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Abstract

With the promising progress of deep neural networks, layer
aggregation has been used to fuse information across lay-
ers in various fields, such as computer vision and machine
translation. However, most of the previous methods combine
layers in a static fashion in that their aggregation strategy
is independent of specific hidden states. Inspired by recent
progress on capsule networks, in this paper we propose to
use routing-by-agreement strategies to aggregate layers dy-
namically. Specifically, the algorithm learns the probability of
a part (individual layer representations) assigned to a whole
(aggregated representations) in an iterative way and com-
bines parts accordingly. We implement our algorithm on
top of the state-of-the-art neural machine translation model
TRANSFORMER and conduct experiments on the widely-used
WMT14 English⇒German and WMT17 Chinese⇒English
translation datasets. Experimental results across language
pairs show that the proposed approach consistently outper-
forms the strong baseline model and a representative static
aggregation model.

Introduction
Deep neural networks have advanced the state of the art in
various communities, from computer vision to natural lan-
guage processing. Researchers have directed their efforts
into designing patterns of modules that can be assembled
systematically, which makes neural networks deeper and
wider. However, one key challenge of training such huge
networks lies in how to transform and combine information
across layers. To encourage gradient flow and feature propa-
gation, researchers in the field of computer vision have pro-
posed various approaches , such as residual connections (He
et al. 2016), densely connected network (Huang et al. 2017)
and deep layer aggregation (Yu et al. 2018).

State-of-the-art neural machine translation (NMT) mod-
els generally implement encoder and decoder as multiple
layers (Wu et al. 2016; Gehring et al. 2017; Vaswani et
al. 2017; Chen et al. 2018), in which only the top layer is
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exploited in the subsequent processes. Fusing information
across layers for deep NMT models, however, has received
substantially less attention. A few recent studies reveal that
simultaneously exposing all layer representations outper-
forms methods that utilize just the top layer for natural lan-
guage processing tasks (Peters et al. 2018; Shen et al. 2018;
Wang et al. 2018; Dou et al. 2018). However, their methods
mainly focus on static aggregation in that the aggregation
mechanisms are the same across different positions in the se-
quence. Consequently, useful context of sequences embed-
ded in the layer representations are ignored, which could be
used to further improve layer aggregation.

In this work, we propose dynamic layer aggregation ap-
proaches, which allow the model to aggregate hidden states
across layers for each position dynamically. We assign a dis-
tinct aggregation strategy for each symbol in the sequence,
based on the corresponding hidden states that represent both
syntax and semantic information of this symbol. To this end,
we propose several strategies to model the dynamic princi-
ples. First, we propose a simple dynamic combination mech-
anism, which assigns a distinct set of aggregation weights,
learned by a feed-forward network, to each position. Sec-
ond, inspired by the recent success of iterative routing on
assigning parts to wholes for computer vision tasks (Sabour,
Frosst, and Hinton 2017; Hinton, Sabour, and Frosst 2018),
here we apply the idea of routing-by-agreement to layer
aggregation. Benefiting from the high-dimensional coinci-
dence filtering, i.e. the agreement between every two inter-
nal neurons, the routing algorithm has the ability to extract
the most active features shared by multiple layer representa-
tions.

We evaluated our approaches upon the standard TRANS-
FORMER model (Vaswani et al. 2017) on two widely-used
WMT14 English⇒German and WMT17 Chinese⇒English
translation tasks. We show that although static layer ag-
gregation strategy indeed improves translation performance,
which indicates the necessity and effectiveness of fusing
information across layers for deep NMT models, our pro-
posed dynamic approaches outperform their static counter-
part. Also, our models consistently improve translation per-
formance over the vanilla TRANSFORMER model across lan-
guage pairs. It is worth mentioning that TRANSFORMER-
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BASE with dynamic layer aggregation outperforms the
vanilla TRANSFORMER-BIG model with only less than half
of the parameters.

Contributions. Our key contributions are:

• Our study demonstrates the necessity and effectiveness of
dynamic layer aggregation for NMT models, which bene-
fits from exploiting useful context embedded in the layer
representations.

• Our work is among the few studies (cf. (Gong et al. 2018;
Zhao et al. 2018)) which prove that the idea of capsule
networks can have promising applications on natural lan-
guage processing tasks.

