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Abstract 
Community detection is a fundamental problem in network 
science with various applications. The problem has attracted 
much attention and many approaches have been proposed. 
Among the existing approaches are the latest methods based 
on Graph Convolutional Networks (GCN) and on statistical 
modeling of Markov Random Fields (MRF). Here, we pro-
pose to integrate the techniques of GCN and MRF to solve 
the problem of semi-supervised community detection in at-
tributed networks with semantic information. Our new 
method takes advantage of salient features of GNN and 
MRF and exploits both network topology and node semantic 
information in a complete end-to-end deep network archi-
tecture. Our extensive experiments demonstrate the superior 
performance of the new method over state-of-the-art meth-
ods and its scalability on several large benchmark problems. 

 1. Introduction   
Many complex systems can be abstracted in the form of 
networks, which include, e.g., the Internet, the World-
Wide Web and power grids. Networks are both a represen-
tation tool and an analytic vehicle for gaining deep insights 
into complex systems. Modular or community structures of 
networks are important properties of underlying systems. A 
community in a network consists of nodes that are con-
nected more tightly than nodes in different communities. 
The objective of community detection is to assign every 
node in a network to a community based on network topol-
ogies (Girvan and Newman 2002). Community detection 
can help reveal and comprehend significant hidden proper-
ties of complex systems, e.g., the organizational principles 
of an institution, the units and their functions of an organi-
zation, and structures and possibly vulnerable spots of a 
power grid. 
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 In practice, except network topological properties, two 
additional pieces of information can also be exploited in 
community detection. The first is the prior community 
membership that some of the nodes in a network may have, 
e.g., students and faculty in a university. The second is the 
semantic information on nodes, e.g., information of per-
sonal interests. Utilizing the prior membership of even a 
small number of nodes can dramatically increase the fideli-
ty of the final communities identified, which also turns the 
problem into a problem of semi-supervised community 
detection. Utilizing node semantics expands the envelope 
of community detection to encompass attribute networks, a 
problem that has drawn little attention. 

Many community detection methods have been pro-
posed including hierarchical clustering (Jia et al. 2015), 
statistical modeling (Chen et al. 2018), network embedding 
(Tu et al. 2018), etc.  

We would like to highlight two most recent approaches 
to community detection, one is based on Graph Convolu-
tional Networks (GCN) and the other on Markov Random 
Fields (MRF). GCN is a Convolutional Neural Network 
(CNN) extended to the problem of semi-supervised classi-
fication of nodes in a graph (Kipf and Welling 2016; Chen 
et al. 2018) and thus can be adopted for community detec-
tion. GCN defines a spectral graph convolution by multi-
plying a graph signal with a spectral filter in the Fourier 
domain. It uses two graph convolution layers to derive a 
network embedding, and then applies the Softmax function 
to classify nodes into different categories. In training, the 
prior information of community memberships of a few 
nodes, network topology and node attributes are used to-
gether to learn the weight parameters of the neural network. 
Similar to CNN, GCN has an excellent global search capa-
bility, i.e., it is able to extract complex features or patterns 
from a myriad of local features by a stack of convolution 
operations. However, GCN has at least two drawbacks. 
Firstly, GCN aims primarily at deriving a network embed-
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ding of the input data in the hidden layers of CNN. How-
ever, such an embedding is not community oriented and 
does not consider community properties. More seriously, 
GCN can only obtain a relatively coarse community result 
since it lacks smoothness constraints to reinforce similar or 
nearby nodes to have compatible community labels. 

Markov Random Fields (MRF) is a statistical represen-
tation and modeling tool, which has enjoyed much success 
on structural data, particularly on images where pixels are 
arranged in well-defined grid structures (Krähenbühl and 
Koltun 2012). An essential ingredient of a MRF model is 
an objective (or energy) function consisting of unary po-
tentials and pairwise potentials. For example, unary poten-
tials for image segmentation quantify the total cost for in-
dividual pixels to be assigned to specific classes (e.g., the 
background and a cat), and the pairwise potentials specify 
constraints among adjacent pixels based on their properties 
such as colors. For image processing problems, the unary 
potentials are able to give rise to a coarse solution and the 
pairwise potentials typically help refine the coarse solution 
(Zheng et al. 2015). We recently extended MRF to com-
munity detection in networks with ill-defined structures 
(He et al. 2018). Different from a traditional MRF that has 
one graph in its model, our network-specific MRF (i.e., 
NetMRF (He et al. 2018)) uses three graphs in attempt to 
characterize hidden communities in a given network. They 
are the original network, an expected graph from a ran-
dom-graph null model of the given network to serve as a 
baseline for contrasting community structures, and an aux-
iliary complete graph that is used as a graphical representa-
tion of the MRF model. A network-specific belief propaga-
tion algorithm is then introduced for model inference. 
NetMRF has two eminent features. It is designed to ac-
commodate modular structures, so that it is community 
oriented. Since the MRF model formulates the community 
detection problem as a probabilistic inference problem that 
incorporates assumptions such as the community label 
agreement between nearby nodes, it offers a smooth label-
ing among nearby nodes and is able to refine coarsely la-
beled communities. Nevertheless, NetMRF does not con-
sider information on nodes and requires a substantial 
amount of computation for learning the model. 

