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Abstract

Real web datasets are often associated with multiple views
such as long and short commentaries, users preference and so
on. However, with the rapid growth of user generated texts,
each view of the dataset has a large feature space and leads
to the computational challenge during matrix decomposition
process. In this paper, we propose a novel multi-view clus-
tering algorithm based on the non-negative matrix factoriza-
tion that attempts to use feature sampling strategy in order
to reduce the complexity during the iteration process. In par-
ticular, our method exploits unsupervised semantic informa-
tion in the learning process to capture the intrinsic similar-
ity through a graph regularization. Moreover, we use Hilbert
Schmidt Independence Criterion (HSIC) to explore the un-
supervised semantic diversity information among multi-view
contents of one web item. The overall objective is to min-
imize the loss function of multi-view non-negative matrix
factorization that combines with an intra-semantic similarity
graph regularizer and an inter-semantic diversity term. Com-
pared with some state-of-the-art methods, we demonstrate the
effectiveness of our proposed method on a large real-world
dataset Doucom and the other three smaller datasets.

1 Introduction
Real world application has to deal with data presenting var-
ious perspectives and is usually characterized by various
heterogeneous sources of information. Web pages, multi-
media documents, user profiles are examples of data that
can be organized into multi-graphs. It is common that rel-
evant multi-view data from different sources may have se-
mantic correlations. For example, a movie item in IMDB
often consists of many user reviews and one plot summary;
An artist in Last.fm is always associated with its descrip-
tion and lots of short comments. As different semantic in-
formation may emphasize different aspects of the data, it
gives rise to an emerging demand to explore the interactions
between multi-view data for the application like multi-view
clustering (Bickel and Scheffe 2004; Chaudhuri et al. 2009;
Liu et al. 2013), co-regularized spectral clustering (Kumar,
Rai, and Daumé 2011; Kumar and Daumé 2011) and cross-
view retrieval (Zhai et al. 2013). Different from the tradi-
tional data with a single view, large-scale multi-view web
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contents commonly have the following properties: 1) Every
single view of one web item1 has its own feature sets. 2) Dif-
ferent views of one item share some consistency in semantic
information. Just like a new story may be reported by dif-
ferent news resources, but the underlying content will not be
changed. 3) The diversity information among the represen-
tations of one web item exists in multi-view data, and each
representation corresponds to a single view content. Taking
ourDoucom dataset as an example, a movie item in the web
community consisting of multiple views including summary,
short comment, long review, and user group. And each view
of a movie item mainly contains specific information in the
relevant content.

According to the above properties, multi-view clustering
has attracted more and more attention because it can ex-
plore the intrinsic structure of the multi-view dataset and
handle large numbers of unlabeled data. Generally, the main
challenge lies in how to make use of the complementary
characteristics embedded in the multiple sources of infor-
mation and exploit the interactions and correlations be-
tween a various number of views accurately and automati-
cally. Plenty of multi-view clustering algorithms have been
developed to solve this problem. Some methods perform
multi-view clustering through merging the clustering results
from different individual views (Long, Yu, and Zhang 2008;
Greene and Cunningham 2009). Some works (Cai, Nie,
and Huang 2013; Cheng et al. 2013; J. Sun and Kran-
zler 2014) seek groupings that are consistent across dif-
ferent views. Recently, some researches (Liu et al. 2013;
He et al. 2014) focus on nonnegative matrix factoriza-
tion(NMF) framework, which attempts to interpret the dis-
tinction between different views via pairwise representation.
All the above studies have shown effective in multi-view
clustering, but they suffer from some inevitable problems:
1) Most of the studies ignore the curse of dimensionality
in feature space with the growth of data size. This problem
leads to a significant computational challenge when opti-
mization algorithms load complete view matrix with large
dimensions. Most recently proposed multi-view clustering
methods (Hoyer 2004; Mohammadiha and Leijon 2009;
Sun et al. 2015; Gong, Wang, and Huang 2017) utilized
complete feature space to deal with the above problem,

1In this paper, we use “item” and “instance” interchangeably
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whose optimization ignores the computational complexity.
For instance, alternate minimization algorithm should be it-
erated hundreds of times for each original view matrix ob-
servation. 2) Some previous methods do not consider the
unsupervised semantic similarity and diversity information
among data instances in latent representation. They used su-
pervised label information as similarity measurement to cap-
ture semantic information. Especially, the manual labels are
insufficient in real large web data. The multiple clustering
solutions can be accurately achieved if we explore the diver-
sity information. For example, some movies directed by the
same director could be grouped into one cluster according
to the summary view and some movies that have different
genres could possibly be grouped into one cluster due to the
detailed description and profound implication from the view
of the long review.