Background
Deep Neural Machine Translation
Deep representations have a noticeable effect on neural
machine translation (Meng et al. 2016; Zhou et al. 2016;
Wu et al. 2016). Generally, multiple-layer encoder and de-
coder are employed to perform the translation task through
a series of nonlinear transformations from the representation
of input sequences to final output sequences.

Specifically, the encoder is composed of a stack ofL iden-
tical layers with the bottom layer being the word embedding
layer. Each encoder layer is calculated as

Hl
e = LAYERe(H

l−1
e ) + Hl−1

e (1)

where a residual connection (He et al. 2016) is employed
around each of the two layers. LAYER(·) is the layer
function, which can be implemented as RNN (Cho et al.
2014), CNN (Gehring et al. 2017), or self-attention net-
work (SAN) (Vaswani et al. 2017). In this work, we evaluate
the proposed approach on the standard Transformer model,
while it is generally applicable to any other type of NMT
architectures.

The decoder is also composed of a stack of L layers:

Hl
d = LAYERd(H

l−1
d ,HL

e ) + Hl−1
d (2)

which is calculated based on both the lower decoder layer
and the top encoder layer HL

e . The top layer of the decoder
HL
d is used to generate the final output sequence.
As seen, both the encoder and decoder stack layers in

sequence and only utilize the information in the top layer.
While studies have shown deeper layers extract more se-
mantic and more global features (Zeiler and Fergus 2014;
Peters et al. 2018), these do not prove that the last layer is
the ultimate representation for any task. Although residual
connections have been incorporated to combine layers, these
connections have been “shallow” themselves, and only fuse
by simple, one-step operations (Yu et al. 2018).

Exploiting Deep Representations
Recently, aggregating layers to better fuse semantic and spa-
tial information has proven to be of profound value in com-
puter vision tasks (Huang et al. 2017; Yu et al. 2018). For
machine translation, Shen et al. (2018) and Dou et al.(2018)

have proven that simultaneously exposing all layer represen-
tations outperforms methods that utilize just the top layer
on several generation tasks. Specifically, one of the meth-
ods proposed by Dou et al.(2018) is to linearly combine the
outputs of all layers:

H̃ =

L∑
l=1

WlH
l (3)

where {W1, . . . ,WL} ∈ Rd are trainable parameter ma-
trices, where d is the dimensionality of hidden layers. The
linear combination strategy is applied to both the encoder
and decoder. The combined layer H̃ that embeds all layer
representations instead of only the top layer HL, is used in
the subsequent processes.

As seen, the linear combination is encoded in a static set
of weights {W1, . . . ,WL}, which ignores the useful con-
text of sentences that could further improve layer aggrega-
tion. In this work, we introduce the dynamic principles into
layer aggregation mechanisms.

Approach
Dynamic Combination
An intuitive extension of static linear combination is to gen-
erate different weights for each layer combination rather
than apply the same weights all the time. To this end, we
calculate the weights of the linear combination as

Wl = FFNl(H
1, . . . ,HL) ∈ RJ×d (4)

where J is the length of the hidden layer Hl, and FFNl(·)
is a distinct feed-forward network associated with the l-th
layer Hl. Specifically, we use all the layer representations
as the context, based on which we output a weight matrix
that shares the same dimensionality with Hl. Accordingly,
the weights are adapted during inference depending on the
input layer combination.

Our approach has two strengths. First, it is a more flex-
ible strategy to dynamically combine layers by capturing
contextual information among them, which is ignored by
the conventional version. Second, the transformation matrix
FFNl(·) offers the ability to assign a distinct weight to each
state in the layers, while its static counterpart fails to exploit
such strength since the length of input layers J varies across
sentences thus cannot be pre-defined.

Layer Aggregation as Capsule Routing
The goal of layer aggregation is to find a whole represen-
tation of the input from partial representations captured by
different layers. This is identical to the aims of capsule net-
work, which becomes an appealing alternative to solving the
problem of assigning parts to wholes (Hinton, Krizhevsky,
and Wang 2011). Capsule network employs a fast iterative
process called routing-by-agreement. Concretely, the basic
idea is to iteratively update the proportion of how much a
part should be assigned to a whole, based on the agreement
between parts and wholes. An important difference between
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Figure 1: Illustration of the dynamic routing algorithm.

iterative routing and layer aggregation is that the former pro-
vides a new way to aggregate information according to the
representation of the final output.