Since GCN and MRF have complementary features, it is 
ideal to combine the two to take advantage of their 
strengths for community detection. A straightforward 
combination is a two-stage scheme, i.e., running the GCN 
method first to obtain a coarse community structure for a 
given network, and subsequently running the NetMRF 
method as a post-processing step to refine the GCN result. 
However, this naive combination is a greedy strategy that 
will train the GCN and MRF models separately. As a result, 
it is unlikely to identify high quality community structures 
as it does not tightly integrate the features of the two meth-

ods, e.g., setting the parameters in the GCN model is not 
affected by the information in the MRF model. 

We propose an end-to-end deep learning method to 
combine the GCN and MRF methods for semi-supervised 
community detection on attribute networks. In this new 
method, we cast the MRF model to a new convolutional 
layer and incorporate it as the last layer of the GCN model. 
We then train the whole integrated model altogether, so 
that the semantic information used in the GCN model can 
be exploited in the MRF model and the latter can refine the 
coarse community result. To this end, we first extend 
NetMRF to eMRF (extended MRF) by adding unary poten-
tials and content information, and by reparameterizing the 
MRF model in order to make it fit to the GCN architecture. 
We use mean field approximation for model inference in 
eMRF. By doing so, we can formulate the steps of the 
mean field inference as a series of convolution operations, 
and thus convert eMRF into a convolutional layer of GCN. 
The integrated GCN and converted eMRF constitute an 
end-to-end deep CNN (Fig. 1). In this end-to-end model, 
the last convolutional layer (i.e., eMRF) can refine the 
coarse output from the previous layers in the forward pass, 
and meanwhile, it can back propagate during training the 
differential error to the GCN layers to update their parame-
ters, thus achieving a truly end-to-end integration of the 
GCN and MRF methods. 

2. Preliminaries 

2.1 Notations and the Problem 
Consider an undirected and attributed network G = (A, X) 
specified by an n×n adjacent matrix A over n nodes and an 
n×m attribute (content) matrix X of m attributes per node. 
There are e edges in G. Some but not all of the nodes are 
known to belong to some communities, which are indexed 
by a set of k labels {l1, l2,…,lk}. In other words, network G 
is partially labeled. The problem of semi-supervised com-
munity detection is then to label the rest unlabeled nodes in 
G, and as a result to form k communities of nodes. 

2.2 Graph Convolutional Networks 
Spectral Graph Convolutional Neural networks (GCN) as a 
type of CNN was proposed by (Bruna et al. 2014) to ana-
lyze graph data. Following spectral graph theory (Chung 
2010), a network can be considered as a signal x in the 
time domain, and transformed to the frequency or spectral 
domain by the graph Fourier transformation UTx, where U 
is the matrix of eigenvectors of the normalized graph La-
placian L defined as 1/2 1/2 T

nL I D AD U U− −= − = Λ , where 
In is the identity matrix, D the matrix of node degrees, and 
Λ  is the diagonal matrix of eigenvalues. The graph signal 
in the frequency or spectral domain can convolve with a 
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function of diagonal matrix ( )gθ Λ  of L’s eigenvalues. The 
spectral graph convolution can then be performed as:  

 ( ) Tg x Ug U xθ θ= Λ*           (1) 
where x is a network represented by a vector of n scalars, 
each of which consists of the attributes of a node, and UT(.) 
and U(.) represent the graph Fourier transformation and 
inverse graph Fourier transformation, respectively. 

Because the Eigen-decomposition of L is complicated 
and requires O(n2) time, (Defferrard et al. 2016) suggested 
to use the k-th order Chebyshev polynomial expansion 

( )ΛkT


 (
~

max(2 ) nIλΛ = Λ −  and λmax is the largest eigenvalue 
of L) to approximate ( )gθ Λ to reduce the complexity to 
O(e), that is, 

~

' 0
( ) ' ( )K

k kk
g Tθ θ

=
Λ ≈ Λ∑  where 'kθ  is the k-th 

Chebyshev coefficient. Substituting it into formula (1) and 
using 

~

max2 nL L Iλ= −（ ） , we have 
~

' 0
' ( )K
k kk

g x T L xθ θ
=

≈∑* . 
Furthermore, (Kipf and Welling 2016) proposed to use k 

= 1 and max 2=λ , and derived a simplified graph convolu-
tion operation of GCN: 1/ 2 1/ 2( )ng x I D AD xθ θ − −≈ +* where 
θ is the only Chebyshev coefficient left. By defining 

1/ 2 1/ 2Â D AD− −=    (here nA A I= +  and 
jii ijD A= ∑  ), the 

final output for the assignment of node labels is: 
(0) (1)ˆ ˆ( , ) softmax( ReLU( ) )Z f X A A AXW W= =   (2) 

where W(0) (W(1)) and ReLU (Softmax) are weight parame-
ters and the activation function, respectively, in the first 
(and second) convolutional layers. The Adam optimizer 
and back-propagation are used to train the GCN model. 