In this paper, we propose a novel multi-view unsuper-
vised semantic clustering method, dubbed the name Feature
Sampled Unsupervised Semantic Clustering (FSUSC) for
real web multi-view content. We use graph regularization to
capture the intrinsic intra-semantic similarity information.
We also use the Hilbert Schmidt Independence Criterion
(HSIC)(Arthur et al. 2005) as a co-regularizer term to en-
force the inter-semantic diversity of the jointly learned rep-
resentations. Although a few existing methods (Wang et al.
2015; Zhu et al. 2013; Zheng et al. 2011; Yang et al. 2014)
apply graph regularization to various applications, they only
observe the original data information, which motivates us
to explore the semantic structure information and identify a
common low-dimensional space of the data instance across
multiple views in our work, thus reducing the memory con-
sumption if data refers to a large view numbers. We formu-
late our multi-view clustering as a joint optimization prob-
lem that minimizes the reconstruction errors over the mul-
tiple views. The contributions of this paper can be summa-
rized as the following:

• We construct a large-scale organized dataset from web
community, namely Doucom, where feature space is
much larger than other previous real-world datasets. The
proposed method explicitly reduces the computational
complexity by performing feature sampling at each iter-
ation in four real web datasets.

• FSUSC leverages unsupervised semantic information to
refine the graph regularizer during the step of graph con-
struction and uses HISC to measure diversity among data
representations.

• To solve the objective function of FSUSC, we derive a
new iterative updating optimization scheme and our pro-
posed method can achieve state-of-the-art results in terms
of accuracy and normalized mutual information.

2 Feature Sampled Unsupervised Semantic
Clustering (FSUSC)

Problem Statement
Before we describe the formulation of the problem, we sum-
marize some notations used in this paper in Table 1. Let
l = 1, · · · , nv , an arbitrary original data matrix in view l

Table 1: Summary of the Notations

Notations Description
m Total number of items
nv Total number of views
d(l) Feature numbers in the l-th view
X(l) Data matrix for the l-th view
U (l) Class indicator matrix
V (l) The basis matrix for the l-th view
S(l) Semantic similarity matrix
L(l) Laplacian matrix
M (l) Sampling matrix for the l-th view
η Reduction factor
α, β Parameters in objective function

is X(l) = [x
(l)
1 , x

(l)
2 , · · · , x(l)m ]T ∈ Rm×d(l)

+ , where each row

x
(l)
i

T
(1 ≤ i ≤ m) represents a data instance and each col-

umn represents one feature. Non-negative matrix factoriza-
tion (Lee and Seung 2001) aims to find two factors with non-
negative elements U (l) ∈ Rm×K

+ and V (l) ∈ RK×d(l)

+ ,K ≪
d(l), which factorization is formulated as X(l) ≈ U (l)V (l).
U (l) represents the class indicators, indicating the final clus-
tering result. V (l) is termed the basis matrix. K denotes
the desired reduced dimension. The fundamental multi-view
based on NMF function tries to minimize the joint problem
over U (l), V (l):

nv∑
l

∥X(l) − U (l)V (l)∥2F +Ω, s.t. U (l), V (l) ≥ 0 (1)

where Ω represents different kinds of penalty terms. ∥ · ∥F
is the Frobenius norm of the matrix.

