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Abstract

Online Shopping has become a part of our daily routine, but
it still cannot offer intuitive experience as store shopping.
Nowadays, most e-commerce Websites offer a Question An-
swering (QA) system that allows users to consult other users
who have purchased the product. However, users still need to
wait patiently for others’ replies. In this paper, we investigate
how to provide a quick response to the asker by plausible an-
swer identification from product reviews. By analyzing the
similarity and discrepancy between explicit answers and re-
views that can be answers, a novel multi-task deep learning
method with carefully designed attention mechanisms is de-
veloped. The method can well exploit large amounts of user
generated QA data and a few manually labeled review data
to address the problem. Experiments on data collected from
Amazon demonstrate its effectiveness and superiority over
competitive baselines.

Introduction
Today, people become used to online shopping for conve-
nience. However, such kind of virtual services cannot give
customers the same intuitive experience as store shopping in
which they can directly interact with the real products and
salesclerks. This makes the shopping process in online ser-
vices less efficient and less trustworthy. To this end, most e-
commerce Websites now offer a Question Answering (QA)
system that allows users to consult other users who have pur-
chased the product. Despite its helpfulness, users still need
to wait patiently for others’ replies. On the other hand, cus-
tomer reviews are an invaluable source of information where
the user question may happen to be addressed therein. Nev-
ertheless, it is unrealistic for a user to browse through the
massive customer reviews for answers. It would greatly en-
hance user experience that we identify possible answers au-
tomatically from reviews and present them to users instantly.

Product-Related Question Answering (PRQA) in e-
commerce Websites has received attention. Traditional
PRQA works were focused on generating answers from re-
views by unsupervised heuristic methods (Li et al. 2009;
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Moghaddam and Ester 2011; Yu, Zha, and Chua 2012),
which cannot well handle sophisticated human language.
Recently, the accumulation of QA data in the QA systems of
e-commerce Websites has motivated research about super-
vised PRQA methods (McAuley and Yang 2016; Wan and
McAuley 2016). However, these methods just used reviews
as supporting data for answer prediction. They do not try
to identify answers from reviews. To our knowledge, we are
the first to address PRQA by detecting answers from reviews
based on supervision on user generated QA data.

Table 1: Questions (Q) with answers (A) and positively la-
beled review sentences (R) for two products (P) in Amazon.

P Emerson EM510 Stereo Wireless Headset - Blue-
tooth Headset - Retail Packaging - Black

Q: How long does the battery last?
A: Around 8+ hours - I use it and approx one hour

a day M-F and only charge it every other week at
the earliest.

R: I work long hours and the battery last
10 to 12 hours .

P Cheerwing Syma X5SW-V3 FPV Explorers2
2.4Ghz 4CH 6-Axis Gyro RC Headless Quad-
copter Drone UFO with HD Wifi Camera (White)

Q: What happens when drone flies out of range of
controller?

A: It will just fall so keep it at a low level if it goes
too far.

R: After the drone went out of range and didn’t stop
and was lost in the woods, I contacted the com-
pany and they are issuing a new one to us.

However, the distributions of explicit answers and review
contents that can address the corresponding questions are
not quite the same. The key difference is that, when ex-
plicitly answering a question, people tend to omit keywords
about the focus of the question. By “focus”, we mean the
specific topic the asker is concerned with. This is intuitive,
since repeating the focus of the question is usually unneces-
sary. Table 1 shows two examples. Words related to the focus
are in bold face. The focus of the two questions are “battery
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life” and “behavior of the UAV when it is out of range of
the controller”, respectively. Unlike explicit answers, pos-
itive review sentences (i.e. sentences that can be answers)
often contain focus-related words. Therefore, it would not
be a good idea to simply train answer identification models
for reviews by supervision on user generated QA data. On
the other hand, since the question focuses can be diverse,
it is relatively hard to find positive Question-Review sen-
tence (QR) pairs. In our labeled QR dataset, the percent-
age of positive QR pairs is below 10%. This means it is
hard to get enough QR training data to capture the complex
mapping relation between them. Fortunately, positive review
sentences do share similar patterns (called answer pattern)
with explicit answers, e.g. boxed contents in Table 1. The
large-scale QA data accumulated in e-commerce Websites
could be useful for capturing the mapping relation between
questions and positive review sentences.