A capsule is a group of neurons whose outputs repre-
sent different properties of the same entity from the in-
put (Hinton, Sabour, and Frosst 2018). Similarly, a layer
consists of a group of hidden states that represent different
linguistic properties of the same input (Peters et al. 2018;
Anastasopoulos and Chiang 2018), thus each hidden layer
can be viewed as a capsule. Given the layers as input cap-
sules, we introduce an additional layer of output capsules
and then perform iterative routing between these two layers
of capsules. Specifically, in this work we explore two repre-
sentative routing mechanisms, namely dynamic routing and
EM routing, which differ at how the iterative routing proce-
dure is implemented. We expect layer aggregation can ben-
efit greatly from advanced routing algorithms, which allow
the model to allow the model to directly learn the part-whole
relationships.

Dynamic Routing Dynamic routing is a straightforward
implementation of routing-by-agreement. To illustrate, the
information of L input capsules is dynamically routed to
N output capsules, which are concatenated to form the fi-
nal output H̃ = [Ω1, . . . ,ΩN ], as shown in Figure 1. Each
vector output of capsule n is calculated with a non-linear
“squashing” function (Sabour, Frosst, and Hinton 2017):

Ωn =
||Sn||2

1 + ||Sn||2
Sn
||Sn||

(5)

Sn =

L∑
l=1

Cl→nVl→n (6)

where Sn is the total input of capsule Ωn, which is a
weighted sum over all “vote vectors” V∗→n transformed
from the input capsules Ĥ:

Vl→n = Wl→nĤl (7)

Algorithm 1 Iterative Dynamic Routing. Input: input cap-
sules Ĥ = {Ĥ1, . . . , ĤL}, iterations T ; Output: capsules
Ω = {Ω1, . . . ,ΩN}.

1: procedure ROUTING(Ĥ, T ):
2: ∀(Ĥl,Ωn): Bl→n = 0

3: for T iterations do
4: ∀(Ĥl,Ωn): Cl→n = softmax(Bl→n)
5: ∀Ωn: compute Ωn by Eq. 5
6: ∀(Ĥl,Ωn): Bl→n += Ωn · Vl→n

return Ω

where Wl→n(·) is a trainable transformation matrix, and Ĥl

is an input capsule associated with input layer Hl:

Ĥl = Fl(H
1, . . . ,HL) (8)

where Fl(·) is a distinct transformation function.1 Cl→n
is the assignment probability (i.e. agreement) that is deter-
mined by the iterative dynamic routing.

Algorithm 1 lists the algorithm of iterative dynamic rout-
ing. The assignment probabilities associated with each input
capsule Ĥl sum to 1:

∑
n Cl→n = 1, and are determined by

a “routing softmax” (Line 4):

Cl→n =
exp(Bl→n)∑N

n′=1 exp(Bl→n′)
(9)

where Bl→n measures the degree that Ĥl should be cou-
pled to capsule n (similar to energy function in the attention
model (Bahdanau, Cho, and Bengio 2015)), which is initial-
ized as all 0 (Line 2). The initial assignment probabilities are
then iteratively refined by measuring the agreement between
the vote vector Vl→n and capsule n (Lines 4-6), which is im-
plemented as a simple scalar product αl→n = Ωn · Vl→n in
this work (Line 5).

With the iterative routing-by-agreement mechanism, an
input capsule prefers to send its representation to output cap-
sules, whose activity vectors have a big scalar product with
the vote V coming from the input capsule. Benefiting from
the high-dimensional coincidence filtering, capsule neurons
are able to ignore all but the most active feature from the
input capsules. Ideally, each capsule output represents a dis-
tinct property of the input. To make the dimensionality of
the final output be consistent with that of hidden layer (i.e.
d), the dimensionality of each capsule output is set to d/N .

EM Routing Dynamic routing uses the cosine of the angle
between two vectors to measure their agreement: Ωn ·Vl→n.
The cosine saturates at 1, which makes it insensitive to the
difference between a quite good agreement and a very good
agreement. In response to this problem, Hinton, Sabour, and
Frosst (2018) propose a novel Expectation-Maximization
routing algorithm.

1Note that we calculate each input capsule with
Fl(H

1, . . . ,HL) instead of Fl(H
l), since the former achieves

better performance on translation task by exploiting more context
as shown in our experiment section.
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Algorithm 2 Iterative EM Routing returns activation AΩ

of the output capsules, given the activation AH and vote V
of the input capsule.