2.3 Network-specific Markov Random Fields 
Markov Random Fields (MRF), an undirected probabilistic 
graphical model, has been successfully used to solve many 
problems such as image segmentation (Feng et al. 2010; 
Zheng et al. 2015). A complete MRF model is represented 
by an energy function, consisting of unary potentials  

( )u
ii

yφ∑  and pairwise potentials ( , )u v
i ji j

y yψ
≠∑ . The 

unary term ( )u
iyφ for an individual i measures the cost that 

it has label u. The pairwise term ( , )u v
i jy yψ for i and j rep-

resents the cost that they have labels u and v, respectively.  
We recently extended MRF to community detection (He 

et al. 2018). The difficulty of using MRF for a graph prob-
lem is how to define pairwise potentials ( , )u v

i ji j
y yψ

≠∑ , 
which is the main focus of the work in (He et al. 2018) 
without considering the unary potentials. Our network-
specific pairwise MRF (NetMRF) is to 1) reward the edges 
between nodes in the same community, 2) penalize the 
edges across different communities, 3) penalize missing 
edges (nonedges) between nodes in the same community, 
and 4) reward nonedges across different communities. The 
pairwise potential between nodes i and j is then defined as 

( )( , ) ( 1) ( 2 )u,vu v
i j i j ijy y d d e aψ δ= − − −      (3) 

where aij=1, if there is an edge between nodes i and j, or 0, 
otherwise, di  is the degree of node i, u and v are communi-
ty labels of i and j, respectively, and ( , )δ u v  equals to 1, if 

u=v, or 0, otherwise. A network-specific belief propagation 
algorithm was introduced to learn the NetMRF model. 

3. The Method 

3.1 Overview 
Our new approach falls into the framework of GCN with a 
MRF model being added as a new convolutional layer (Fig. 
1), so we named it as MRFasGCN. The central piece of the 
new method is a transformation of a MRF model and its 
inference to a convolutional layer to be added as the third 
(the last) layer to the original two-layer architecture of 
GCN (Fig. 1). By doing so, we are able to integrate and 
train these two types of models together to develop a truly 
end-to-end deep learning method for community detection. 

 
Fig. 1. The MRFasGCN architecture. Given an attribute network 
with adjacency matrix A and node attribute matrix X, the renor-
malized adjacent matrix Â  of A and the similarity matrix of 
nodes K based on A and X are calculated in advance, which are 
used as the inputs of the neural network along with X. 
MRFasGCN is composed of three convolution layers. The first 
two layers are from GCN which use Â  to convolve the attribute 
matrix X. The result of the first two layers is a coarse community 
labeling. The third convolutional layer performs the MRF infer-
ence to refine the result from the first two layers. The final output 
is obtained by subtracting the refined result from GCN’s result. 
The model is trained via the Adam optimizer which calculates 
gradients to update weight parameters (i.e., W(2), W(1) and W(0)). 

 To be specific, the original two convolutional layers of 
GCN are used as the first two layers of the MRFasGCN 
model. That is, in the first layer, we take the attribute ma-
trix X as a signal of the neural network in the time domain, 
and renormalize the adjacency matrix (i.e. Â ) to contain 
topology information. In essence, ÂX can be considered as 
a convolution between the graph signal in the frequency 
domain and a first-order approximation of localized spec-
tral filters on the graph. Furthermore, to let the model cap-
ture non-linear relationship, we adopt ReLU as the activa-
tion function for the first convolutional layer. We use the 
same convolution mechanism in the first layer in the sec-
ond convolutional layer. However, since the input to the 
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third convolutional layer (i.e., MRF) requires probabilistic 
community memberships, we use Softmax as the activation 
function in the second layer.  

The third convolutional layer, which is designed for 
MRF, is the most important part of our MRFasGCN. It is 
to take advantage of the MRF’s pairwise potentials to 
make the new model community oriented and to perform a 
smooth refinement to the coarse results from GCN. To this 
end, we extend NetMRF to eMRF as follows. First, to let 
eMRF handle the results from GCN, we add unary poten-
tials, attribute information and trainable weight parameters. 
The unary potentials are used to link the MRF layer to 
GCN, i.e., the output of the previous convolutional layer 
from GCN, i.e., X(2), are taken as an initial value of the 
unary potentials as a preliminary assignment of communi-
ties. To incorporate attribute information, we then compute 
a similarity matrix of nodes K based on network topology 
and node attributes (introduced in later sections), instead of 
using the original similarity matrix based on the topology 
alone. We then add weight parameters W(2) to better de-
scribe communities, which depict latent similarity relation-
ships between communities. Second, we adopt a mean filed 
approximation for inference in eMRF and formulate it as a 
convolution operation, which is represented as KX(2)W(2). 
The activation function of the third layer ensures that the 
output is a set of probabilistic community memberships.  

