
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

ColNet: Embedding the Semantics of Web Tables for Column Type Prediction

Jiaoyan Chen,1 Ernesto Jiménez-Ruiz,2,4 Ian Horrocks,1,2 Charles Sutton2,3
1Department of Computer Science, University of Oxford, UK

2The Alan Turing Institute, London, UK
3School of Informatics, The University of Edinburgh, UK
4Department of Informatics, University of Oslo, Norway

Abstract

Automatically annotating column types with knowledge base
(KB) concepts is a critical task to gain a basic understanding
of web tables. Current methods rely on either table metadata
like column name or entity correspondences of cells in the
KB, and may fail to deal with growing web tables with in-
complete meta information. In this paper we propose a neu-
ral network based column type annotation framework named
ColNet which is able to integrate KB reasoning and lookup
with machine learning and can automatically train Convolu-
tional Neural Networks for prediction. The prediction model
not only considers the contextual semantics within a cell us-
ing word representation, but also embeds the semantics of a
column by learning locality features from multiple cells. The
method is evaluated with DBPedia and two different web ta-
ble datasets, T2Dv2 from the general Web and Limaye from
Wikipedia pages, and achieves higher performance than the
state-of-the-art approaches.

Introduction
Tables on the Web, which often contain highly valuable data,
are growing at an extremely fast speed. Their power has been
explored in various applications including web search (Ca-
farella et al. 2008), question answering (Sun et al. 2016),
knowledge base (KB) construction (Ritze et al. 2016) and so
on. For most applications, web table annotation which is to
gain a basic understanding of the structure and meaning of
the content is critical. This however is often difficult in prac-
tice due to metadata (e.g., table and column names) being
missing, incomplete or ambiguous.

An entity column is a table column whose cells are text
phrases, i.e., mentions of entities. Type annotation of an en-
tity column1 means matching the common type of its cells
with widely recognized concepts such as semantic classes
of a KB. For example, a column composed of “Mute swan”,
“Yellow-billed duck” and “Wandering albatross” is anno-
tated with dbo:Species and dbo:Bird, two classes of DBpe-
dia (Auer et al. 2007). Column types not only enable under-
standing the meaning of cells but also form the base of other
table annotation tasks such as property annotation (Pham et
al. 2016) and foreign key discovery (Zhang et al. 2010).

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Note that data type prediction is not considered in this work.

Table annotation tasks are often transformed into match-
ings between the table and a KB, such as cell to entity
matching, column to class matching and column pair to
property matching. Traditional methods jointly solve all
the matching tasks with their correlations considered using
graphical models (Limaye, Sarawagi, and Chakrabarti 2010;
Mulwad, Finin, and Joshi 2013; Bhagavatula, Noraset, and
Downey 2015) or iterative procedures (Ritze, Lehmberg,
and Bizer 2015; Zhang 2014; Zhang 2017). Considering the
inter-matching correlation improves the disambiguation, but
their metrics for computing the matchings (i) mostly adopt
lexical comparisons which ignore the contextual semantics,
and (ii) rely on metadata like column names and some-
times even external information like table description, both
of which are often unavailable in real world applications.

Recent studies (Efthymiou et al. 2017) and (Luo et al.
2018) match column cells to KB entities with their con-
textual semantics considered using machine learning tech-
niques like word embeddings and neural networks. With the
matched entities, the column type can be further inferred us-
ing strategies like majority voting. However, such a cell to
entity matching based column type annotation procedure as-
sumes that the table cells have KB entity correspondences.
Its performance will decrease when the column has a small
number of cells, or there are missing or not accurate cor-
respondences between the table cells and the KB entities,
which we refer to as knowledge gap.

This study focuses on type annotation of entity columns,
assuming table metadata like column names and table struc-
tures are unknown. We propose a neural network based
framework named ColNet, as shown in Figure 1. It first
embeds the overall semantics of columns into vector space
and then predicts their types with a set of candidate KB
classes, using machine learning techniques like Convolu-
tional Neural Networks (CNNs) and an ensemble of results
from lookup. To automatically train robust prediction mod-
els, we use the cells to retrieve the candidate KB classes, in-
fer their entities to construct training samples, and deal with
the challenge of sample shortage using transfer learning.

In summary, this study contributes a more accurate col-
umn type annotation framework by combining knowledge
lookup and machine learning with the knowledge gap con-
sidered. As the framework does not assume any table meta-
data or table structure, it can be applied to not only web ta-

29



Bishopsgate	
Institute

The	Royal	
Academy	of	
Arts	(RA)

Oxford_Univ
ersity_Muse
um_of_Natu
ral_History

Type 
Annotations

• Building: ✓

• Museum: ✓

• Natural 

Museum: ✗
• Historical 

Museum: ✗

• University 

Museum: ✓

• Venue: ✗

Building

Museum

Natural	
Museum

Historical	
Museum

Venue

Knowledge
Base (KB)

University	
Museum

Matched	
Entities

Candidate	
Classes

Classification	
Models	(CNNs)

Synthetic	
Columns	

(Particular	&	
General	
Samples)

Predict	&	
Ensemble

Lookup

Entity 
Columns

Word
Representation

Figure 1: Column Type Annotation with ColNet

bles but also general tabular data. The study also provides
a general approach that embeds the overall semantics of a
column where the correlation between cells is incorporated.
Our experiments with DBPedia and two different web table
sets, T2Dv2 from the general Web (Lehmberg et al. 2016)
and Limaye from Wikipedia pages (Limaye, Sarawagi, and
Chakrabarti 2010) have shown that our method is effective
and can outperform the state-of-the-art approaches.