Question focuses are different from “aspects” in opinion
mining (Liu 2012) or “topics” in social network analysis (Li
et al. 2016; Wang et al. 2013) since they can be complicated
and at different granularities (see examples in Table 1). This
renders traditional aspect/topic extraction techniques inap-
plicable here. Moreover, keyword mapping is not a good
solution either since expressions in reviews are very di-
verse and context dependent. In this work, we devise a novel
multi-task deep learning method which can well exploit both
user generated QA data and manually labeled QR pairs to
train an end-to-end deep model for answer identification in
review data. We treat the QR binary prediction problem (can
answer or not) as the main task, with QA binary prediction
as an auxiliary task. The two tasks are abbreviated as QR
task and QA task respectively. The model consists of three
sub-networks named Q-subnet, A-subnet and R-subnet re-
spectively. The three sub-networks all employ Bidirectional
Gated Recurrent Unit (Bi-GRU) (Cho et al. 2014) to extract
hidden features of word sequences, based on which proper
attention techniques are devised to generate high-level em-
beddings of texts. Specifically, we put a bi-directional atten-
tion (bi-attention for short) module (Seo et al. 2016) between
Q-subnet and A-subnet to learn the mapping relation be-
tween question focuses and answer patterns; a self-attention
module (Lin et al. 2017) is used to extract focus-related con-
tent from review sentences in R-subnet. For the QA task,
the QA pair is fed to Q-subnet and A-subnet, and the out-
put embeddings are fused for prediction. In the QR task, the
question is also fed to Q-subnet, while the review sentence
is inputted to both A-subnet and R-subnet, in order to extract
answer patterns and focus-related content in it respectively.
The outputs are fused for the final prediction. The two tasks
share Q-subnet and A-subnet, so that useful information (i.e.
the mapping between question focuses and answer patterns)
can be transferred from the auxiliary task to the main task.
We further use regularization to better help the self-attention
module capture focus-related content in reviews. The pro-
posed multi-task deep learning method (and the overall net-
work architecture) is dubbed QAR-net.

The contributions of this work are: (1) we propose to ad-
dress the PRQA problem by identifying plausible answers
in reviews and develop a novel multi-task deep learning

method, QAR-net, which can well leverage both large-scale
user generated QA data and manually labeled QR data to
achieve this goal. (2) we construct a manually labeled QR
dataset from the Amazon dataset (McAuley and Yang 2016)
which has 449 positive instances and 7,017 negative in-
stances for model training and evaluation. (3) we perform
thorough experiments based on the publicly available Ama-
zon dataset (McAuley and Yang 2016) to show the effective-
ness of QAR-net1 and its superiority over baseline methods.

Related Work
Questing Answering. Our problem falls into the research
area of Questing Answering (QA). Different QA variant
problems have been studied, including Knowledge Base QA
(KBQA) (Bordes, Chopra, and Weston 2014), Community
QA (CQA) (Nakov et al. 2017), answer selection (dos San-
tos et al. 2016) and Reading Comprehension QA (RCQA)
(Xiong, Zhong, and Socher 2016). Our problem is obviously
different from KBQA where a knowledge base is required.
CQA is concerned with finding answers for a user submitted
question from answers (called comments) of existing ques-
tions. Similarly, answer selection tries to rank a set of candi-
date answers for a given question so that the correct answers
are ranked the highest. RCQA aims to answer questions by
finding answer spans in a passage or document. The latter
three problems are more similar to ours. However, the key
difference is that they only have one distribution for the an-
swer side, while in our context we need to deal with two
distributions (i.e. explicit answers and reviews).