Loss Function
In real-world application, feature space is much larger than
item numbers(i.e. d ≫ m). However, the cost of a single
iteration depends linearly on dimension number d and in-
creases the computation time and memory requirements also
degenerate performance of algorithms. We propose two fea-
ture sampling schemes which improve the efficiency of the
update process for V (l). Our algorithm can be written as,

min
U,V

nv∑
l

∥(X(l) − U (l)V (l))M (l)∥2F

s.t. U (l)TU (l) = I, U (l), V (l) ≥ 0

(2)

We enforce the orthogonal constraint on U (l) to guarantee
the uniqueness of the solution. M (l) ∈ Rd(l)×d(l)

is a diag-
onal matrix with the i-th diagonal element M (l)

i,i ∈ {0, 1},
which selects a subset of features in X(l) and V (l). Now we
propose two strategies in our sampling process:
• Top Sampling The main intuition is to discard those fea-

tures unobserved in most items (e.g, noise). We rank the
columns in X(l) in descending order by using l2-norm,
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which is indicated by ∥X(l)
·,j ∥2, j = 1, · · · , d(l). Then se-

lect top-p columns as our sampled features. We should
note that different view matrices have different feature
numbers. Thus p(l) = d(l)

η =
∑d(l)

i=1Mi,i, where η is a
reduction factor.

• Random Sampling According to the top sampling
method, sampled features are always the same at per iter-
ation, which incurs the loss of important information, for
instance, special features in special items. Therefore, we
adopt random scheme in feature sampling process. Sam-
pling number is p(l) = d(l)

η =
∑d(l)

i=1Mi,i < d(l). This
strategy is more flexible than top sampling method.

Unsupervised Semantic Regularization
Intra-semantic Graph Regularizer Our class indicator
matrices U (l) = [u

(l)
1 , u

(l)
2 , · · · , u(l)m ]T , u

(l)
i ∈ R1×K , i =

1, 2, · · · ,m. Then, our intra-semantic similarity graph regu-
larizer can be formulated as,

1

2

m∑
i=1

m∑
j=1

S
(l)
i,j∥u

(l)
i − u

(l)
j ∥

2
2

=
1

2
(2

m∑
i=1

d
(l)
i u

(l)
i u

(l)
i

T
− 2

m∑
i=1

m∑
j=1

S
(l)
i,ju

(l)
i u

(l)
j

T
)

= tr(U (l)TD(l)U (l))− tr(U (l)TS(l)U (l))

= tr(U (l)TL(l)U (l))

(3)

where L is a symmetric graph Laplacian matrix constructed
from similarity matrix S, D is a diagonal matrix with its el-
ements defined as di = Di,i =

∑m
j=1 Si,j . Here, tr(AB) =

tr(BA) is used in above equation. The key task in our work
is how to define unsupervised semantic similarity matrix
S ∈ Rm×m, which is defined by two strategies,
• Semantic Cosine based (SC) The true underlying seman-

tic information would assign corresponding items across
different views into the same latent topic distribution,
which can be indicated by T (x(1)i ) = T (x

(2)
i ) = · · · =

T (x
(nv)
i ), i = 1, 2, · · · ,m. Function T (·) returns the se-

mantic topics vector, i.e., T (x(l)i ) = [f1, f2, · · · , ft] ∈
R1×t, t is a topic number. We calculate pairwise similar-
ity via the cosine kernel:

S
(l)
i,j =

⎧⎨⎩<T (x
(l)
i ),T (x

(l)
j )>

∥T (x
(l)
i ∥∥T (x

(l)
j )∥

i ̸= j

1 i = j

• Gaussian kernel based (GK) We construct
matrix S through Gaussian kernel: S

(l)
i,j =

exp(−
1

nv

∑nv
l=1 ∥x(l)

i −x
(l)
j ∥2

2

σ2 ) where σ is the control-
ling parameter selected by cross-validation.

Inter-semantic Diversity Term In real web content appli-
cations, different views may be generated heterogeneously
and may vary drastically in quality. To implement the inter-
semantic diversity information of multi-view clustering, an

intuitive method is to regularize the class indicator matrices
U (l) of the different views, which are enforced to be inde-
pendent to each other. We let X = {X1,X2, · · · ,Xnv

} be
our space of different views, and each i-th view is drawn
from Xi ∈ X space. Our purpose is to maximize the di-
versity and minimize the dependence between latent repre-
sentations in different spaces. i.e. Xi × Xj . Therefore, we
utilize the Hilbert Schmidt Independence Criterion (HSIC)
to deal with the dependence, which computes the sum of
the squared singular values of the cross-covariance operator
over Xi × Xj = {(u(i)1 , u