Next section reviews the related work. Then we introduce
the technical details of our approach. We finally present the
evaluation, conclude the paper and discuss our future work.

Related Work
Annotating web tables with semantics from a KB has been
studied for several years. It includes tasks of matching (i)
table columns to KB classes, (ii) column pairs i.e., inter-
column relationships to KB properties, and (iii) column cells
to KB entities. More specifically, task (i) is equivalent to
matching tables to KB classes while task (iii) is equivalent
to matching rows to KB entities when one of the columns
serves as a primary key (PK) which is defined as a column
that can uniquely identify (most of) the table rows.

Collective Approaches
Collective approaches encompass multiple matching tasks
and solve them together. We divide them into joint infer-
ence models and iterative approaches. (Limaye, Sarawagi,
and Chakrabarti 2010) represents different matchings with
a probabilistic graphical model and searches for value as-
signments of the variables that maximize the joint probabil-
ity. (Mulwad, Finin, and Joshi 2013) extends this work with
a more lightweight graphical model. TabEL (Bhagavatula,
Noraset, and Downey 2015) weakens the assumption that
columns and column pairs have KB correspondences, but
assigns higher likelihood to entity sets that tend to co-occur
in Wikipedia documents. (Venetis et al. 2011) proposes a
maximum likelihood inference model that predicts the class
of an column by maximizing the probability of all its cells.
while (Chu et al. 2015) adopts a scoring model.

TableMiner+ (Zhang 2014; Zhang 2017) and T2K Match
(Ritze, Lehmberg, and Bizer 2015) are two state-of-the-art
iterative approaches. TableMiner adopts a bootstrapping pat-
tern which first learns an initial interpretation with partial
table data and then constrains the interpretation of the re-
maining data with the initial interpretation. T2K Match iter-

atively adjusts the weight of matchings until the overall sim-
ilarity values converge. Early work (Syed et al. 2010) and
(Mulwad et al. 2010) adopt a straightforward process which
first determines the class of a column by matching its cells to
KB entities and then refines the matchings with the column
class.

These methods can achieve good performance on some
datasets by jointly or iteratively determining multiple match-
ings with the inter-matching correlations modeled, but their
performance will decrease on tabular data with cells pro-
vided alone, as they utilize some table metadata like col-
umn names and sometimes even external table information
like table caption to calculate some correspondences. Mean-
while, these methods assume that all the table cells have
corresponding entities in the KB, without considering the
knowledge gap between them.

Column Type Annotation
Different from those collective work, some studies focus
only on cell-to-entity matching (Zwicklbauer, Seifert, and
Granitzer 2016; Efthymiou et al. 2017; Luo et al. 2018).
The matched KB entities in turn can determine the column
type with strategies like majority voting (Zwicklbauer et al.
2013). Such an approach can work with table contents alone,
without relying on any metadata, but still ignoring the cases
where a large part of cells have no entity correspondences.

A few studies take such knowledge gap cases into con-
sideration. (Pham et al. 2016) utilizes machine learning and
handcrafted features to predict the similarity between a tar-
get column and a seeding column whose type has been an-
notated. It actually transforms the gap between KB and tar-
get columns to the gap between seeding columns and target
columns, with additional cost to annotate seeding columns.
(Quercini and Reynaud 2013) does not match cells to enti-
ties but directly predicts the type of each cell by feeding the
web page queried by the cell into a machine learning classi-
fier. The idea is close to ours, but our method (i) uses novel
column semantic embedding and CNN-based locality fea-
ture learning for high accuracy, and (ii) automatically trains
machine learning models with samples inferred from a KB.

Semantic Embedding
Most table annotation methods calculate the degree of
matchings with text comparison metrics like TF-IDF, Jac-
card and so on, without considering the contextual seman-
tics. The cell-to-entity matching by (Efthymiou et al. 2017)
embeds cells and entities into vectors using word represen-
tations to introduce contextual semantics in prediction. It ex-
plores intra-cell semantic embedding (i.e., representing cells
into vector space), but ignores inter-cell correlations.

As the locality correlation of tabular data is not as obvious
as images and text, there are few studies learning inter-cell
semantics. (Nishida et al. 2017) uses CNNs to learn local-
ity features for table classification. The study presents that
inter-cell correlations do exist and learning high level table
features is meaningful. However, it differs from ours as it
predicts a table structure type instead of semantic types, and
uses manually labeled tables instead of automatic sample ex-
traction from KBs to supervise the training.

30



Methodology
ColNet Framework
ColNet is a framework that utilizes a KB, word representa-
tions and machine learning to automatically train prediction
models for annotating types of entity columns that are as-
sumed to have no metadata. As shown in Figure 1, it mainly
includes three steps, each of which will be explained in de-
tail in the following subsections.

The first step is called lookup. Given an entity column, it
retrieves column cells’ corresponding entities in the KB and
adopts the classes of the matched entities as a set of candi-
date classes for annotation. Meanwhile, this step generates
labeled samples from the KB for model training, including
particular samples which have a close data distribution to the
column cells, and general samples that deal with the chal-
lenge of sample shortage caused by the big knowledge gap,
small column size, etc.