Researcher also tried to attack the PRQA problem. Li et
al. (Li et al. 2009) constructed a random walk model to rank
review sentences by considering questions’ topics and senti-
ments. Moghaddam and Ester (Moghaddam and Ester 2011)
proposed a solution for PRQA which considered aspect in-
formation and performed ad-hoc analysis of questions and
reviews. Yu et al. (Yu, Zha, and Chua 2012) proposed a sim-
ilar solution based on hierarchical organization of reviews
according to aspect granularity. The above methods are all
based on heuristics and hand-designed rules, due to lack of
training data. It is difficult to model sophisticated human
language by heuristics. Recent work for PRQA has begun
to use user generated QA data for model training. McAuley
and Yang (McAuley and Yang 2016) developed a mixtures-
of-experts framework called Moqa to address PRQA. Later,
Moqa was extended to handle questions with multiple an-
swers (Wan and McAuley 2016). These works are differ-
ent to ours in that they predict the answer for a question
from candidate answers (“Yes” or “No” for binary questions;
ranking answers before non-answers for open-ended ques-
tions), by using review sentences as supporting “experts”,
while we identify plausible answers from reviews without
candidate answers. Hence, Moqa is not applicable to our
setting.
Attentive Learning in NLP Tasks. Attentive neural net-
works have achieved great success in many NLP tasks, e.g.
machine translation (Vaswani et al. 2017), textual entailment

1Code & dataset: https://github.com/chen89/
PRQA-MultitaskAttentiveNet.
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recognition (Rocktäschel et al. 2015) and QA (dos Santos et
al. 2016; Wang et al. 2017; Xiong, Zhong, and Socher 2016).
Word-by-word attention is often used in machine translation
(Vaswani et al. 2017) and textual entailment (Rocktäschel
et al. 2015) since word-by-word alignment features are im-
portant for them. In RCQA, additional Recurrent Neural
Networks (RNNs) are usually built upon the word-by-word
(co)-attention layer to compute a question-aware represen-
tation of passages (Wang et al. 2017; Xiong, Zhong, and
Socher 2016). This is helpful for processing long text se-
quences. In answer selection, the bi-attention pooling tech-
nique (dos Santos et al. 2016) has achieved state-of-art per-
formance. Since we do not deal with long texts and word-
by-word alignment is not our concern either, we choose to
use bi-attention pooling to extract salient mapping features
between questions and answers. Moreover, a self-attention
module (Lin et al. 2017) together with regularization is de-
veloped to capture focus-related content in reviews.
Multi-task Learning. Multi-task learning is deemed to be
an effective learning paradigm for boosting the performance
of tasks with insufficient training instances by related tasks
with abundant training data. The key idea is to share com-
mon “knowledge” between related tasks. This is usually
done by sharing model parameters (hard or soft). Readers
can refer to (Ruder 2017) for a recent survey. Hard-sharing
is done through common model structures. In the NLP field,
Bonadiman et al. divided the CQA problem into three sub-
tasks and developed a partially hard-sharing deep model
(Bonadiman, Uva, and Moschitti 2017). The model requires
all the inputs for the three subtasks to be present, which
limits its applicability. Soft-sharing constructs separate net-
works for different tasks and uses regularization (e.g. L2
norm (Duong et al. 2015), trace norm (Yang and Hospedales
2016)) to force different networks to be similar. In this work,
we develop a partially hard-sharing network which explic-
itly tries to transfer the mapping relations between question
focuses and answer patterns from the auxiliary task to the
main task.

The Method

This section presents QAR-net. We first formally define the
problem and notations. Then we describe the model archi-
tecture in details. Finally, we discuss how to train QAR-net.

Problem Formulation

We are given a set of labeled QR pairs Sqr =
{(Q,R, yQR)}, where Q is a user submitted question, R is
a review sentence and yQR ∈ {0, 1} is the binary label in-
dicating whether R can answer Q. In this work we take sen-
tences as the basic unit of reviews. The reason is that, when
writing a review users usually comment on multiple aspects
of the product. Treating whole reviews as the basic unit is not
reasonable, since the focus of Q usually belongs to one as-
pect. One possible solution is to segment reviews according
to aspect analysis of sentences. However, this would intro-
duce additional issues if the aspect detection method is not

accurate enough2.
Besides, we also have an automatically labeled set of QA

pairs Sqa = {(Q,A, yQA)} obtained from user generated
QA data, where yQA ∈ {0, 1} is defined similarly as above.
The problem is to train a classification model from Sqr and
Sqa for the QR task, so that for a new pair (Qnew, Rnew)
the model can accurately predict whether Rnew can answer
Qnew. Note that unlike the answer selection problem (dos
Santos et al. 2016), we formulate the problem as a classifi-
cation problem rather than a ranking problem. For answer
selection it is usually assumed that at least one answer exists
in the candidates, while in our context there could be no an-
swer at all. Setting a “yes/no” threshold for ranking scores
is difficult.