1: procedure EM ROUTING(AH , V ):
2: ∀(Ĥl,Ωn): Cl→n = 1/N

3: for T iterations do
4: ∀Ωn: M-Step(C,AH , V )
5: ∀Ĥl: E-Step(µ, σ,AΩ, V )

6: ∀Ωn: Ωn = AΩ
n ∗ µn

return Ω

1: procedure M-STEP(C,AH , V )
2: . hold C constant, adjust (µn, σn, AΩ

n ) for Ωn

3: ∀Ĥl: Cl→n = Cl→n ∗AHl
4: Compute µn, σn by Eq. 11 and 12
5: Compute AΩ

n by Eq. 14

1: procedure E-STEP(µ, σ,AΩ, V )
2: . hold (µ, σ,AΩ) constant, adjust Cl→∗ for Ĥl

3: ∀Ωn: compute Cl→n by Eq. 16

Specifically, the routing process fits a mixture of Gaus-
sians using Expectation-Maximization (EM) algorithm,
where the output capsules play the role of Gaussians and
the means of the activated input capsules play the role of the
datapoints. It iteratively adjusts the means, variances, and
activation probabilities of the output capsules, as well as the
assignment probabilities C of the input capsules, as listed in
Algorithm 2. Comparing with the dynamic routing described
above, the EM routing assigns means, variances, and activa-
tion probabilities for each capsule, which are used to better
estimate the agreement for routing.

The activation probability AHl of the input capsule Ĥl is
calculated by

AHl = WH
l Ĥl (10)

where WH
l is a trainable transformation matrix, and Ĥl is

calculated by Equation 8. The activation probabilities AH
and votes V of the input capsules are fixed during the EM
routing process.

M-Step for each Gaussian associated with Ωn consists of
finding the mean µn of the votes from input capsules and the
variance σn about that mean for each dimension h:

µhn =

∑
l Cl→nV

h
l→n∑

l Cl→n
(11)

(σhn)
2 =

∑
l Cl→n(V

h
l→n − µhn)2∑

l Cl→n
(12)

The incremental cost of using an active capsule Ωn is

costhn =
(
log(σhn) +

1 + log(2π)

2

)∑
l

Cl→n (13)

The activation probability of capsule Ωn is calculated by

AΩ
n = logistic

(
λ(βA − βµ

∑
l

Cl→n −
∑
h

costhn)
)

(14)

where βA is a fixed cost for coding the mean and variance
of Ωn when activating it, βµ is another fixed cost per input
capsule when not activating it, and λ is an inverse tempera-
ture parameter set with a fixed schedule. We refer the readers
to (Hinton, Sabour, and Frosst 2018) for more details.

E-Step adjusts the assignment probabilities Cl→∗ for each
input Ĥl. First, we compute the negative log probability den-
sity of the vote Vl→n from Ĥl under the Gaussian distribu-
tion fitted by the output capsule Ωn it gets assigned to:

pn =
1√

2π(σn)2
exp(− (Vl→n − µn)2

2(σn)2
) (15)

Accordingly, the assignment probability is re-normalized by

Cl→n =
AΩ
npn∑

n′ AΩ
n′pn′

(16)

As has been stated above, EM routing is a more powerful
routing algorithm, which can better estimate the agreement
by allowing active capsules to receive a cluster of similar
votes. In addition, it assigns an additional activation proba-
bility A to represent the probability of whether each capsule
is present, rather than the length of vector.

Experiment
Setting
We conducted experiments on two widely-used WMT14 En-
glish ⇒ German (En⇒De) and WMT17 Chinese ⇒ En-
glish (Zh⇒En) translation tasks and compared our model
with results reported by previous work (Gehring et al. 2017;
Vaswani et al. 2017; Hassan et al. 2018). For the En⇒De
task, the training corpus consists of about 4.56 million sen-
tence pairs. We used newstest2013 as the development set
and newstest2014 as the test set. For the Zh⇒En task, we
used all of the available parallel data, consisting of about 20
million sentence pairs. We used newsdev2017 as the devel-
opment set and newstest2017 as the test set. All the data had
been tokenized and segmented into subword symbols using
byte-pair encoding with 32K merge operations (Sennrich,
Haddow, and Birch 2016). We used 4-gram NIST BLEU
score (Papineni et al. 2002) as the evaluation metric, and
sign-test (Collins, Koehn, and Kucerova 2005) for statistical
significance test.