The second step is called prediction, which calculates a
score for each candidate class of a given column. For each
candidate class, a customized binary CNN classifier which
is able to learn both inter-cell and intra-cell locality features
is trained and applied to predict whether cells of a column
are of this class. In training, ColNet adopts word represen-
tations to incorporate contextual semantics and uses transfer
learning to integrate particular and general samples.

The third step is called ensemble. Given a column and a
candidate class, ColNet combines the vote from the matched
entities of cells with the score predicted by the prediction
model so as to keep the advantages of both. Cell to entity
matching and voting with majority can contribute to a highly
confident prediction, while prediction with CNNs, which
considers the contextual semantics of words can deal with
type disambiguation and recall cells missed by lookup.

Knowledge Lookup
In ColNet, we use a KB that is composed of a terminology
and assertions. The former include classes (e.g., c1 and c2)
and class relationships (e.g., subClass(c1, c2)), while the
latter includes entities (e.g., e) and classification assertions
(e.g., c1(e)). The KB can support entity type inference and
reasoning with the transitivity of subClass.

In sampling, we first retrieve a set of entities from the KB,
by matching all the column cells with KB entities according
to the entity label and entity anchor text using a lexical in-
dex. Those matched entities are called particular entities.
The classes and super classes of each particular entity are
inferred (via KB reasoning) and they are used as candidate
classes for annotation, denoted as C. The reason of select-
ing candidate classes instead of using all the KB classes is
to avoid additional noise, thus reducing false positive predic-
tions and computation. For each candidate class, we further
infer all of its KB entities that are not matched. They are
defined as general entities.

We also repeat the above lookup step with another round
for refinement, inspired by (Syed et al. 2010; Mulwad et
al. 2010). The second round uses each column’s candidate
classes from the first round to constrain the cell to entity

matching, thus refining the entity suggestions. This step fil-
ters out some particular entities and candidate classes with
limited matching confidence.

Synthetic Columns In training, ColNet automatically ex-
tracts labeled samples from the KB. A training sample s

.
=

(e, c) is composed of a synthetic column e and a class c in
C, while a synthetic column is constructed by concatenating
a specific number of entities. This number is denoted as h.
ColNet constructs a set of training samples by selecting dif-
ferent sets of entities with size h and concatenating entities
in each set in different orders. In prediction, the input is a
synthetic column that is constructed by concatenating table
cells (cf. details in Prediction and Ensemble). Using the syn-
thetic column as an input enables the neural network to learn
the inter-cell correlation for some salient features like word
co-occurrence, thus improving the prediction accuracy.

For example, given a column of IT Company that is com-
posed of “Apple”, “MS” and “Google”, ColNet outputs a
high score if the three cells are input as a synthetic column,
but a low score if they are predicted individually and then
averaged. This is because “Apple” and “MS” alone can be
easily classified as other types like Fruit and Operating Sys-
tem, but will be correctly recognized as IT Company if their
co-occurrence with “Google” is considered.

For another example, the combination of cell “Oxford
University Museum of Natural History” and cell “British
Museum” is more likely to be predicted as the right type
Museum than the first cell alone, because the signal of Mu-
seum is augmented in the locality feature learned from the
inter-cell word sequence “Museum”, “of”, “Natural”, “His-
tory”, “British” and “Museum”.

Sampling For each candidate class c in C, both positive
and negative training samples are generated, where a sample
is defined as positive if each entity in its synthetic column is
inferred as an instance of c, and negative otherwise. To fully
capture the hyperplane that can distinguish column cells for
the class, we develop a table-adapted negative sampling ap-
proach. Given the candidate class c, ColNet first finds out
its neighboring candidate classes, each of which is defined
to be a specific column’s candidate class co-occurring with
c. Then ColNet uses the entities that are of a neighboring
class of c but are not of class c to construct the synthetic
column of negative samples.

Meanwhile, ColNet extracts two sample sets for each
candidate class c. They are i) particular samples which are
constructed with particular entities, denoted as Sp, and ii)
general samples which are constructed with general en-
tities, denoted as Sg . For example, given the above col-
umn of IT Company and its general entities retrieved from
DBPedia “dbr:Google”, “dbr:Apple”, “dbr:Apple Inc.” and
“dbr:Microsoft Windows”, synthetic columns constructed
with “dbr:Google” and “dbr:Apple Inc.” (resp. “dbr:Apple”
and “dbr:Microsoft Windows”) are particular positive (resp.
negative) samples of IT Company, while synthetic columns
constructed by general entities like “dbr:Amazon.com” and
“dbr:Alibaba Group” are general positive samples.

Compared with Sg , Sp has a closer data distribution to
the column cells, and therefore is able to make the models

31



adaptive to the prediction data. However, because of the big
knowledge gap, short column size, ambiguous cell to entity
matching, etc., Sp in many cases is too small to train robust
classifiers, especially for those complex models like CNN.
Consequently, we use transfer learning to incorporate both
Sg and Sp in training (cf. details in the next subsection).

Model Training
Synthetic Column Embedding In model training, we
first embed each synthetic column into a real valued matrix
using word representation models like word2vec (Mikolov
et al. 2013), so as to feed it into a machine learning algo-
rithm with the contextual semantics of words incorporated.