Model Architecture
The model architecture is depicted in Figure 1. Horizontally,
the low level part consists of three subnetworks: A-subnet,
Q-subnet and R-subnet. Q-subnet and A-subnet are shared
between the QR task (main task) and the QA task (auxil-
iary task), in order to extract common patterns of the two
tasks, i.e. focus from questions and answer patterns from
answers/review sentences. R-subnet is exclusive for the QR
task which is used to extract focus-related content from re-
view sentences. Intuitively, R-subnet provides complemen-
tary information to A-subnet for matching questions and re-
view sentences. Vertically, QAR-net can be divided into four
steps: text embedding, attentive pooling, fusion and output.
In the following, we detail these steps.
Text Encoding. We abstract questions, answers and reviews
as sequences of words, i.e. Q =< wQ

t >n
t=1, A =<

wA
t >m

t=1 and R =< wR
t >l

t=1. Since the operations in
this step are shared among Q, A and R, we omit the super-
scripts temporally and simply consider a sequence < wt >

3.
Each word wt in the sequence is first converted to its respec-
tive word-level embedding vector et and character-level em-
bedding vector ct. For word-level embeddings, we use pre-
trained GloVe embeddings (Pennington, Socher, and Man-
ning 2014). Similar to (Wang et al. 2017), the character-
level embedding vector ct is from the final hidden states
of a bi-directional RNN (bi-RNN) applied to wt’s charac-
ters and trained with the model. Character-level embeddings
can help handle out-of-vocabulary words. We concatenate et
and ct to represent wt and then feed the word sequence to a
bi-GRU network to generate low level representation ht for
each word. Compared to other RNN models such as Long
Short-Term Memory (LSTM), GRU is computational effi-
cient and can achieve competitive performance (Wang et al.
2017). The computation of bi-GRUs can be formulated as:

−→
ht =

−−−→
GRU(

−−→
ht−1, et ⊕ ct).

−→
ht ∈ Ru (1)

←−
ht =

←−−−
GRU(

←−−
ht+1, et ⊕ ct).

←−
ht ∈ Ru (2)

2We do try to merge adjacent sentences if we are sure that they
belong to the same aspect. We still call them sentences for clarity.

3However, we use different Bi-GRUs for Q, A and R to capture
their unique characteristics.
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Figure 1: The architecture of QAR-net.

where operator ⊕ denotes the concatenation of vectors, −→ht

and←−ht represent forward and backward hidden states of bi-
GRU respectively. We then concatenate −→ht and ←−ht for each
word wt to get the complete hidden state ht ∈ R2u. The hid-
den states provide contextualized representations of words.
We store ht’s of a sequence as column vectors of a matrix.
For Q, A and R, they are HQ ∈ R2u×n, HA ∈ R2u×m and
HR ∈ R2u×l respectively.
Attentive Pooling. As shown in Table 1, not all words are
equally important for QA/QR matching. The purpose of the
attentive pooling step is to extract salient patterns from ques-
tions, answers and reviews, so that more efficient and accu-
rate matching can be performed in the subsequent steps. To
extract the mapping patterns between Q and A (R), we set
a bi-attention module (dos Santos et al. 2016) between Q-
subnet and A-subnet. We also put a self-attention module
(Lin et al. 2017) in R-subset, in order to distill focus-related
keywords in R.