We evaluated the proposed approaches on the Trans-
former model (Vaswani et al. 2017). We followed the con-
figurations in (Vaswani et al. 2017), and reproduced their
reported results on the En⇒De task. The parameters of the
proposed models were initialized by the pre-trained model.
All the models were trained on eight NVIDIA P40 GPUs
where each was allocated with a batch size of 4096 tokens.
In consideration of computation cost, we studied model vari-
ations with TRANSFORMER-BASE model on En⇒De task,
and evaluated overall performance with TRANSFORMER-
BASE and TRANSFORMER-BIG model on both Zh⇒En and
En⇒De tasks.
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# Model # Para. Train Decode BLEU 4
1 TRANSFORMER-BASE 88.0M 1.79 1.43 27.31 –
2 + Linear Combination (Dou et al. 2018) +14.7M 1.57 1.36 27.73 +0.42
3 + Dynamic Combination +25.2M 1.50 1.30 28.33 +1.02
4 + Dynamic Routing +37.8M 1.37 1.24 28.22 +0.91
5 + EM Routing +56.8M 1.10 1.15 28.81 +1.50

Table 1: Translation performance on WMT14 English⇒German translation task. “# Para.” denotes the number of parameters,
and “Train” and “Decode” respectively denote the training (steps/second) and decoding (sentences/second) speeds.

System Architecture En⇒De Zh⇒En
# Para. BLEU # Para. BLEU

Existing NMT systems
(Wu et al. 2016) RNN with 8 layers N/A 26.30 N/A N/A
(Gehring et al. 2017) CNN with 15 layers N/A 26.36 N/A N/A

(Vaswani et al. 2017) TRANSFORMER-BASE 65M 27.3 N/A N/A
TRANSFORMER-BIG 213M 28.4 N/A N/A

(Hassan et al. 2018) TRANSFORMER-BIG N/A N/A N/A 24.2
Our NMT systems

this work

TRANSFORMER-BASE 88M 27.31 108M 24.13
+ EM Routing 144M 28.81† 164M 24.81†

TRANSFORMER-BIG 264M 28.58 304M 24.56
+ EM Routing 490M 28.97† 530M 25.00†

Table 2: Comparing with existing NMT systems on WMT14 English⇒German (“En⇒De”) and WMT17 Chinese⇒English
(“Zh⇒En”) tasks. “†” indicates statistically significant difference (p < 0.01) from the TRANSFORMER baseline.

Results
Model Variations Table 1 shows the results on WMT14
En⇒De translation task. As one would expect, the linear
combination (Row 2) improves translation performance by
+0.42 BLEU points, indicating the necessity of aggregating
layers for deep NMT models.

All dynamic aggregation models (Rows 3-5) consistently
outperform its static counterpart (Row 2), demonstrating the
superiority of the dynamic mechanisms. Among the model
variations, the simplest strategy – dynamic combination
(Row 3) surprisingly improves performance over the base-
line model by up to +1.02 BLEU points. Benefiting from
the advanced routing-by-agreement algorithm, the dynamic
routing strategy can achieve similar improvement. The EM
routing further improves performance by better estimating
the agreement during the routing. These findings suggest po-
tential applicability of capsule networks to natural language
processing tasks, which has not been fully investigated yet.

All the dynamic aggregation strategies introduce new pa-
rameters, ranging from 25.2M to 56.8M. Accordingly, the
training speed would decrease due to more efforts to train
the new parameters. Dynamic aggregation mechanisms only
marginally decrease decoding speed, with EM routing being
the slowest one, which decreases decoding speed by 19.6%.

Main Results Table 2 lists the results on both WMT17
Zh⇒En and WMT14 En⇒De translation tasks. As seen,
dynamically aggregating layers consistently improves trans-
lation performance across NMT models and language
pairs, which demonstrating the effectiveness and universal-

ity of the proposed approach. It is worth mentioning that
TRANSFORMER-BASE with EM routing outperforms the
vanilla TRANSFORMER-BIG model, with only less than half
of the parameters, demonstrating our model could utilize the
parameters more efficiently and effectively.