(j)
1 ), (u

(i)
2 , u

(j)
2 ), · · · , (u(i)m , u

(j)
m )}

in Hilbert space and demonstrates fast exponential conver-
gence. Formally, the HSIC (Arthur et al. 2005) is defined
as

HSIC(U (l), U (s)) = (m− 1)−2 tr(K(l)Y K(s)Y ) (4)

where K(l),K(s) ∈ Rm×m
+ are Gram matrices of kernel

functions. We employ the inner product kernel here, which
means K(l) = U (l)U (l)T . Y = I − 1

mee
T , where I is an

identity matrix and e is an all-one column vector. We use the
HSIC as a penalty term in our objective function to ensure
that representations in different views provide inter-semantic
diversity information.

Objective Function
According to the above introduction, the overall objection
function is rewritten as follows:

min
U,V

nv∑
l

∥(X(l) − U (l)V (l))M (l)∥F+

α
∑
l ̸=s

HSIC(U (l), U (s)) + β

nv∑
l

tr(U (l)TL(l)U (l)))

(5)

where α, β are the tradeoff parameters to control the weight
between unsupervised semantic information and the pro-
posed error loss function. For simplicity, we ignore the con-
stant factor in the HSIC function, and Eq. 5 can be rewritten
as

J1 = min
U,V

nv∑
l

∥(X(l) − U (l)V (l))M (l)∥F+

α
∑
l ̸=s

tr(K(l)Y K(s)Y ) + β

nv∑
l

tr(U (l)TL(l)U (l)))

s.t. U (l)TU (l) = I, U (l), V (l) ≥ 0

(6)

By encouraging diversity of views, the algorithm fi-
nally learns a very different cluster class indicator ma-
trix U (l) for each view l. The final aggregated represen-
tation U can be obtained by combining all U (l): U =
[U (1), U (2), · · · , U (nv)] ∈ Rm×(nvK).

3 Optimization Algorithm
Algorithms & Optimization
The objective function in Eq.6 is separately convex w.r.t
each of U (l) and V (l). We handle this problem via alter-
nating optimization. i.e., updating one variable while fixing
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Algorithm 1: FSUSC algorithm

Input: Data matrices X(l); Parameters K,α, β, γ, η;
Semantic similarity matrices S(l)

Output: U (l), V (l);
1 Initialize U (l) and V (l) using the k-means;
2 Topic modeling for X(l) and calculate S under different

strategies(SC, GK);
3 repeat
4 for l to nv do
5 Draw a feature sampling matrix: M (l)(Top or

Random);
6 Update V (l) by Eq. 8;
7 Update U (l) by Eq. 15;
8 end
9 return U (l) and V (l)

10 until Convergence;

other variables until convergence. Therefore, we propose an
alternating optimization algorithm that guarantees each sub-
problem converges to the local minima under non-negative
condition. The FSUSC algorithm is summarized in Algo-
rithm 1.

Fixing U (l), then minimize V (l). Let ϕ and ψ(l) be the
Lagrange matrices for constraint U (l) ≥ 0 and V (l) ≥ 0, re-
spectively. For notional convenience, we let X̃(l), Ṽ (l) rep-
resent X(l)M (l), V (l)M (l). Then, the derivative of J1 with
respect to V (l) is:

∂J1
∂V (l)

= (−2U (l)T X̃(l) + 2U (l)TU (l)Ṽ (l)) + ψ(l) (7)

Using the Karush-Kuhn-Tucker(KKT) conditions that
ψ
(l)
i,jV

(l)
i,j = 0, we have:

V
(l)
i,j ← V

(l)
i,j

(U (l)TX(l)M (l))i,j

(U (l)TU (l)V (l)M (l))i,j
(8)

Fixing V (l), then minimize U (l). Now, we analyze the
stationary point U (l) in the second subproblem. Let γ be the
balance parameter for orthogonal constraint. So our mini-
mization subproblem J2(U

(l)) can be written as:
nv∑
l

{tr((X̃(l))T X̃(l))− 2 tr((X̃(l))TU (l)Ṽ (l))+

tr((Ṽ (l))TU (l)TU (l)Ṽ (l)) + β tr(U (l)TL(l)U (l)))