Figure 2 shows an illustration of the bi-attention mecha-
nism. It takes HQ and HA as input and outputs the fixed-

length vector representations, r
←−
QA and r

−→
QA, for Q and A

respectively. Arrows here denote the direction of the atten-
tion. The first step is to compute an affinity matrix G as
follows

G = tanh((HA)TUHQ). G ∈ Rm×n (3)

where U ∈ R2u×2u is a parameter matrix. Eq. (3) intrinsi-
cally provides a soft mapping between words in Q and A in

𝐇𝐴 𝐇𝑄
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softmax

softmax

𝐚𝑄𝐴

𝐫𝑄𝐴
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𝐆

RowSum

ColSum

×

×

Figure 2: Illustration of the bi-attention mechanism.

terms of the obtained hidden vectors. The (i, j)-th entry of
G reflects the similarity between hA

i and hQ
j . U accounts

for the correlation among the hidden dimensions. We then
apply row-wise summation and column-wise summation on
G to obtain score vectors RowSum(G) and ColSum(G),

which are in turn used to calculate attention vectors a
−→
QA

and a
←−
QA:

a
−→
QA = softmax(RowSum(G)). a

−→
QA ∈ Rm (4)

a
←−
QA = softmax(ColSum(G)). a

←−
QA ∈ Rn (5)

Note we use sum pooling here rather than max-pooling (dos
Santos et al. 2016). The reason is that in PRQA many ques-
tions are subjective ones and a few focus keywords may cor-
respond to a number of answer-related keywords. Sum pool-
ing could better reflect the overall importance of words. Fi-
nally, the attention-weighted representations of Q and A are
calculated as:

r
−→
QA = HAa

−→
QA. r

−→
QA ∈ R2u (6)

r
←−
QA = HQa

←−
QA. r

←−
QA ∈ R2u (7)

The self-attention mechanism on R-subnet is inspired by
(Lin et al. 2017). In our case we do not use multiple attention
vectors since we only want to extract focus-related content
from R. The attention vector aR and attention-weighted rep-
resentation rR are computed as follows:

aR = softmax(vT tanh(UrHR)). aR ∈ Rl (8)

rR = HRaR. rR ∈ R2u (9)

where Ur ∈ Rk×2u and v ∈ Rk are parameters of the
self-attention function with hyperparameter k. In order to
encourage the self-attention module to extract focus-related
keywords from R, we design in our objective function
proper regularization terms which will be presented in the
next subsection.
Fusion & Output. The purpose of fusion is to generate a
uniform representation for the input QA (or QR) pair. We
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take a strategy similar to (Rocktäschel et al. 2015) to per-
form fusion which has shown good performance for NLP

tasks. We first fuse r
−→
QA and r

←−
QA:

uQA = tanh(W
−→qar
−→
QA +W

←−qar
←−
QA). uQA ∈ R2u

(10)
where W

−→qa and W
←−qa are 2u× 2u parameter matrices. For

the QA task (auxiliary task), uQA is used for label prediction

ŷQA = σ((wqa)
T
uQA + bqa). (11)

where σ(·) is the sigmoid function. For the QR task (main
task), we further fuse uQA with rR:

gQR = tanh(WqruQR +WrrR). gQR ∈ R2u (12)

Note that for the QR task uQA is obtained based on R rather
than A, i.e. uQR in the above equation. The final output layer
is similar to (11):

ŷQR = σ((wqr)
T
gQR + bqr). (13)

Model Training
The training objective functions for both QR and QA tasks
are standard cross-entropy functions over the predictions
{ŷQR} and {ŷQA} on training data

Lqr = −
∑

yQR log(ŷQR)+(1−yQR) log(1−ŷQR) (14)

Lqa = −
∑

yQA log(ŷQA)+(1−yQA) log(1−ŷQA) (15)

Additionally, for the main task we add regularization
terms to encourage the self-attention module in R-subnet to
capture focus-related content in reviews. Recall that review
sentences are fed into both A-subset and R-subnet for atten-
tion extraction with different purpose. Hence, for a QR pair
(Q,R, yQR) ∈ Sqr, we penalize the similarity between the
two attention vectors:

R1 =
∑

(Q,R,yQR)∈Sqr

∥(a
−−→
QR)TaR∥2 (16)

Such a L2 norm cost is shown to be better than Kullback-
Leibler divergence for penalizing attention vectors (Lin et al.
2017). In this way, aR is forced to capture keywords other
than those related to answer patterns. Another regularization
term is imposed on the attention-weighted representations
of Q and R. Since for positive pairs we want both of them
to capture the question focus, we penalize their Euclidean
distance as follows

R2 =
∑

(Q,R,yQR)∈Sqr,yQR=1

∥r
←−−
QR − rR∥2 (17)