Analysis of Iterative Routing
We conducted extensive analysis from different perspectives
to better understand the iterative routing process. All results
are reported on the development set of En⇒De task with
“TRANSFORMER-BASE + EM routing” model.

Figure 2: Impact of number of output capsules.

Impact of the Number of Output Capsules The number
of output capsules N is a key parameter for our model, as
shown in Figure 1. We plot in Figure 2 the BLEU score with
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different number of output capsules. Generally, the BLEU
score goes up with the increase of the capsule numbers. As
aforementioned, to make the dimensionality of the final out-
put be consistent with hidden layer (i.e. d), the dimension-
ality of each capsule output is d/N . When n increases, the
dimensionality of capsule output d/N decreases (the mini-
mum value is 1), which may lead to more subtle representa-
tions of different properties of the input.

Figure 3: Impact of routing iterations.

Impact of Routing Iterations Another key parameter is
the iteration of the iterative routing T , which affects the es-
timation of the agreement. As shown in Figure 3, the BLEU
score typically goes up with the increase of the iterations
T , while the trend does not hold when T > 3. This in-
dicates that more iterations may over-estimate the agree-
ment between two capsules, thus harms the performance.
The optimal iteration 3 is also consistent with the find-
ings in previous work (Sabour, Frosst, and Hinton 2017;
Hinton, Sabour, and Frosst 2018).

Model Construct Ĥl with BLEU
BASE N/A 25.84

OURS
Fl(H

l) 26.18
Fl(H

1, . . . ,HL) 26.62

Table 3: Impact of functions to construct input capsules.

Impact of Functions to Construct Input Capsules For
the iterative routing models, we use Ĥl = Fl(H

1, . . . ,HL)

instead of Ĥl = Fl(H
l) to construct each input capsule

Ĥl. Table 3 lists the comparison results, which shows that
the former indeed outperforms the latter. We attribute this
to that Fl(H1, . . . ,HL) is more representative by extracting
features from the concatenation of the original layer repre-
sentations.

Visualization of Agreement Distribution The assign-
ment probability Cl→n before M step with

∑
n Cl→n = 1

denotes the agreement between the input capsule Ĥl and the
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Figure 4: Agreement distribution with 6 input capsules (y-
axis) and 512 output capsules (x-axis). Darker color denotes
higher agreement. The three heatmaps from top to bottom
are respectively the 1st to 3rd iterations.

output capsule Ωn, which is determined by the iterative rout-
ing. A higher agreement Cl→n denotes that the input cap-
sule Ĥl prefers to send its representation to the output cap-
sule Ωn. We plot in Figure 4 the alignment distribution in
different routing iterations. In the first iteration (top panel),
the initialized uniform distribution is employed as the agree-
ment distribution, and each output capsule equally attends to
all the input capsules. As the iterative routing goes, the input
capsules learns to send their representations to proper output
capsules, and accordingly output capsules are more likely to
capture distinct features. We empirically validate our claim
from the following two perspectives.

We use the entropy to measure the skewness of the agree-
ment distributions:

entropy =
1

N · L

N∑
n=1

L∑
l=1

Cl→n logCl→n (17)

A lower entropy denotes a more skewed distribution, which
indicates that the input capsules are more certain about
which output capsules should be routed more information.
The entropies of the three iterations are respectively 6.24,
5.93, 5.86, which indeed decreases as expected.

To validate the claim that different output capsules fo-
cus on different subsets of input capsules, we measure the
diversity between each two output capsules. Let Cn =
{C1→n, . . . , CL→n} be the agreement probabilities as-
signed to the output capsule Ωn, we calculate the diversity
among all the output capsules as

diversity =
1(
N
2

) N∑
i=1

N∑
j=i+1

cos(Ci,Cj) (18)

A higher diversity score denotes that output capsules attend
to different subsets of input capsules. The diversity scores
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of the three iterations are respectively 0.0, 0.09, and 0.18,
which reconfirm our observations.

Effect on Encoder and Decoder

Model Applied to BLEUEncoder Decoder
BASE N/A N/A 25.84

OURS
X × 26.33
× X 26.34
X X 26.62

Table 4: Effect of EM routing on encoder and decoder.

Both encoder and decoder are composed of a stack of L
layers, which may benefit from the proposed approach. In
this experiment, we investigate how our model affects the
two components, as shown in Table 4. Aggregating layers
of encoder or decoder individually consistently outperforms
the vanilla baseline model, and exploiting both components
further improves performance. These results provide support
for the claim that aggregating layers is useful for both under-
standing input sequence and generating output sequence.