+ tr(ϕU (l)) + γ tr(U (l)TU (l) − I)}

+ α

nv∑
l ̸=s

tr(U (l)U (l)TY K(s)Y )

(9)

Then the derivative of J2 with respect to U (l) is:

− 2X̃(l)(Ṽ (l))T + 2U (l)Ṽ (l)(Ṽ (l))T + 2βLU

+ 2γU + ϕ+ 2α

nv∑
l ̸=s

Y K(s)Y U (l) (10)

However, Y in above equation contains negative values,
we let Y = Y +−Y −, which is separated to two nonnegative
parts. And Y +

pq =
∥Ypq∥+Ypq

2 , Y −
pq =

∥Ypq∥−Ypq

2 . Following
the KKT rule, we have the following equation if we set the
Eq. 10 to be 0 and we can easily get the update rule for U (l),

(X̃(l)(Ṽ (l))T − U (l)Ṽ (l)(Ṽ (l))T − βLU − γU

− α(
nv∑
l ̸=s

Y +K(s)Y +U (l) +

nv∑
l ̸=s

Y −K(s)Y −U (l))

+ α(

nv∑
l ̸=s

Y +K(s)Y −U (l) +

nv∑
l ̸=s

Y −K(s)Y +U (l))

)ipU
(l)
ip = 0

(11)

Now we prove that Eq.9 keeps non-increasing when up-
dating the stationary point U (l) from Eq. 11 .

Definition 1 (Lee and Seung 2001) F (U,U
′
) is an auxil-

iary function of J2 if the conditions F (U,U
′
) ≥ J2 and

F (U,U) = J2. If F is an auxiliary function for J1 then J1
is non-increasing under the update

U (t+1) = argmin
U

F (U,U t) (12)

Lemma 1 (Ding, Li, and Jordan 2010) For any matrices
A ∈ Rn×n

+ , B ∈ Rr×r
+ , Q ∈ Rn×r

+ , Q
′ ∈ Rn×r

+ , with A
and B symmetric, the following inequality holds:

Tr(QTAQB) ≤
n∑

i=1

r∑
p=1

(AQ
′

ipB)Q2
ip

Q
′
ip

(13)

First, we should denote some brief notations
Y1 =

∑nv

l ̸=s Y
+K(s)Y −, Y2 =

∑nv

l ̸=s Y
−K(s)Y +, Y3 =∑nv

l ̸=s Y
−K(s)Y −, Y4 =

∑nv

l ̸=s Y
+K(s)Y + and we use

U to represent U (l) in the following equation. Second,
we ignore the irrelevant terms in Eq.9 and an appropriate
auxiliary function F (U,U

′
) of J2 is as the following:

−
∑
ip

2(X(l)M (l)(V (l))T )ipU
′

ip(1 + log
Uip

U
′
ip

)

+
∑
ip

[U
′
(V (l)M (l))(V (l)M (l))T )]ip

U2
ip

U
′
ip

− β
∑
ijpq

SipU
′

ipU
′

jq(1 + log
UipUjq

U
′
ipU

′
jq

)

+ β
∑
ip

(DU
′
)ip
U2
ip

U
′
ip

+ γ
∑
ip

(U
′
)ip
U2
ip

U
′
ip

− α
∑
ijpq

((Y1 + Y2)ipU
′

ipU
′

jq(1 + log
UipUjq

U
′
ipU

′
jq

)

+ α
∑
ip

((Y3 + Y4)U
′
)ip
U2
ip

U
′
ip

(14)

All negative terms in F (U,U
′
) are produced by the follow-

ing inequality: z ≥ 1 + log z, ∀z ≥ 0 . Now we should find
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Table 2: Description of datasets

Dataset #items size #view #clusters
Doucom 31297 4 39
Last.fm 9694 3 21

Yelp 2624 3 7
3-Sources 169 3 6

the minimum of F (U,U
′
), we set ∂F (U,U

′
)

∂Uip
to zero, we can

get the stationary point of Uip and the updating rule is:

Uip

√
(λlX̃(l)(V (l))T + βSU + αU(Y1 + Y2))ip

(λlUṼ (l)(Ṽ (l))T + βDU + γU + αU(Y3 + Y4))ip
(15)