In summary, the loss function for the main task then be-
comes

L = Lqr + µR1 + ηR2, (18)
where µ and η are regularization hyperparameters. QAR-net
is trained with respect to both (15) and (18).
Training Strategy. Unlike the traditional Multi-task learn-
ing (MTL) setting, our two tasks do not share the same in-
put, which means we cannot perform joint training. Hence,

we adopt the “pre-training then fine-tuning” transfer learn-
ing scheme: the model is pre-trained on QA data and then
we use labled QR pairs to fine-tune the whole model (R-
subnet is randomly initialized). However, by preliminary ex-
periments we find that it is not a good idea to sufficiently
train QAR-net on QA data. This is because sufficient pre-
training would fit A-subnet very well to the distribution of
answers. Considering the much larger size of QA data, it is
difficult to drag the model to fit the distribution of reviews
in fine-tuning. Our problem setting is different from that of
classic MTL problems such as MTL for multiple NLP tasks
(Hashimoto et al. 2016), where tasks are equally important.
In our problem, we only care about the main task. Therefore,
we perform insufficient pre-training with the auxiliary task.
In experiments, we will investigate how the pre-training de-
gree affects the model performance for the main task.

Experiments
Dataset and Preprocessing
We collect QA pairs and reviews from randomly selected
products of two domains, “Electronics” and “Cellphones &
Accessories”, in the Amazon dataset (McAuley and Yang
2016). For each question, the top-voted answer is used to
form a positive QA pair, and we randomly select two an-
swers from other products of the same domain to gener-
ate negative QA pairs. This results in totally 1,000,139 QA
pairs. Regarding reviews, we use NLTK4 to split them into
sentences.

We then randomly select 10k questions from the two do-
mains and combine them with review sentences for the re-
spective products to generate QR pairs for labeling. As dis-
cussed earlier, positive QR pairs are rare. Hence, we perform
pre-filtering to speedup labeling. Our assumption is that pos-
itive review sentences should at least overlap with the ques-
tion in terms of aspect-related noun words (AN-words). We
construct the set of AN-words for a domain according to
the ratio of within-domain frequency to out-of-domain fre-
quency (on a background text collection constructed from
other unrelated domains) for each candidate noun word. An
AN-word should have high within-domain frequency and
low out-of-domain frequency. The threshold for finalizing
the set of AN-words is decided by manual inspection. We
filter out QR pairs that do not overlap in terms of AN-words.
Note this also raises the difficulty of differentiating between
answer and non-answer sentences since they all overlap with
the question in terms of AN-words. After filtering, the total
number of QR pairs is still large (nearly 0.5M), so we ran-
domly select pairs for labeling (on the basis of questions to
resist the power law effect of reviews). Each sampled QR
pair is labeled by 3 trained student annotators. The annota-
tors agree on 86% of all the sampled QR pairs. Disagree-
ments are resolved by discussion. Finally, we get 449 pos-
itive QR pairs and 7,017 negative QR pairs. The final la-
beled set covers 5907 distinct questions. It is possible that a
question corresponds to multiple positive/negative instances
(QR pairs). We randomly split the QR dataset into training

4http://www.nltk.org/
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set (4,000), validation set (977) and test set (2,489) with the
same positive/negative proportion.

Implementation Details
We use Stochastic Gradient Decent (SGD) to train neural
networks. We apply Adam (Kingma and Ba 2014) with ini-
tial learning rate set to 1e-6. The first and second momentum
coefficients are set to 0.9 and 0.999 respectively (as sug-
gested in (Kingma and Ba 2014)).We apply dropout (Sri-
vastava et al. 2014) to the outputs of the Bi-GRU layer with
dropout rate 0.5 to prevent overfitting. For fair comparison,
the hyperparameters shared among different methods are set
to the same values. Specifically, the length of character-level
embedding vectors is set to 20; the hidden vector length of
GRUs is set as u = 32. The mini-batch size for SGD is
128. Hyperparameters that are unique to each method are
tuned on the QR validation set. Additionally, we employ a
random under-sampling trick on the majority class (nega-
tive) in both QA and QR datasets. Different from the classic
one-time under-sampling trick (Yan et al. 2015), we con-
duct this operation on each training epoch. Specifically, for
each QA/QR training epoch, we randomly sample negative
QA/QR pairs of the same number as the positive pairs and
then combine them to form the training set for this epoch.
This could alleviate the information loss issue of the clas-
sic under-sampling approach (He and Garcia 2009). For fair
comparison, all the methods use this under-sampling trick to
relieve the class imbalance problem in the datasets. All the
MTL methods use the pre-training then fine-tuning training
strategy. The number of pre-training epochs for each MTL
method is determined on the QR validation set. The number
of fine-tuning epochs is determined by early stopping on the
validation set.