The label of each entity is first cleaned (e.g., removing
the punctuation) and split into a word sequence. Then the
word sequences of all the entities of a synthetic column are
concatenated into one. To align word sequences of differ-
ent synthetic columns, their lengths are fixed to a specific
value n which is set to the length of the longest word se-
quence. Those abnormally long sequences are not consid-
ered in setting n. A word sequence shorter than n is padded
with “NULL” whose word representation is a zero vector,
while those that are longer than n are cropped.

Briefly, the word sequence of a synthetic column e is de-
noted as ws(e) = [word1, word2, · · · , wordn], and its em-
bedded matrix is calculated as

x(e) = v(word1)⊕ v(word2) · · · ⊕ v(wordn) (1)

where v(·) represents d dimension word representation and
⊕ represents stacking two vectors. For example, consid-
ering a synthetic column composed of DBpedia entities
dbr:Bishopsgate Institute and dbr:Royal Academy of Arts,
its matrix is the stack of the word vectors of “Bishopsgate”,
“Institute”, “Royal”, “Academy”, “of”, “Arts” and two zero
vectors, where we assume n is fixed to 8.

Neural Network We use a CNN to predict the type of a
synthetic column, inspired by its successful application in
text classification (Kim 2014). For each candidate class c in
C, one binary CNN classifierMc is trained.

𝑑

𝑤𝑜𝑟𝑑%

𝑤𝑜𝑟𝑑&

Input: Matrix of 
a Synthetic 

Column 𝒙(𝒆)

Conv Filters 
(2×𝑑, 3×𝑑, …)

.

.

.

Features Max Pooling 
(Salient Signals)

.

.

.

Output
Score 𝑝

FC Layer

. . .

Figure 2: The CNN architecture used in ColNet.

As shown in Figure 2, the CNN architecture includes one
convolutional (Conv) layer which is composed of multiple
filters (i.e., convolution operations over the input matrix)

with a fixed width (i.e., word vector dimension d) but dif-
ferent heights. For each Conv filter w, one feature vector,
with a specific granularity of locality, is learned:

f = g(w ⊗ x(e) + b) (2)

where b is a bias vector,⊗ represents the convolution opera-
tion and g(·) is an activation function (e.g., ReLU). Consid-
ering a convolution filter with size of k × d, the dimension
of its feature vector f is n− k+1, and its ith element is cal-
culated as fi = g(w · x(e)i:i+k−1 + bi), where · represents
the element-wise matrix multiplication.

After the Conv layer, a max pooling layer which selects
the maximum value of each feature vector and further con-
catenates all the maximum values is stacked:

f ′ =
[
max(f1),max(f2), ...,max(fm)

]
(3)

where m is the number of convolution filters and f j is the
feature vector of jth filter.

Intuitively, f ′ can be regarded as the salient signals of
the learned features with regard to the specific classifi-
cation task. For example, considering the input word se-
quence composed of “Oxford”, “University”, “Museum”,
“of”, “Natural” and “History”, the max pooling layer high-
lights the signal of “Museum” in training a binary CNN clas-
sifier for the class Museum and highlights the signal of “Uni-
versity” for the class Educational Institute. The max pooling
layer also reduces the complexity of the network, playing a
role of regularization.

A fully connected (FC) layer which learns the nonlinear
relationship between the input and output is further stacked:

y = g(f ′ ×w′ + b′) (4)

where w′ and b′ are the weight matrix and bias vector to
learn, × represents the matrix multiplication operation. For
binary classification, the dimensions of w′ and b′ are m× 2
and 1×2 respectively. With y, a Softmax layer is eventually
added to calculate the output score p. No regularizations are
added to the FC layer, as the max pooling is already able to
prevent the network from over fitting.

Transfer Learning The training of each CNN classifier
incorporates both general sample set Sg and particular sam-
ple set Sp. ColNet first pre-trains the CNN with Sg , and
then fine tunes its parameters with Sp. To make the model
fully adapted to the table data, the iteration number of fine
tuning is set to be inversely proportional to the size of Sp.
Specially, when there are no matched KB entities, we can
reuse candidate classes from other columns in the table set
and train the classifiers using Sg alone. For example, con-
sider a column with (yet unknown) researcher names like
“Ernesto Jimenez-Ruiz” and DBPedia as a KB. The partic-
ular sample set Sp is empty as there are not DBPedia cor-
respondences for this column. ColNet, however, may still
be able to predict a type for such a column, by relying
on general entities extracted from other columns such as
“dbr:Ernesto Sabato” (of type dbo:Person).

32



Prediction
For each column, ColNet uses the trained CNNs of its can-
didate classes to predict its types. Synthetic columns are
first extracted. However, traversing all the cell combinations
costs exponential computation time, which is impractical.
ColNet samples N testing synthetic columns by (i) sliding a
window with size of h over the column, and (ii) randomly se-
lecting ordered cell subsets with size of h from the column.
N is often set to a large number for a high coverage and sta-
ble predictions. Each sampled synthetic column is embed-
ded into a matrix by the same way used in model training,
and then predicted by modelMc for each candidate class c
of the column: pck

Mc←−− x(ek), where k = 1, · · · , N and pck
is a score in [0, 1]. ColNet eventually averages all the scores
as the prediction score: pc = 1

N

∑N
k=1 p

c
k.

Ensemble
We integrate the prediction from ColNet with the vote by
KB entities that are retrieved by column cells. The latter
method, denoted as Lookup-Vote is widely used for column
type annotation (e.g., (Zwicklbauer et al. 2013)). Given a
target column, it first matches cells to entities according to
a lexical index, and then uses the rate of cells that have en-
tity correspondences of class c as the score of annotating the
column with c, denoted as vc.