The overall end-to-end deep neural network is trained by 
the Adam optimizer (Kingma and Ba 2015), a well-known 
optimizer for deep learning. The loss function is the cross 
entropy loss between the predicted community labels and 
the partial ground-truth labels.  

3.2 Formulation of MRF as GCN 
This is the key to our method. We first extend NetMRF to 
eMRF to be integrated with GCN, then use a mean filed 
approximate for model inference and finally formulate 
eMRF as a convolution layer to form MRFasGCN.  
3.2.1 The eMRF Model 
In order to extend NetMRF (He et al. 2018) to eMRF, we 
introduce unary potentials, weight parameters and attribute 
information to the new model. The unary potentials are 
used to connect with GCN. Since the unary potential 

( )u
iyφ  measures the cost of node i having label u, we use 

( ) ( )u u
i iy p yφ = − , where ( )u

ip y  is the probability that node i 
has label u whose inital value comes from GCN’s result. 
For pairwise potentials, we note that (He et al. 2018) only 
consider the topological difference between intra- and in-
ter-community relationships, but ignore the semantic simi-
larities between communities that may also be critical for 
community detection. For example, a ‘politics’ community 
is more similar to an ‘economy’ community than a ‘sports’ 
community. To solve this issue, we add weight parameters 

(2)
u,vW  to the pairwise potential of NetMRF to revise the 

pairwise potential to 
( , ) ( , ) ( , )u v

i jy y u v b i jψ µ′ =                      (4) 
where ( , ) /2i j ijb i j d d e a−= as before, ( , ) (2)

,( , ) ( 1) u v
u vu v Wµ δ= −  

in which ( , )( 1) u vδ− can be seen as the prior of ( , )u vµ  and 
( 2)

,u vW  represents the trainable similarity relationship be-
tween communities of nodes i and j. 

Note that the similarity potential b(i, j) was originally 
defined based on network topology alone in NetMRF. We 
further extend it to incorporate attribute information. Spe-
cifically, we first use the cosine similarity 

T) / (( , | | | |)i j i jx x xs i j x= ⋅ ⋅  between the node attributes of 
nodes i and j to measure their similarity, where xi  is the i-th 
row of attribute matrix X. To properly define every node’s 
similarity, we introduce an asymmetric regularization term 
to balance the difference of the sum of similarity on every 
node, i.e., 

1
( ( , )) ( , ) / ( , )n

i t
R s i j s i j s i t

=
= ∑ . Combining the 

topology and attribute information, the similarity between 
nodes i and j is 

T( , ) ( , ) * ( / (| | | |))i i j i jk i j b i j R x x x xβ= + ⋅ ⋅      (5) 
where β is a parameter to make a tradeoff between network 
topology and attributes, which can be set to 1 when no 
prior is available. The final pairwise potential is 

( , )= ( , ) ( , )u v

i j
y y u v k i jψ µ′′                  (6) 

Let C = (C1,C2,…,Cn) be a partition of network G, where 
Ci  denotes the community label to which node i belongs. 
Then, the final energy function of eMRF is defined as 

( , ) ( ) ( , ) ( , )u
ii i j

E C | A X p y u v k i jα µ
≠

= − +∑ ∑    (7) 
where α is the parameter to make a tradeoff between the 
unary and pairwise terms which can also be set to 1 gener-
ally. The weight parameters W(2) can be learned in model 
training. The similarity propensities of nodes ( ( , ))n nK k i j ×=
can be calculated using (5) based on both network topolo-
gy and attribute information. In (7), ( )u

ip y  comes from the 
result of GCN, so that the unary terms ( )u

ii
p y−∑  serve as 

an interface between GCN and MRF, and consequently 
eMRF can be included in the GCN architecture. 
3.2.2 Mean Field Approximate for eMRF’s Inference 
To retrofit the eMRF model into GCN paradigm, we for-
mulate the model fitting procedure of MRF by proper con-
volution operations. The pairwise part of eMRF’s energy 
function in (7) is fully connected. As a result, the exact 
distribution P(C | A, X) is difficult to compute. We use 
mean field approximate inference to derive a decomposa-
ble iterative update equation for P(C | A, X), making it fea-
sible to be formulated as suitable convolution operations. 

In mean field inference, we replace the exact probability 
distribution P(C) (denoting P(C | A, X) for short) with an 
approximate distribution Q(C) that is used to minimize the 
KL-divergence D(Q || P). Here, Q(C) is decomposable, i.e., 

( ) ( )i i iQ C Q C=∏ . For simplicity, we use ~QUE  to denote 
the expected value under distribution Q. We can then write

~ ~D( || ) [log ( )] [log ( )]Q QQ P Q P= −U UE U E U . The Gibbs 
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distribution is 1
Z( | , )= exp( ( | , ))P C A X E C A X−∑ , so  

