gradient as

∂J(Pθ)

∂θi
= γui(θ)µ

π∗

Pθ
(x)
(
Pπ

∗

i −Pπ
∗

θ

)
V π∗

Pθ
. (9)

This results from (5) and the fact

∂uj(θ)

θi
= ui(θ)I(i = j)− ui(θ)uj(θ),

∂Pθ
∂θi

=

M∑
j=1

∂uj(θ)

∂θi
Pj = ui(θ) (Pi − Pθ) ,

where I(y = x) is an indicator function, taking value 1 when
y = x and 0 otherwise. The gradient of this parameterization
may be more efficient to compute in problems with large
state spaces and small number of environmental features.

6 Related Work
Our work in this paper is related with other ideas in the liter-
ature of Markov decision processes. One such example is the
concept of Markov decision processes with imprecise prob-
abilities (MDPIPs), which allow the representation of un-
certainty in the transition probabilities of MDPs (White and
Eldeib 1994; Delgado et al. 2011; 2016). Bounded Markov
Decision Processes (BMDPs), in particular, represent this
uncertainty through the specification of uncertainty inter-
vals for different entries of the probability transition func-
tion (Givan, Leach, and Dean 2000). This uncertainty rep-
resentation allows for optimal methods that solve BMDPs
efficiently under either optimistic or pessimistic assump-
tions over the true distribution of the transition probabilities.
BMDPs under optimistic assumptions model a subset of the
class of problems covered by Problem 1. In particular, those
with no costs (C ≡ 0), and following a global parameteri-
zation where the set of vertex world configurations includes
every possible combination of lower and upper bounds of
the uncertainty intervals associated with uncertain transition
probabilities. In this setting, one may naturally wonder if
BMDPs can solve the 3-SAT-CNF instance constructed in
Section 3. Unfortunately, the answer to this question is neg-
ative, since BMDPs are not able to model the “shared” tran-
sition probabilities between different states associated with
the same variable.

BMDPs under pessimistic assumptions compute a robust
policy that maximizes the expected rewards under the worst
realization of the transition probabilities, within some uncer-
tainty bounds. As such, BMDPs under pessimistic assump-
tions are a particular case of a more general class of prob-
lems known as robust Markov decision processes (RMDPs).
In their general form, RMDPs are also NP-Hard, which can
be proved by a reduction from the 3-SAT-CNF problem (Bag-
nell, Ng, and Schneider 2001). In fact, our hardness proof is
inspired by this one. It turns out that RMDPs can be solved
efficiently when the uncertainty set of possible transition
probabilities is s,a-rectangular (Nilim and El Ghaoui 2005)
or s-rectangular (Ho, Petrik, and Wiesemann 2018). That is,
the uncertainty sets are constrained by l1 norms, and defined

independently for each state s and action a, or for each state
s, respectively.

Recent work has also considered the problem of redesign-
ing environments to maximize agent utility, and formu-
lated it as a classical planning problem where the transi-
tion dynamics are part of the planning state space (Keren et
al. 2017). However, their approach considers modifications
over a finite set of worlds, which is in contrast with the ap-
proaches considered in this paper that allow for continuous
changes.

Finally, another line of related work is the concept of Lin-
early Solvable MDPs (LMDPs) (Todorov 2006; Jonsson and
Gómez 2016). LMDPs are a class of MDPs with no explicit
actions, and where the controller is free to modify the pre-
defined transition probabilities P̄ of an uncontrolled Markov
chain, but at a cost measured by the KL-divergence function.
While the problem addressed by LMDPs is fundamentally
different than Problem 1, the two problems share some simi-
larities. Namely, that in a sense, LMDPs transform a discrete
optimization over actions (a regular MDP) to a continuous
optimization problem over transition probabilities (Jonsson
and Gómez 2016).

7 Conclusion
In this paper we considered a problem recently introduced in
the literature of Markov decision processes: the problem of
jointly optimizing the policy and probability transition func-
tion of an MDP, with the goal of finding more rewarding
environments and associated optimal policies.

Our work made three main contributions. First, we con-
tributed a theoretical analysis of the complexity of the prob-
lem. In particular, we showed that, in general, the problem is
NP-Hard. We also provided concrete evidence that the prob-
lem can be hard to solve in practice.

Secondly, we contributed a formal derivation of a
gradient-based approach for solving the aforementioned
problem. This derivation provides a greater thereotical un-
derstanding of the method previously proposed by Silva,
Melo, and Veloso (2018).

Our last contribution was of a more practical nature. We
offered a thorough analysis and discussion on different pa-
rameterizations of the probability transition function. We
provide several considerations on the application of these
different parameterizations on concrete planning scenarios,
while discussing their advantages and drawbacks from both
modeling and algorithmic perspectives.
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