Then, we take the second derivative with respect to U , we
get a positive semidefinite Hessian matrix:

∂2F (U,U
′
)

∂Uip∂Ujq
= {

2λl(X̃
(l)(V (l))T )ipU

′
ip + 2βSip(U

′
ip)

2

U2
ip

+
2α(U

′
(Y1 + Y2))ipU

′
ip

U2
ip

+
2[λlU

′
(Ṽ (l))(Ṽ (l))T ]ipU

2
ip

(U
′
ip)

3

+
2[β(DU

′
)ip + γ(U

′
)ip + α(U

′
(Y3 + Y4))ip]U

2
ip

(U
′
ip)

3
}ζijζjq

(16)
Thus F (U,U

′
) is a convex function of U , and under the up-

dating rule Eq. 15 the objective function values of J2(U (l))
in Eq. 9 will be non-increasing.

Complexity Analysis
There are two subproblems in FSUSC algorithm: opti-
mizing V (l) and optimizing U (l). It can be shown that
cost for Multi-view NMF’s update rules in each iteration is
O(nvKmd

(l)). But the computation cost for updating V (l)

is O(nvKmp
(l)) after applying the feature sampling. For

class indicator matrix U (l), the largest cost is the first term of
the denominator, whose time complexity is O(nvK

2mp(l)).
nv denotes the number of views. The total time complex-
ity is O(nvKmp

(l)) + O(nvK
2mp(l)) ≈ O(nvK

2mp(l)),
which is a linear to the size of dataset. In a real application,
the number of items and clusters are much smaller than the
size of features(e.g. K,m≪ d(l) ). Our method can be suit-
able for large-scale data if we utilize feature sampling in the
iteration process.

4 Experiments
In this section, we conduct experiments to evaluate the ef-
fectiveness of FSUSC.

Datasets and Settings
Table 2 summarizes the characteristics of those real web
multi-view datasets and all descriptions of the datasets are
as follows.

1)Doucom. This large-scale dataset is crawled from
a famous web community, called Douban2, we collect

2https://developers.douban.com/wiki/?title=api v2

four views for this dataset, including 31297 summaries,
2,995,406 comments, 608,158 reviews and 461,358 users.
After data preprocessing, we have 50,992; 46,706; 32,935;
232,531 token features for view “Summary”, “Long re-
view”, “Short commentary”, “Users” respectively. Doucom
lists 39 movie types such as “Action”, “Love”, “Bloopers”,
etc. In fact, for some items tagged with multiple types, we
retain one type to annotate single item.

2)Last.fm. This dataset consists of 9,694 items(artists),
which contains three views such as description of each item,
user comments and users. Each item is annotated with one
of the 21 music genres. All the relevant textual information
can be achieved by API of Last.fm3.

3)Yelp. This dataset is a subset of the Yelp Challenge
Dataset (YDC)4, which includes 11,537 items (businesses)
in total. We randomly sample the equivalent amount of items
from the every category. So final Yelp dataset has three
views (eg. businesses’ names view, comment words view
and user view) and consists of 2,624 items from 7 categories.

4) 3-Sources.5 This text dataset was collected from three
well-known online news sources: BBC, Reuters and The
Guardian. In total it consists of 416 distinct news manually
categorized into 6 topical labels. Among them, there are 169
stories reported in all three sources which are used as three
views in our experiments.

To evaluate the performance of the proposed method, we
compare our method with the following algorithms.CoRe.
(Kumar, Rai, and Daumé 2011) proposed the objective func-
tions to co-regularize the eigenvectors of all views’ Lapla-
cian matrices. MulitNMF (Liu et al. 2013) developed a so-
lution on consensus-based regularization for NMF to group
the multi-view data. PcoNMF (He et al. 2014) is a recent
pair-wise co-regularization method for clustering the whole
mapped data, which focus on the difference between the la-
tent indicator matrix. CMVNMF (Zhang et al. 2015) pro-
posed a novel small number of constraints on must-link sets
and cannot-link sets based on the NMF framework. And we
let FSUSC-intra be our baseline method that only includes
intra-semantic similarity constraint and let FSUSC-inter
be our another baseline method that only includes inter-
semantic diversity constraint.