~ ~D( || ) [ ( )] [log ]Q QQ P E Z= +U UE U E ~ [log ( )]Q Q+ UE U ,(here 
Z is a normalized constant). Because ( ) ( )i i iQ C Q C=∏ , we 
have ~ ~[log ( )] [log( ( ))]

i i i iQ U Qi
Q Q U=∑UE U E  and then 

~ ~D( || ) [ ( )] [log ( )] log
i iQ U Q i ii

Q P E Q U Z= + +∑UE U E   (8) 
To optimize Qi(Ci), we define a Lagrangian that consists 
of all terms in D(Q || P) that involve Qi(Ci), i.e., 

~( ) [ ( )] ( ) log ( )+ ( ( ) 1)i Q i i i i i ii
L Q E Q C Q C λ Q C= + −∑UE U  (9) 

where Lagrange multiplier λ corresponds to the constraint 
that assures all Qi(Ci) to be probability distributions. We 
now take derivatives on (9) with respect to Qi(Ci): 

~( ) / ( ) [ ( ) | ] log ( ) 1i i i Q i i iL Q Q C E C Q C λ∂ ∂ = + + +UE U   (10) 
where ~ ~[ ( ) | ]= ( ) [ ( , )]

j ji i i jQ U Qj i
E C C C Uφ ψ

≠
+∑UE U E . 

By setting derivative to 0 and reordering all terms, we have 
~log ( ) ( 1) [ ( ) | ]i i Q iQ C λ+ E C= − − UE U    (11) 

As λ+1 is a constant relative to Ci  and can be calculated by 
renormalization, the final formula for Qi(Ci) is then 

1( ) exp{ ( ) [ ( , )]}
j jii i i Q i jZ j i

Q C C C Uφ ψ
≠

= − −∑ UE


   (12) 
Substituting ( , )u v

i jy yψ ′′  of (6) into (12), we have 
1

1

( ) exp{ ( ) [ ( , ) ( , )]}
           = exp{ ( ) ( ) ( , ) ( , )}

j ji

i j

i i i Q i jZ j i

i j j i jZ j i C L

Q C C C U k i j
C Q C C C k i j

φ µ
φ µ

≠

≠ ∈

= − −
− −

∑
∑ ∑

UE
  (13) 

After transposition, the final iterative update equation is 
1( ) exp{ ( ) ( , ) ( , ) ( )}

i j
i i i i j j jZ j i C L

Q C C C C k i j Q Cφ µ
≠ ∈

= − −∑ ∑    (14) 
By minimizing the KL-divergence and constraining Q(X) 
and Qi(Xi) to be valid distributions, we can derive 

1( ) exp{ ( ) ( , ) ( , ) ( )}
i j

i i i i j j jZ j i C L
Q C C C C k i j Q Cφ µ

≠ ∈
= − − ∑ ∑ (15) 

3.2.3 Incorporate eMRF’s Inference into GCN Training 
Based on the update equation of eMRF in (15), we formu-
late it as convolution operations to finalize the last compo-
nent of the integrated end-to-end deep neural network. 

The update equation in (15) can be split into four steps, 
i.e., initialization, message passing, addition of unary po-
tentials and normalization, each of which can be formulat-
ed as convolutional operations. For clarity, we use ( )iQ u  
to denote the approximate probability of node i having 
community label u and define the updated ( )iQ u  in each 
step as 1( )iQ u , 2 ( )iQ u , 3( )iQ u  and 4 ( )iQ u  respectively. 

1. Initialization. Assume Ci = u and the initialization is 
done by 1 1( ) exp{ ( )}

i

u
i iZQ u yφ← −  It is equivalent to apply-

ing Softmax to the output of GCN, that is ( ) ( )u u
i iy p yφ = −  . 

2. Message passing. The process of message passing 
consists of two parts: message passing between nodes and 
message passing between communities. For the first one, 
the formula of message passing from node j to node i is 

1 1( ) ( , ) ( )j jj i
Q u k i j Q u

≠
←∑ . This can be taken as multiply-

ing similarity matrix ( ( , ))n nK k i j ×=  calculated in (5) by the 
initialized Q matrix. For the second one, the formula of 
message passing from community v to community u is 

1 1( ) ( , ) ( )j jj i
Q u k i j Q u

≠
←∑ . Because the weights (2)

u,vW  
used in μ(u,v) can be learned in training, this can also be 
taken as a convolution operation executed on 1 ( )iQ u , where 
the receptive field of the convolution filter is 1×1, and the 
numbers of input and output channels are both k. 

3. Addition of unary potentials. This step is carried out 
by 3 2( ) ( ( ) ( ))u

i i iQ u y Q uφ← − + , which is equal to adding a 
unary term to 2( )iQ u  and then take its negative number. 

4. Normalization. The last step is performed as 
3 2( ) ( ( ) ( ))u
i i iQ u y Q uφ← − + . This can be taken as applying 

Softmax to normalize the output from the previous step. 
Following above steps, we transform the eMRF’s infer-

ence into a convolution process which is compatible with 
GCN. By adding eMRF as the last CNN layer to the origi-
nal two-layer structure, we thus integrate GCN and MRF in 
a joint end-to-end learning system MRFasGCN. 