Compared Methods and Evaluation Metrics
QREM: question review embedding matching. We first con-
vert questions and review sentences into matrices of word
vectors by GloVe (Pennington, Socher, and Manning 2014).
Then we perform row-wise max, min and average pooling,
and concatenate the pooling results to generate fixed-length
vectors of questions and review sentences. Finally, For given
Q and R we use cosine similarity and threshold trained by
logistic regression on the QR task to judge whether R can
answer Q.
QAR-net: it is the solution of this paper.
QAR-net-QR: this one employs the QAR-net model but
only trains QAR-net with the QR task.
QA-net-QA : this baseline takes the left part of QAR-net
(called QA-net), i.e. components in the dotted-line box of
the auxiliary task in Fig. 1. It is similar to a state-of-art net-
work for answer selection (dos Santos et al. 2016). We only
use QA pairs for training.
QA-net-QR : this baseline uses the same network as above
but is trained on QR pairs only.
QA-net-MTL: it employs the QA-net as base network and
is trained with both QA and QR tasks. It uses the traditional
hard parameter sharing scheme for MTL with task-specific
output layers (Ruder 2017).
CQA-hard: it is a variant of the MTL model for CQA

(Bonadiman, Uva, and Moschitti 2017). We use 2 pairs of
CNNs to process QA and QR pairs respectively, and feed
the extracted feature vectors of the QA/QR pair to a fully
connected (FC) layer shared by the two tasks.
NLP-soft: this is a soft-sharing MTL model originally
designed for dependency parsing in different languages
(Duong et al. 2015). We modify its input layer to take pairs
as input.

Although we have abundant positive QA pairs, the la-
beled positive QR pairs are very rare. Since our focus is
the positive class, we use precision, recall, F-measure and
Precision-Recall curves to evaluate these methods. (He and
Garcia 2009).

Table 2: Performance comparison
Method Precision Recall F-measure
QREM 0.1838 0.1667 0.1748
QA-net-QA 0.3525 0.5733 0.4365
QA-net-QR 0.4158 0.5267 0.4647
QA-net-MTL 0.4000 0.5067 0.4471
CQA-hard 0.4103 0.2133 0.2807
NLP-soft 0.4343 0.2867 0.3454
QAR-net-QR 0.4247 0.5267 0.4702
QAR-net 0.5385 0.6067 0.5705
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Figure 3: Precision-recall curves.

Main Results
The comparison results are shown in Table 2. QREM per-
forms poorly, which indicates that a naive text embedding
constructed by pooling and concatenation operations on pre-
trained word embeddings cannot handle the problem. QA-
net-QA achieves the lowest precision among all the deep
learning baselines. This is because it is not trained on the
QR task and therefore cannot enjoy performance boosting
by exploiting the QR data. Its high recall indicates the two
tasks indeed share common answer patterns. QA-net-QR
and QAR-net-QR exhibit inferior performance compared to
our QAR-net. This indicates only relying on QR pairs with
rare positive instances cannot well capture the mapping pat-
terns of QR. QA-net-MTL performs better than QA-net-QA
but worse than QA-net-QR, in terms of F1. This means the
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naive hard-sharing scheme cannot well leverage the QA data
to boost the performance of the QR task. The other two MTL
baselines, CQA-hard and NLP-soft, are the worst among the
deep learning baselines, in terms of F1. The reasons could
be (1) they do not use attention mechanisms; (2) their model
sharing schemes may not be suitable for our problem. With a
carefully designed model sharing scheme and proper atten-
tion mechanisms with regularization, QAR-net outperforms
all the baselines. To assess their ability of ranking answers
before non-answers, Figure 3 shows precision-recall curves
of all the methods. It also clearly shows our method’s supe-
riority.