There have been many methods for combing multiple
classifiers (Ponti Jr 2011). We use a customized rule that
can utilize the advantage of both ColNet and Lookup-Vote.
For a candidate class c, we combine pc and vc as follows:

sc =

{
vc, if vc ≥ σ1 or vc < σ2

pc, otherwise
(5)

where σ1 and σ2 are two hyper parameters in [0, 1], and σ1 ≥
σ2. The rule accepts classes supported by a large part of cells
(i.e., vc ≥ σ1) and rejects classes supported by few cells
(i.e., vc < σ2). By setting an intermediate or high value (e.g.,
0.5) to σ1 and a small value (e.g., 0.1) to σ2, the rule helps
achieve a high precision. For the classes with less confidence
from voting (i.e., σ2 ≤ vc < σ1), it adopts the predicted
score, which helps recall some classes that have no entity
correspondences. In final decision making, the column is
annotated by class c if sc ≥ α, and not otherwise, where α is
a threshold hyper parameter in [0, 1]. The optimized setting
of σ1, σ2 and α can be searched with small steps.

Evaluation
Experiment Settings
We use DBPedia (Auer et al. 2007) and two web table
datasets T2Dv2 and Limaye for our experiments. T2Dv2
includes common tables from the Web,2 with 237 PK en-
tity columns, each of which is annotated by a fine-grained
DBPedia class. We call such fine-grained classes as “best”
classes, while their super classes which are right but not
perfect as “okay” classes. We further extend T2Dv2 by
(i) annotating its 174 non-PK entity columns with “best”

2http://webdatacommons.org/webtables/goldstandardV2.html

classes and (ii) inferring “okay” classes of all the columns.
Limaye contains tables from Wikipedia pages. We adopt
the version published by (Efthymiou et al. 2017) with 428
PK entity columns, manually annotate these columns with
“best” classes and infer the “okay” classes. Some statistics
of T2Dv2 and Limaye are shown in Table 1.

Name Columns Avg. Cells Different “Best” (“Okay”) Classes
T2Dv2 411 124 56 (35)
Limaye 428 23 21 (24)

Table 1: Some statistics of the web table sets.

In the experiment, we adopt the DBpedia lookup service
to retrieve particular entities. The service, which is based
on an index of DBPedia Spotlight (Mendes et al. 2011), re-
turns DBpedia entities that match a given text phrase. The
DBPedia SPARQL endpoint is used to infer an entity’s class
and super classes. A word2vec model trained with the latest
dump of Wikipedia articles is used. Each classifier is trained
within 2 minutes on our workstation with Xeon CPU E5-
2670, with our Tensforflow implementation3. Efficiency and
scalability will be improved and evaluated in future work.
We evaluate two aspects: (i) the overall performance of Col-
Net on column type annotation, and (ii) the impact of learn-
ing techniques on the prediction models (CNNs).

Overall Performance
We use precision, recall and F1 score to measure the over-
all performance of ColNet under both “strict” and “toler-
ant” models. Given a target column, the “tolerant” model
equally counts each of its predictions, while the “strict”
model counts its predictions if the “best” class is hit and
directly regards all of them as false positives otherwise.
On both table datasets, ColNet, with and without ensemble
(i.e., sc and pc), is evaluated and compared with Lookup-
Vote (i.e., vc) and T2K Match4 (Ritze, Lehmberg, and Bizer
2015) whose authors developed T2Dv2. On Limaye, Col-
Net is further compared with a voting method using entities
matched by (Efthymiou et al. 2017), named Efthymiou17-
Vote. On both table datasets, σ1 and σ2 are set to 0.5 and
0.08, while α has been adjusted and set to a value with the
highest F1 score. α is set to 0.45, 0.55, 0.2, 0.2 and 0.1
for ColNetEnsemble, ColNet, Lookup-Vote, T2K Match and
Efthymiou17-Vote respectively. The results are shown in Ta-
ble 2 and Table 3.5

Prediction Impact We first present the impact of pre-
diction models by comparing ColNetEnsemble with Lookup-
Vote. On T2Dv2, ColNetEnsemble has 2.3% and 0.8% higher
F1 score under “tolerant” and “strict” models, while on Li-
maye, the corresponding improvements by integrating pre-
diction are 15.0% and 23.8%. The comparison also verifies
that the prediction can improves the recall as it can predict
the type of columns that lack entity correspondences. The

3https://github.com/alan-turing-institute/SemAIDA
4Runnable system from https://goo.gl/AGj3dg
5Note that the results reported in (Ritze 2017) are different as

they use a more tolerant calculation of precision and recall.

33

https://goo.gl/AGj3dg


Models Methods All Columns PK Columns

Tolerant

ColNetEnsemble 0.917, 0.909, 0.913 0.967, 0.985, 0.976
ColNet 0.845, 0.896, 0.870 0.927, 0.960, 0.943

Lookup-Vote 0.909, 0.865, 0.886 0.965, 0.960, 0.962
T2K Match 0.664, 0.773, 0.715 0.738, 0.895, 0.809

Strict

ColNetEnsemble 0.853, 0.846, 0.849 0.941, 0.958, 0.949
ColNet 0.765, 0.811, 0.787 0.868, 0.898, 0.882

Lookup-Vote 0.862, 0.821, 0.841 0.946, 0.941, 0.943
T2K Match 0.624, 0.727, 0.671 0.729, 0.884, 0.799

Table 2: Results (precision, recall, F1 score) on T2Dv2.