As we define X(1), X(2) and Z as the outputs of the first, 
second and third convolution layers, and W(0), W(1) and W(2) 
as the weights of the first, second and third layers, respec-
tively, the forward model (which denotes the model in the 
forward pass of our designed deep neural network) is: 

(1) (0)
1

ˆ( , ) ReLU( )X f X A AXW= = , 
(2) (1) (1) (1)

2
ˆ( , ) softmax( )X f X A AX W= = , 

(2) (2) (2) (2)
3( ,  ,  ) soft max( )Z f X A X X - KX W= =  (16) 

where ( ( , ))n nK k i j ×=  is the similarity matrix of nodes in 
(5), and ( 2) ( , ) ( 2 )

,[( 1) ]u v

u v k kW Wδ

×
= − . Then, MRFasGCN can 

be trained by minimizing the cross entropy between the 
predicted and the (partial) ground-truth community labels 
under parameters (0) (1) (2){ , , }= W W Wθ , i.e., 

'
1 1

argmin ( , ) argmin( ln )n k
ij iji jθ θ

L Z Y Y Z
= =

= −∑ ∑    (17) 

where 'n  is the number of labeled nodes and Y the prior 
community memberships. Then, it can be trained by using 
the back-propagation algorithm as done in GCNs or CNNs. 

3.3 Complexity Analysis 
We ran our approach on TensorFlow with an efficient GPU 
implementation, i.e., sparse-dense tensor multiplication. In 
the first convolutional layer, both Â  and X are sparse ten-
sors, and W(0) has a shape of m×h, so that the computation-
al complexity of this layer is O(emh), where h is the num-
ber of hidden units of the first layer. In the second layer, 
W(1) has a shape of h×k. So the computational complexity 
in the first two layers is O(emhk), where e, m and k are the 
numbers of edges, attributes and communities, respectively. 
In the third layer, K is a sparse tensor and W(2) has a size of 
k×k. The total complexity for all three layers in (16) is 
O(emhk2). This time complexity is linear in the number of 
edges on large and sparse networks. Because we used a 
sparse representation for the adjacent matrix, the space 
complexity of our approach is O(e), which is the same with 
of the original GCN and is linear in the number of edges.  

4 Experiments 
We now analyze why MRFasGCN works, and compare it 
with several state-of-the-art (semi-supervised) community 
detection methods for evaluation. 
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 In training, we adopted the widely-used Adam optimizer 
and ran experiments on TensorFlow. We set the learning 
rate to 0.03, the dropout rate to 0.8, and the maximum 
epoch to 200. We terminated the training process when the 
loss function failed to decrease in 10 consecutive epochs. 
We use the same scheme in GCN to initialize the weights 
of MRFasGCN’s first two CNN layers; we initialized the 
weights of the third layer uniformly, i.e., the weights were 
randomly chosen from a uniform distribution. The number 
of hidden units of the first convolution layer is 16 (i.e., h = 
16) except for NELL (see below) which has 64 units. 

4.1 Why MRFasGCN Works 
4.1.1 Quantitative Analysis 
To understand MRFasGCN, we compared it with GCN 
(Kipf and Welling 2016) and the naive two-stage scheme 
that we outlined earlier, i.e., running GCN first and then 
applying eMRF to refine its results. Note that eMRF can 
also run individually. We did not compare MRFasGCN 
with eMRF because GCN+MRF is an enhanced eMRF that 
uses GCN’s results to define its unary potentials. 

Table 1. Datasets descriptions. Here, rate (%) denotes the pro-
portion of semi-supervised information 

Datasets Nodes Edges Communities Attributes Rate (%) 
Cornell 195 286 5 1,703 20 
Texas 187 298 5 1,703 20 

Washington 230 417 5 1,703 20 
Wsicsonsin 265 479 5 1,703 20 
UAI2010 3,363 45,006 19 4,972 3.0 
Citeseer 3,327 4,732 6 3,703 3.6 

Cora 2,708 5,429 7 1,433 5.2 
Pubmed 19,717 44,338 3 500 0.3 
NELL 65,755 266,144 210 5,414 0.1 

Table 2. The results of GCN, GCN+MRF (G+M for short) and 
MRFasGCN (MasG for short) in terms of accuracy (AC), normal-
ized mutual information (NMI) and runtime. 

Datasets AC (%) NMI (%) Time (seconds) 
GCN G+M MasG GCN G+M MasG GCN G+M MasG 

Cornell 46.3 47.6 63.4 9.1 14.7 38.8 2.4 5.5 3.1 
Texas 57.1 55.4 71.1 5.0 5.0 45.0 2.0 5.0 2.2 

Washington 54.9 58.8 70.6 16.3 23.4 41.4 1.9 4.5 2.2 
Wsicsonsin 55.6 53.8 72.7 17.8 18.5 52.2 2.5 5.3 3.0 
UAI2010 16.4 18.3 50.6 3.8 9.1 40.5 42.0 185.2 120.3 
Citeseer 70.3 71.7 73.2 42.3 46.2 46.3 7.0 18.0 14.0 