Pre-training Degree and Regularization Terms
Here we investigate how the pre-training degree affects the
performance. We vary the number of pre-training epochs
for QAR-net from 10 to 100. The obtained model is fine-
tuned on the QR training set and tested on the QR valida-
tion set. For each test value of epoch number, the process
is repeated 20 times in consideration of the randomness in
under-sampling. The results are shown in Figure 4. We can
observe that the performance first increases, then decreases
with some fluctuations. The best performance is achieved
around 20 epochs. These observations indicate long time
pre-training with the QA task cannot further benefit the QR
task. The reason could be due to the distribution and data
size differences between the two tasks.
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Figure 4: Validation performance of QAR-net when varying
the number of pre-training epochs.

To prove the effectiveness of the regularization terms
Eqs. (16) and (17), we conduct an ablation study: 1) we re-
move one of the two terms; 2) we remove both terms. The
results are shown in Table 3. It clearly shows that the two
regularization terms are crucial to the performance. When
removing both of them, the performance takes a nose dive.
The results imply that the two terms can effectively force
the attention modules to capture important patterns for QR
matching.

Table 3: Ablation study
Method Precision Recall F-measure
No regularizations 0.4118 0.4200 0.4158
R2 only 0.4690 0.4533 0.4610
R1 only 0.4938 0.5267 0.5097
R1 + R2 0.5385 0.6067 0.5705

Parameter Study
k, µ and η are three hyperparameters exclusive to QAR-net.
k is the hidden layer size of the self-attention module. µ and
η are regularization hyperparameters. We investigate their
impact on model performance with QR validation set. For
each hyperparameter, we fix the other two and decide the
test range by probing some values. The results are shown in
Figure 5. Regarding the regularization hyperparameters, we
can see the performance is the best when they are given a
moderate value, indicating the usefulness of the regulariza-
tion. The curve of k has a similar pattern. Besides, the per-
formance is sensitive to k. This can be explained: (1) when
k is small, the model cannot well capture the problem com-
plexity; (2) when k is large, we could easily overfit the QR
training data since the positive QR pairs are very limited (the
self-attention module can only be trained by QR signals). We
finally set k = 32, µ = 1e-1 and η = 1e-1.
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Figure 5: Parameter tuning.

Attention Visualization
In QAR-net, we use two attention mechanisms in order to
capture question focus and answer patterns in the paired in-
put. In Figure 6, we present a visualization of the attention
vectors obtained on two positive QR pairs. The highlighted
words with stronger red color indicates larger attention val-
ues. We can see the two attention mechanisms work as ex-
pected. a

←−−
QR and aR roughly capture the question focus,

while a
−−→
QR seems to reflect answer related words. We also

investigated some negative pairs. The patterns captured by
the bi-attention module for negative pairs seem to be ran-
dom, since there is actually no related answer pattern in neg-

ative sentences. a
←−−
QR and aR tend to highlight noun words

and sometimes can capture aspect-related words.

[No.1 Laptop]

[No.2 Cellphone]

Q

R+

Q

R+

𝐚𝑸𝑹 ∶ Uh, how many cores in this i7?

𝐚𝑸𝑹 ∶ You get an Intel i7 7500u CPU (dual core with 4 threads) 12gb DDR4 RAM.

𝐚𝑹 : You get an Intel i7 7500u CPU (dual core with 4 threads) 12gb DDR4 RAM.

𝐚𝑸𝑹 : Anyone have a problem with the phone not recognizing the new battery? I

put one in my phone and now my charge indicator shows a red question mark.

𝐚𝑸𝑹 :You can not switch the battery yourself even if u have the tools, the phone

wont recognize the battery...ie

𝐚𝑹 :You can not switch the battery yourself even if u have the tools, the phone

wont recognize the battery...ie

Figure 6: Attention visualization.
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Conclusion
In this work, we proposed a novel multi-task attentive model
named QAR-net to identify plausible answers from product
reviews for user questions. QAR-net can well leverage large
scale user generated QA data to help QR matching. Experi-
ments on data collected from Amazon showed that QAR-net
is effective and outperform baseline methods.
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