Length Analysis

Figure 5: BLEU scores on the En⇒De test set with respect
to various input sentence lengths.

Following Bahdanau, Cho, and Bengio (2015) and Tu et
al. (2016), we grouped sentences of similar lengths together
and computed the BLEU score for each group, as shown in
Figure 5. Generally, the performance of TRANSFORMER-
BASE goes up with the increase of input sentence lengths.
We attribute this to the strength of self-attention mecha-
nism to model global dependencies without regard to their
distance. Clearly, the proposed approaches outperform the
baseline in all length segments.

Related Work
Our work is inspired by research in the field of exploiting
deep representation and capsule networks.

Exploiting Deep Representation Exploiting deep repre-
sentations have been studied by various communities, from
computer vision to natural language processing. He et al.
(2016) propose a residual learning framework, combin-
ing layers and encouraging gradient flow by simple short-
cut connections. Huang et al. (2017) extend the idea by
introducing densely connected layers which could better
strengthen feature propagation and encourage feature reuse.
Deep layer aggregation (Yu et al. 2018) designs architecture
to fuse information iteratively and hierarchically.

Concerning natural language processing, Peters et al.
(2018) have found that combining different layers is help-
ful and their model significantly improves state-of-the-art
models on various tasks. Researchers have also explored
fusing information for NMT models and demonstrate ag-
gregating layers is also useful for NMT (Shen et al. 2018;
Wang et al. 2018; Dou et al. 2018). However, all of these
works mainly focus on static aggregation in that their aggre-
gation strategy is independent of specific hidden states. In
response to this problem, we introduce dynamic principles
into layer aggregation. In addition, their approaches are a
fixed policy without considering the representation of the fi-
nal output, while the routing-by-agreement mechanisms are
able to aggregate information according to the final repre-
sentation.

Capsule Networks The idea of dynamic routing is first
proposed by Sabour, Frosst, and Hinton (2017), which aims
at addressing the representational limitations of convolu-
tional and recurrent neural networks for image classification.
The iterative routing procedure is further improved by us-
ing Expectation-Maximization algorithm to better estimate
the agreement between capsules (Hinton, Sabour, and Frosst
2018). In computer vision community, Xi, Bing, and Jin
(2017) explore its application on CIFAR data with higher di-
mensionality. LaLonde and Bagci (2018) apply capsule net-
works on object segmentation task.

The applications of capsule networks in natural language
processing tasks, however, have not been widely investi-
gated to date. Zhao et al. (2018) testify capsule networks
on text classification tasks and Gong et al. (2018) propose
to aggregate a sequence of vectors via dynamic routing for
sequence encoding. To the best of our knowledge, this work
is the first to apply the idea of dynamic routing to NMT.

Conclusion
In this work, we propose several methods to dynamically
aggregate layers for deep NMT models. Our best model,
which utilizes EM-based iterative routing to estimate the
agreement between inputs and outputs, has achieved signifi-
cant improvements over the baseline model across language
pairs. By visualizing the routing process, we find that cap-
sule networks are able to extract most active features shared
by different inputs. Our study suggests potential applicabil-
ity of capsule networks across computer vision and natu-
ral language processing tasks for aggregating information of
multiple inputs.

Future directions include validating our approach on other
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NMT architectures such as RNN (Chen et al. 2018) and
CNN (Gehring et al. 2017), as well as on other NLP tasks
such as dialogue and reading comprehension. It is also in-
teresting to combine with other techniques (Shaw, Uszko-
reit, and Vaswani 2018; Li et al. 2018; Dou et al. 2018;
Yang et al. 2018; 2019; Kong et al. 2019) to further boost
the performance of Transformer.

References
Anastasopoulos, A., and Chiang, D. 2018. Tied multitask
learning for neural speech translation. In NAACL.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
ICLR.
Chen, M. X.; Firat, O.; Bapna, A.; Johnson, M.; Macherey,
W.; Foster, G.; Jones, L.; Niki, P.; Schuster, M.; Chen, Z.;
Wu, Y.; and Hughes, M. 2018. The Best of Both Worlds:
Combining Recent Advances in Neural Machine Transla-
tion. In ACL.
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