Cora 81.4 82.5 84.3 54.5 64.4 66.2 4.0 10.0 6.0 
Pubmed 79.0 79.6 79.6 26.0 38.2 40.7 38.0 63.0 51.0 
NELL 45.4 63.1 66.4 76.7 78.2 78.3 48.0 280.0 240.0 

The datasets are shown in Table 1. Citeseer, Cora, Pub-
med and NELL are from (Kipf and Welling 2016) which is 
used to validate GCN. The proportion of semi-supervised 
information that was made available was set according to 

(Kipf and Welling 2016). Cornell, Texas, Washington, 
Wisconsin and UAI2010 are from (Wang et al. 2018) 
which are also used to validate community detection meth-
ods. The proportion of their semi-supervised information 
was set according to (Wang et al. 2018). We used Accura-
cy (AC) and Normalized Mutual Information (NMI) (Liu 
et al. 2012) as metrics for performance evaluation. 

As shown in Table 2, MRFasGCN has the best perfor-
mance and GCN+MRF outperforms GCN, confirming that 
the two-stage method GCN+MRF improves upon GCN 
through MRF’s refinement. This also validates that 
MRFasGCN improves upon GCN+MRF in an end-to-end 
deep learning so that their complementary features can be 
tightly integrated so as to find optimal or near optimal so-
lutions. While GCN+MRF and MRFasGCN have roughly 
similar magnitudes of running time (Table 2), MRFasGCN 
runs faster than MRF+GCN, indicating that the integration 
of the two can also help speed up the process for finding 
the right weights for all three layers for model fitting. 
4.1.2 Qualitative Analysis 
To further validate the refining function of MRFasGCN’s 
third convolution layer, we illustrate two nodes in Cora 
which were mistaken by GCN but corrected by 
MRFasGCN in Fig. 2. Each node’s color denotes its pre-
dicted community labeling. The node containing an aster-
isk is labeled, otherwise is unlabeled. For node id2395 in 
the Fig. 2(a), it was erroneously assigned to community 7 
by GCN. The reason for the mistake is that one of its 
neighbors is labeled and this label directly affects node 
id2395’s predicted label. In comparison, MRFasGCN cor-
rectly assigned node id2395 to its correct community 1. 
This is because MRFasGCN uses the MRF layer to refine 
the coarse results from GCN by using information on the 
nodes adjacent to node id2395. We observe another node 
(id 572) that was also mistaken by GCN (Fig. 2(b)). In this 
case, supervised information misguided GCN again – node 
id572 was wrongly assigned to community 7 because one 
of its 2-hop neighbors is originally labeled as community 7. 
Fortunately, the pairwise potentials of MRFasGCN consid-
er the label consistency between nearby nodes and correct-
ly adjust this node’s label to community 4. 

 
Fig. 2. Two examples on wrongly-divided nodes in Cora. 
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4.2 Comparison with the Existing Methods 
We compared MRFasGCN with three types of the state-of-
the-art methods. The first includes DCSBM (Karrer and 
Newman 2011) and NetMRF (He et al. 2018), which both 
use network topology alone. The second type includes 
PCLDC (Yang et al. 2009), SCI (Wang et al. 2016) and 
NEMBP (He et al. 2017), which use both topology and 
attribute information. The third type includes WSCDSM 
(Wang et al. 2018) and DIGCN (Li et al. 2018), which are 
semi-supervised methods on attribute networks.  

Table 3. Comparison of prediction accuracy (AC). Bold font 
indicates the best result. ‘-’ indicates that runtime exceeds 24 
hours or out-of-memory. Our method is denoted by MasG and 
other methods are denoted by first three characters for short. 

Datasets AC (%) 
DCS Net PCL SCI NEM DIG WSC MasG 

Cornell 37.9 31.8 30.3 36.9 47.2 46.3 53.9 63.4 
Texas 48.1 30.6 38.8 49.7 53.6 57.1 77.5 71.1  

Washington 31.8 35.0 30.0 46.1 42.9 50.0 58.3 70.6 
Wsicsonsin 32.8 28.6 30.2 46.4 63.4 55.6 61.9 72.7 
UAI2010 2.6 31.1 28.8 29.5 46.3 17.3 27.2 50.6 
Citeseer 26.6 22.2 24.9 34.4 49.5 70.1 47.6 73.2 

Cora 38.5 58.1 34.1 41.7 57.6 81.7 53.7 84.3 
Pubmed 53.6 55.5 63.6 - 65.7 79.2 - 79.6 
NELL - - - - - 45.2 - 66.4 

Table 4. Comparison of 8 community detection methods in NMI. 