In this work, we have six major parameters: { σ, α, β,
γ, η, K}. We empirically set σ = 0.01 in kernel function.
α, β, γ are the weight coefficients, which are set to 1, 2, 1,
respectively. η is a reduction factor which controls the dif-
ferent size of feature subset, we set η = 8 in final results and
compare the computation time with different value at per
iteration(See Fig.1. and Fig.3.). Also we compare the time
consumption of the proposed algorithm with necessary base-
line models in Table 3. K is a reduced dimension number
that equals to cluster numbers which are described in each
dataset. We extract topic vector as our unsupervised seman-
tic information to build the similarity matrix. Each item is
represented as a 20-dimensional topical feature using Latent
Dirichlet Allocation (Blei, Ng, and Jordan 2003). For all the

3http://www.last.fm/api
4http://www.yelp.com/dataset challenge
5http://mlg.ucd.ie/datasets
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Table 3: Average computation time for convergence of dif-
ferent methods(in seconds)

Doucom Last.fm Yelp 3-Sources
CoRe 32,544 4,821 82 14

MultiNMF 40,451 7,768 137 36
PcoNMF 33,693 5,209 65 23

CMVNMF 30,981 5,670 146 60
FSUSC 10,732 2,771 60 26
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Figure 1: Iteration time with different reduction factor

used text datasets, we apply the TF-IDF transformation on
all item-word frequency matrices.To evaluate the clustering
performance, we use clustering accuracy(ACC) and normal-
ized mutual information(NMI) (Du, Li, and Shen 2012) as
our metrics. The larger ACC and NMI are, the better perfor-
mance is. We put all view matrices together to form a huge
one, then we run K-means 100 times and select the best clus-
tering result to initialize our factor U (l) and V (l).

Clustering Results
Comparison results of our two sampling strategies are shown
in Fig.2.. It is obvious that the efficiency of random sam-
pling strategy is much better than top sampling strategy. It
should be noted that the feature subset is fixed per itera-
tion in top sampling method, and this situation deeply influ-
ences the clustering performance, especially in some small
datasets like Yelp and 3-Sources. Stationary feature sub-
set results in the information loss which is the only reason-
able cause for performance sharply decreasing in Yelp and
3-Sources. Our random sampling strategy is more flexible
than top sampling in above aspect. Therefore, the random
sampling strategy is used as our final method in all experi-
ments. We compared two unsupervised similarity informa-
tion extractors and supervised label similarity extractors in
Table 5 and 6, we can also observe that combining the unsu-
pervised semantic prior information with our loss function
outperforms supervised label similarity measurements, es-
pecially in Doucom&Last.fm. Because supervised manual
label information represents a matrix for all views of con-
tent. Further, label information is a limited source in large
scale web datasets and degenerates clustering performance
in our framework. Further, we should know that Doucom
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Figure 2: Sampling strategy with respect to clustering per-
formance on each dataset
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Figure 3: The best performance with various parameter η

and Last.fm are sparser than other datasets because of their
dimensional problem, and this further indicates that our un-
supervised semantic regularization on a latent factor matrix
is a better solution to sparseness problem. In fact, GK uses
the whole feature space to calculate similarity, and an en-
tire feature space suffers from sparseness problem. This is a
strong reason that declines the performance of our FSUSC
framework.

In Table 4, we present results of all methods measured
by ACC and NMI for each dataset. We observe that: 1)The
FSUSC framework usually achieves a better improvement
in all web datasets. This may indicate that FSUSC frame-
work has the evident effect in each web dataset, especially
more suitable for real large corpus in the web application.
2)Among the NMF based clustering methods with different
similarity constraint, a framework with the intra-semantic
similar constraint and inter-semantic diversity information
(e.g. FSUSC) performs much better than the simple pair-
wise constraint, which validates that the algorithm based on
our proposed unsupervised semantic framework might be a
better way of capturing the difference in intrinsic connec-
tion between every two data points. 3) FSUSC-inter shows
a promising result, especially in Doucom. That means our
inter-semantic constraint could capture diversity informa-
tion among different views in large datasets, which contains
many noises and useless features.