Models Methods PK Columns

Tolerant

ColNetEnsemble 0.796, 0.799, 0.798
ColNet 0.763, 0.820, 0.791

Lookup-Vote 0.732, 0.660, 0.694
T2K Match 0.560, 0.408, 0.472

Efthymiou17-Vote 0.759, 0.414, 0.536

Strict

ColNetEnsemble 0.602, 0.639, 0.620
ColNet 0.576, 0.619, 0.597

Lookup-Vote 0.571, 0.447, 0.501
T2K Match 0.453, 0.330, 0.382

Efthymiou17-Vote 0.626, 0.357, 0.454

Table 3: Results (precision, recall, F1 score) on Limaye.

average recall improvement is around 3.9% on T2Dv2 and
around 32.0% on Limaye, each of which is much higher than
the corresponding F1 score improvement. Meanwhile, we
can also find ColNet (pure prediction) has higher F1 score,
precision and recall than Lookup-Vote on Limaye which has
a small average column size and is hard to be voted with en-
tity correspondences. The F1 score outperforming is 14.0%
and 19.2% under “tolerant” and “strict” models.

Ensemble Impact ColNet with an ensemble of lookup
(ColNetEnsemble) achieves higher F1 score than ColNet with-
out ensemble on both table sets. For example, the ensem-
ble benefits ColNet with 7.9% and 4.9% F1 score improve-
ments on all columns of T2Dv2 under “strict” and “tolerant”
models. Actually, ColNetEnsemble also outperforms ColNet
on precision and recall in all the cases except for the recall
on Limaye under “tolerant” model. Meanwhile, the results
show that the improvement on precision is more significant
than on recall. In the two cases of the above example, the
precision (recall) improvements by ensemble are 11.5% and
5.4% (4.3% and 1.6%). This phenomena verifies that inte-
grating the score from Lookup-Vote with our ensemble rule
improves the precision.

Comparison with The State-of-the-art First, both Col-
Net and ColNetEnsemble outperforms T2K Match on preci-
sion, recall and F1 score in all the cases. For example, the F1
score outperforming by ColNetEnsemble is 27.7% (20.6%) on
all (PK) columns of T2Dv2 under “tolerant” model. One po-
tential reason is that the matchings in T2K Match, which ig-
nore contextual semantics of words are ambiguous. Second,
ColNetEnsemble and ColNet also outperform Efthymiou17-
Vote. On Limaye, F1 score of ColNetEnsemble is 48.9% and
36.6% higher than Efthymiou17-Vote under “tolerant” and

“strict” models respectively. Efthymiou17-Vote has compet-
itive precision but much lower recall, because a large part
of cells have no entity correspondences. In ColNet, for the
cells without entity correspondences, the lookup part can get
close entities with the same or overlapping classes, while
the prediction part which considers the contextual semantics
then accurately predict these cells’ classes.

Column Size Impact By comparing Table 2 with Table 3
(results on two different data sets), we find that all the meth-
ods are more accurate on T2Dv2 than on Limaye, although
the former has more “best” and “okay” ground truth classes.
For example, ColNetEnsemble has 14.4% and 36.9% higher
F1 score on Limaye under “tolerant” and “strict” models.
One potential reason is that the average cell number per col-
umn in T2Dv2 is much larger than that in Limaye (i.e., 124
vs 23). This provides more evidence for prediction and vot-
ing. The results also show that the benefits of the predic-
tion enhanced methods (ColNet and ColNetEnsemble) over
the cell to entity matching based methods (Lookup-Vote,
T2K Match and Efthymiou17-Vote) are much more signifi-
cant on Limaye than on T2Dv2. Considering F1 score under
“tolerant” model, ColNetEnsemble outperforms Lookup-Vote
by 3.0% on T2Dv2, but by 15.0% on Limaye.

The Prediction Models
We further evaluate the CNNs with the impact of synthetic
columns, knowledge gap and transfer learning. To this end,
we extract labeled synthetic columns as the testing samples,
and divide the candidate classes into truly matched (TM)
if they are among the ground truths, and falsely matched
(FM) otherwise. For TM classes, we adopt Area Under ROC
Curve (AUC) as the metric, while for FM classes, we use the
average score (AS) of testing samples as only negative test-
ing samples can be extracted. The higher AUC or the lower
AS, the better performance. Results on four kinds of T2Dv2
columns are reported in Figure 3 and 4.

Synthetic Columns Figure 3 shows that the performance
of CNNs with respect to both TM classes and FM classes
mostly increases as the synthetic column size increases, es-
pecially from 1 to 4. For example, the average AUC of TM
classes of Person increases from around 0.93 to 0.97, while
the average AS of its FM classes drops from around 0.35
to 0.22. This phenomenon verifies that classification of syn-
thetic columns is more accurate than classification of cells.
The synthetic column on one hand provides more evidence,
on the other hand enables the CNN to learn additional inter-
cell locality features. Figure 3 also indicates that 4 is an op-
timized synthetic column size setting on T2Dv2.