Datasets NMI (%) 
DCS Net PCL SCI NEM DIG WSC MasG 

Cornell 9.7 7.3 7.2 6.8 18.7 9.1 21.6 38.8 
Texas 16.6 5.5 10.4 12.5 35.1 5.0 53.7 45.0 

Washington 9.9 5.8 5.7 6.8 21.2 10.5 24.1 41.4 
Wsicsonsin 3.1 3.2 5.0 13.3 38.0 18.8 31.4 52.2 
UAI2010 31.2 25.8 26.9 23.4 47.2 3.7 24.3 40.5 
Citeseer 4.1 1.2 3.0 9.2 24.3 45.4 35.3 46.3 

Cora 17.1 37.2 17.5 17.8 44.1 62.5 52.5 66.2 
Pubmed 12.3 16.9 26.8 28.3 - 38.0 - 40.7 
NELL - - - - - 71.9 - 78.3 

Measured in AC, MRFasGCN performs the best on 8 of 
9 networks and the second best on the remaining Texas 
networks (Table 3). In general, the methods that use both 
topology and attribute information perform better than 
those using topology alone, and the semi-supervised meth-
ods outperform the ones that do not use prior membership 
information. We highlight that among the semi-supervised 
methods, MRFasGCN is on average 15.1%, 14.4% more 
accurate than WSCDSM and DIGCN, respectively.  

The NMI results follow a similar trend as in AC (Table 
4). MRFasGCN performs the best on 7 of the 9 networks, 
and is also competitive on the rest 2 networks. Compared 
with semi-supervised methods, it is 12.5% and 20.5% more 
accurate than WSCDSM and DIGCN on average. This 
further validates its effectiveness over the existing methods. 

5 Related Work 
Our work was inspired by the recent work on GCN and 
MRF for community detection and image processing.  
Graph Convolutional Network. The Graph Convolution-
al Network (GCN) method, proposed by (Kipf and Welling 
2016), applied spectral graph theory and some simplifica-
tion to build a two-layer graph convolutional network. It 
focuses primarily on semi-supervised node classification, 
which can be adopted for community detection. The origi-
nal GCN method has been extended. For example, (Chen 
et al. 2018) proposed to augment GCN with a non-
Backtracking operator, defined on the line graph of edge 
adjacencies. (Li et al. 2018) proposed a co-training and 
self-training approach to train GCNs, which we referred to 
as DIGCN. In contrast, our new approach incorporated a 
different type of statistical model, i.e., MRF, into GCN by 
converting MRF into a convolutional layer and the model 
fitting operations of MRF into convolution operations. The 
objective of introducing a MRF in the GCN framework is 
to refine the coarse solution from GCN using MRF, which 
is fundamentally different from the existing methods.  
Network-Specific Markov Random Fields. As an undi-
rected probabilistic graphical model, MRF has been used 
in many applications such as image segmentation. Despite 
its success in image processing and other related problems, 
MRF was only extended very recently to community detec-
tion (He et al. 2018). We presented a network MRF 
(NetMRF) model to encode the modular properties of an 
irregular network in the energy function to describe com-
munities. In this paper, we converted MRF to a convolu-
tional layer and incorporated it into GCN. Furthermore, 
some detailed differences between the converted MRF and 
the original NetMRF should be highlighted. First, NetMRF 
uses network topology (and pairwise potentials in the ener-
gy function) alone to describe communities, while the new 
method uses both topology and attributes as well as ac-
commodate unary potentials in the energy function in addi-
tion to pairwise potentials. Second, NetMRF does not con-
sider the semantic similarities among communities while 
our approach does take such similarities in its model. 
Joint Method of CNN and MRF for Image Data. Some 
works on image processing are also loosely related. The 
most relevant is CRF-RNN model for image segmentation 
(Zheng et al. 2015). Its main idea is to append FCN (Fully 
Convolutional Networks for image segmentation) with a 
recurrent neural network (RNN) which is transformed from 
the fully connected pairwise MRF model presented by 
(Krähenbühl and Koltun 2011). The RNN layers mimic the 
sharp boundary delineation capabilities of MRF while ex-
ploiting the feature representation power of FCN. However, 
this method has only been used in computer vision. It does 
not seem to be straightforward to extend to graph problems 
such as community detection, for at least three reasons. 
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First, different from images, networks are non-Euclidean in 
that they do not have fixed topological structures that are 
essential for convolution operations. Second, there is no in-
depth study about MRF for community detection, the only 
one is our work in (He et al. 2018), whereas we ignore the 
information on nodes and requires a substantial amount of 
computation for learning the model. Third, the construction 
of the joint training of different types of network-specific 
statistical models is also a non-trivial task. We overcame 
these challenges and successfully developed a joint model 
of GCN and MRF for network community detection. 

6 Conclusion 
We proposed an end-to-end deep learning method, namely 
MRFasGCN, to integrate GCN and MRF for the problem 
of semi-supervised community detection in attributed net-
works. It has architecture of three convolutional layers 
with GCN as the first two convolution layers and MRF as 
the third layer. The MRF component utilizes the coarse 
output of GCN to construct MRF’s unary potentials, and 
then enhances the network-specific pairwise potentials to 
find better communities. In addition to the integrated GCN 
and MRF architecture, another significant contribution of 
our work is the novel transformation of MRF to CNN. We 
analyzed and demonstrated the strength of our model in 
both accuracy and running time. Experimental results 
showed that it outperformed the state-of-the-art community 
detection methods on many large real-world networks.  
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