Parameter study
Reduction factor η properly determines the feature num-
bers that we should use in updating process. Relative α
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Table 4: Performance on four real-world datasets(Both mean value and standard deviation are reported,best results are formated
in bold, while second best result are underlined)

ACC(%) NMI(%)
Metric Doucom Last.fm Yelp 3-Sources Doucom Last.fm Yelp 3-Sources

CoRe 40.5
(±2.9)

48.7
(±2.4)

58.8
(±2.7)

46.3
(±0.6)

35.6
(±3.1)

46.6
(±3.4)

53.2
(±3.3)

40.6
(±0.2)

MultiNMF 40.1
(±4.7)

45.5
(±2.3)

30.2
(±2.6)

68.4
(±0.1)

37.6
(±4.2)

39.4
(±2.3)

34.7
(±1.9)

60.2
(±0.1)

PcoNMF 46.3
(±3.6)

51.8
(±2.5)

63.6
(±4.6)

69.3
(±1.8)

44.8
(±3.7)

47.6
(±2.1)

61.7
(±3.2)

68.2
(±3.6)

CMVNMF 51.6
(±7.1)

60.4
(±3.8)

64.3
(±3.8)

70.9
(±5.7)

46.6
(±6.1)

57.2
(±1.8)

62.4
(±2.7)

68.4
(±5.5)

FSUSC-intra 43.2
(±4.1)

48.3
(±2.2)

65.2
(±3.5)

71.8
(±0.5)

40.2
(±3.8)

45.4
(±3.1)

63.2
(±1.2)

68.8
(±2.6)

FSUSC-inter 52.5
(±5.6)

58.3
(±2.1)

67.2
(±4.4)

73.2
(±2.2)

49.5
(±4.3)

56.1
(±1.3)

64.6
(±4.2)

71.9
(±3.5)

FSUSC
58.6

(±3.3)
64.6

(±2.1)
70.7

(±3.2)
74.1

(±1.3)
54.6

(±2.6)
61.7

(±1.4)
67.2

(±0.9)
72.6

(±2.3)

Table 5: ACC with different semantic constraints

Data Doucom Last.fm Yelp 3-Sources
Supervised 45.6 54.8 63.3 69.6
FSUSC

+GK 50.4 57.8 65.7 72.8

FSUSC
+SC 58.6 64.6 70.7 74.1

Table 6: NMI with different semantic constraints

Data Doucom Last.fm Yelp 3-Sources
Supervised 43.7 52.1 62.4 67.9
FSUSC

+GK 49.6 56.4 63.9 71.3

FSUSC
+SC 54.6 61.7 67.2 72.6

and β determine the weights of the intra-semantic similarity
graph regularizer and inter-semantic diversity term, respec-
tively. Figure 3 shows the performance of different reduc-
tion factor on two large real-world datasets and Fig.4. eval-
uates our constraint parameter while holding γ = 1, η = 8
for all views on the two largest datasets. We also studied
whether we could improve the clustering by tuning the pa-
rameter γ. However, the performance is not improved much.
In Fig.3., our iteration number is set to be 120, our algo-
rithm will converge during 100 iterations. And we can ob-
serve the performance curve in Doucom shows more steep-
ness because Doucom is much larger than Last.fm. In Fig.4,
FSUSC performs the sensitive change, which illustrates
that FSUSC is more suitable for the large and sparse cor-
pus. In addition, FSUSC performs best when α, β locates
in 1 or 2 when varying γ for all views. We also studied the
parameter on other small datasets like Yelp and 3-Sources,
and all results indicate that performance is the best when
α, β locates around 1 or 2. This suggests that the parameter
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Figure 4: Evaluating parameters α and β with respect to
clustering accuracy on two large datasets

α, β can be set to 1 and 2, respectively.

5 Conclusion
We have proposed FSUSC framework, a featured sampling
based nonnegative matrix factorization algorithm which is
combined with unsupervised semantic constraint, which can
handle the real-world multiple view datasets with a large
number of features. Also, we have developed an iterative op-
timization algorithm to make iteration faster and accelerate
convergence. Extensive experiments have demonstrated that
the proposed method is effective. In the future, we will study
how to model any other features together generated by com-
ment users such as the list of user preference and investigate
how to improve the algorithm efficiency when dealing with
the huge items and features both.
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