Knowledge Gap Figure 4 shows that the performance of
CNNs on both TM classes and FM classes significantly
drops as the knowledge gap increases, especially when no
transfer from general samples is conducted. For example, in
the case without transfer, the average AUC of TM classes
of Place, Person, Species and Organization drops by 7.2%,
4.4%, 4.8% and 8.1% respectively, when the ratio of partic-
ular entities drops from 1.0 to 0.1. When only 0.1 of par-
ticular entities are used, the average AS of FM classifiers

34



0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5

Place*

Person*

Species*

Organization*

Synthetic	Column	Size

Avg.	AUC

0.18

0.23

0.28

0.33

0.38

0.43

1 2 3 4 5

Place*

Person*

Species*

Organization*Avg.AS

Synthetic	Column	Size

Figure 3: The performance of CNNs on TM classes [left]
and FM classes [right] under different synthetic column
sizes, trained by particular samples.

increases to higher than 0.5, which means the classifiers pre-
dict over half of the negative testing samples as positive.
Such a performance drop is mainly caused by underfitting in
training, due to particular sample shortage. The performance
drop of CNNs on FM classes is more significant, because
the FM classes, introduced by incorrect cell to entity match-
ings, have a smaller number of particular entities. These re-
sults support the fact that ColNet and ColNetEnsemble per-
form worse on Limaye than on T2Dv2, since the former has
small column size with fewer entity correspondences.

Transfer Learning Figure 4 shows that transfer learning
with general samples significantly benefits the CNNs, espe-
cially when the knowledge gap is large. When the ratio of
particular entities used in training is set to 0.1, 0.25, 0.5,
0.75 and 1.0, the average improvements of CNNs of TM
(FM) classes are 0.9%, 0.8%, 1.7%, 2.7% and 6.5% (56.4%,
68.7%, 70.2%, 71.7% and 77.7%) respectively. Figure 4
also shows that particular entities are essential in train-
ing. For example, considering Organization, training with
both particular and general samples for FM classes achieves
25.8% lower average AS than training with general samples
alone. Fine tuning with particular samples helps bridge the
data distribution gap between column cells and KB entities.

Discussion
On the one hand, we analyze the impact of the knowledge
gap. By comparing the performance on two different web
table datasets that have a big gap in average column size,
we find the shorter columns, which have less entity corre-
spondences in average, are harder to be annotated. ColNet
outperforms the latest collective approach T2K Match and
two cell-to-entity matching based approaches Lookup-Vote
and Efthymiou17-Vote, especially on shorter columns. This
indicates that ColNet can be distinguished from the other
methods by dealing with the knowledge gap for higher per-
formance. It is further verified by the analysis on CNNs’
performance under different simulated knowledge gaps. We
could not compare our approach to TableMiner+ (Zhang
2017), T2K Match++ (Ritze 2017), and Efthymiou17-Vote
on T2Dv2 (Efthymiou et al. 2017) as no runnable code was
available at the time of conducting the evaluation.

On the other hand, we evaluate the impact of synthetic
column size, which indicates that embedding the semantics

ΩΩ

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.25 0.5 0.75 1

Knowledge Gap

Avg.	AS

0 0.25 0.5 0.75 1

Place*

Without	
Transfer

With	
Transfer

0 0.25 0.5 0.75 1

Person*

0 0.25 0.5 0.75 1

Species*

0.9

0.92

0.94

0.96

0.98

1

0 0.25 0.5 0.75 1

Organization*
Avg.	AUC

Figure 4: The performance of CNNs of TM classes [above]
and FM classes [below], under different knowledge gaps,
with and without transfer learning. Knowledge gap is sim-
ulated by randomly selecting a ratio of particular entities for
training. The lower ratio, the larger gap.

of columns and learning locality features cross cells can im-
prove prediction models’ performance. We do not compare
ColNet with (Nishida et al. 2017) and (Luo et al. 2018), al-
though they also learn locality features of a table. There are
two reasons. First, ColNet targets a different table annota-
tion task and holds a different input assumption, where tab-
ular data are provided column by column without any struc-
ture information. Second, ColNet automatically supervises
the learning of prediction models by KB lookup and reason-
ing while those two studies use labeled tables. The former
encounters some additional challenges like synthetic column
construction, sample shortage and so on.

Conclusion and Outlook
The paper presents a neural network and semantic embed-
ding based column type prediction framework named Col-
Net. Different from existing methods, it (i) utilizes column
cells alone without assuming any table metadata or table
structures, thus being able to be extended to any tabular data,
(ii) learns both cell level and column level semantics with
CNNs and word representation for high accuracy, (iii) auto-
matically trains prediction models utilizing KB lookup and
reasoning as well as machine learning methods like trans-
fer learning, and (iv) takes the knowledge gap into consid-
eration, thus being able to deal with growing web tables or
be applied in populating KBs with new tabular data. The
evaluation on two different web table sets T2Dv2 and Li-
maye under both “tolerant” and “strict” models verifies the
effectiveness of ColNet and shows that it can outperform the
state-of-the-art approaches.

In the future, we will extend column type annotation to
other related tasks like property annotation and further study
learning table locality features with semantic reasoning.

35



Acknowledgments
The work is supported by the AIDA project (UK Govern-
ment’s Defence & Security Programme in support of the
Alan Turing Institute), the SIRIUS Centre for Scalable Data
Access (Research Council of Norway, project 237889), the
Royal Society, EPSRC projects DBOnto, MaSI3 and ED3.

References
Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. Dbpedia: A nucleus for a web of open
data. The Semantic Web 722–735.
Bhagavatula, C. S.; Noraset, T.; and Downey, D. 2015.
Tabel: entity linking in web tables. In International Seman-
tic Web Conference, 425–441. Springer.
Cafarella, M. J.; Halevy, A.; Wang, D. Z.; Wu, E.; and
Zhang, Y. 2008. Webtables: exploring the power of tables
on the web. Proceedings of the VLDB Endowment 1(1):538–
549.
Chu, X.; Morcos, J.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.;
Tang, N.; and Ye, Y. 2015. Katara: A data cleaning sys-
tem powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, 1247–1261. ACM.
Efthymiou, V.; Hassanzadeh, O.; Rodriguez-Muro, M.; and
Christophides, V. 2017. Matching web tables with knowl-
edge base entities: from entity lookups to entity embed-
dings. In International Semantic Web Conference, 260–277.
Springer.
Kim, Y. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 1746–1751.
Lehmberg, O.; Ritze, D.; Meusel, R.; and Bizer, C. 2016. A
large public corpus of web tables containing time and con-
text metadata. In Proceedings of the 25th International Con-
ference Companion on World Wide Web, 75–76.
Limaye, G.; Sarawagi, S.; and Chakrabarti, S. 2010. An-
notating and searching web tables using entities, types and
relationships. Proceedings of the VLDB Endowment 3(1-
2):1338–1347.
Luo, X.; Luo, K.; Chen, X.; and Q., Z. K. 2018. Cross-
lingual entity linking for web tables. In AAAI, 362–369.
Mendes, P. N.; Jakob, M.; Garcı́a-Silva, A.; and Bizer, C.
2011. Dbpedia spotlight: shedding light on the web of doc-
uments. In Proceedings of the 7th international conference
on semantic systems, 1–8. ACM.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, 3111–3119.
Mulwad, V.; Finin, T.; Syed, Z.; Joshi, A.; et al. 2010. Using
linked data to interpret tables. In Proceedings of the the First
International Workshop on Consuming Linked Data.
Mulwad, V.; Finin, T.; and Joshi, A. 2013. Semantic mes-
sage passing for generating linked data from tables. In In-
ternational Semantic Web Conference, 363–378. Springer.

Nishida, K.; Sadamitsu, K.; Higashinaka, R.; and Matsuo, Y.
2017. Understanding the semantic structures of tables with a
hybrid deep neural network architecture. In AAAI, 168–174.
Pham, M.; Alse, S.; Knoblock, C. A.; and Szekely, P. 2016.
Semantic labeling: a domain-independent approach. In In-
ternational Semantic Web Conference, 446–462. Springer.
Ponti Jr, M. P. 2011. Combining classifiers: from the cre-
ation of ensembles to the decision fusion. In Graphics, Pat-
terns and Images Tutorials (SIBGRAPI-T), 2011 24th SIB-
GRAPI Conference on, 1–10. IEEE.
Quercini, G., and Reynaud, C. 2013. Entity discovery and
annotation in tables. In Proceedings of the 16th Interna-
tional Conference on Extending Database Technology, 693–
704. ACM.
Ritze, D.; Lehmberg, O.; Oulabi, Y.; and Bizer, C. 2016.
Profiling the potential of web tables for augmenting cross-
domain knowledge bases. In Proceedings of the 25th Inter-
national Conference on World Wide Web, 251–261.
Ritze, D.; Lehmberg, O.; and Bizer, C. 2015. Matching html
tables to dbpedia. In Proceedings of the 5th International
Conference on Web Intelligence, Mining and Semantics, 10.
ACM.
Ritze, D. 2017. Web-Scale Web Table to Knowledge Base
Matching. Ph.D. Dissertation, University of Mannheim,
Germany.
Sun, H.; Ma, H.; He, X.; Yih, W.-t.; Su, Y.; and Yan, X. 2016.
Table cell search for question answering. In Proceedings of
the 25th International Conference on World Wide Web, 771–
782.
Syed, Z.; Finin, T.; Mulwad, V.; Joshi, A.; et al. 2010. Ex-
ploiting a web of semantic data for interpreting tables. In
Proceedings of the Second Web Science Conference.
Venetis, P.; Halevy, A.; Madhavan, J.; Paşca, M.; Shen, W.;
Wu, F.; Miao, G.; and Wu, C. 2011. Recovering semantics
of tables on the web. Proceedings of the VLDB Endowment
4(9):528–538.
Zhang, M.; Hadjieleftheriou, M.; Ooi, B. C.; Procopiuc,
C. M.; and Srivastava, D. 2010. On multi-column foreign
key discovery. Proceedings of the VLDB Endowment 3(1-
2):805–814.
Zhang, Z. 2014. Towards efficient and effective semantic
table interpretation. In International Semantic Web Confer-
ence, 487–502. Springer.
Zhang, Z. 2017. Effective and efficient semantic table inter-
pretation using tableminer+. Semantic Web 8(6):921–957.
Zwicklbauer, S.; Einsiedler, C.; Granitzer, M.; and Seifert,
C. 2013. Towards disambiguating web tables. In Interna-
tional Semantic Web Conference, 205–208.
Zwicklbauer, S.; Seifert, C.; and Granitzer, M. 2016.
Doser-a knowledge-base-agnostic framework for entity dis-
ambiguation using semantic embeddings. In European Se-
mantic Web Conference, 182–198. Springer.

36


