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Abstract
Recent research on community detection focuses on learn-
ing representations of nodes using different network embed-
ding methods, and then feeding them as normal features to
clustering algorithms. However, we find that though one may
have good results by direct clustering based on such network
embedding features, there is ample room for improvement.
More seriously, in many real networks, some statistically-
significant nodes which play pivotal roles are often divided
into incorrect communities using network embedding meth-
ods. This is because while some distance measures are used to
capture the spatial relationship between nodes by embedding,
the nodes after mapping to feature vectors are essentially not
coupled any more, losing important structural information. To
address this problem, we propose a general Markov Random
Field (MRF) framework to incorporate coupling in network
embedding which allows better detecting network communi-
ties. By smartly utilizing properties of MRF, the new frame-
work not only preserves the advantages of network embed-
ding (e.g. low complexity, high parallelizability and applica-
bility for traditional machine learning), but also alleviates its
core drawback of inadequate representations of dependencies
via making up the missing coupling relationships. Experi-
ments on real networks show that our new approach improves
the accuracy of existing embedding methods (e.g. Node2Vec,
DeepWalk and MNMF), and corrects most wrongly-divided
statistically-significant nodes, which makes network embed-
ding essentially suitable for real community detection appli-
cations. The new approach also outperforms other state-of-
the-art conventional community detection methods.

Introduction
Complex networks such as biological networks, communi-
cation networks and social networks, are abstract representa-
tions of biological systems, communication systems and in-
teraction systems respectively. Networks model interaction
relationships between units of such various complex sys-
tems. They are powerful representations which can be used
for analyzing the nature and function of complex systems.
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Figure 1: Comparison of (a) network embedding methods
and (b) our MRF approach for community detection. The
sizes of nodes are proportional to their degree centrality val-
ues. Each of the actual community structure (left) and the
community structures derived by algorithms (right) is sepa-
rated by a dotted line in the graph. (a) For embedding meth-
ods, the new feature representation in the form of individ-
ual vectors is first extracted and then taken as input to a
data clustering algorithm. Nodes 3 and 6 both have high de-
gree centralities and thus can be regarded as statistically-
significant nodes. Here node 3 is wrongly divided. (b) For
our MRF approach, the feature vectors obtained by embed-
ding methods are modelled as unary potentials. The topolog-
ical structure, which reflects the nodes dependency relation-
ship, is modelled as pairwise potentials. They work together
to form the final energy function, in which the statistically-
significant node 3 is successfully assigned.

One of the most important properties of complex networks
is their community structure, in which nodes are connected
more densely within clusters than across clusters. Discover-
ing communities is useful in many real applications such as
targeted advertising, protein network analysis, recommenda-
tion system, etc. (Newman 2010).

Recently, discovering community structure in complex
networks has attracted a great number of scholars from
various research fields. A series of methods based on dif-
ferent theories and techniques have been proposed, as re-
viewed e.g. in (Fortunato and Hric 2016). They include
spectral clustering (Newman 2010), modularity optimiza-
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tion (Yang et al. 2016), hierarchical clustering (Newman
2010), stochastic block model (Fortunato and Hric 2016),
nonnegative matrix factorization (Karrer and Newman 2011;
Wang et al. 2017; Zhang and Yeung 2012) and deep learn-
ing (Yang et al. 2016). These methods typically use network
topology, often represented by the adjacency matrix. Net-
work topology is a kind of relational data and represents
the coupling relationship between pairs of nodes. These mu-
tually related or constrained relationships between pairs of
nodes offer a clue key for community detection.

Another line of related research which can identify com-
munity structure is to learn a new kind of network represen-
tation from network topology and feed the network represen-
tation as normal features to clustering algorithms such as k-
means, as shown in Fig. 1(a). New network representations
are extracted through embedding techniques which map the
relational data from the original space to a low-dimensional
feature space (Cui et al. 2018). Embedding techniques aim
at learning the dense and continuous vectors of nodes in fea-
ture space, so that the noise or redundant information can be
reduced while the intrinsic structural information can be pre-
served (Cui et al. 2018). Some are Node2Vec (Grover and
Leskovec 2016), DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), MNMF (Wang et al. 2017), LINE (Tang et al. 2015),
GraRep (Cao, Lu, and Xu 2015), ComE (Cavallari et al.
2017), AROPE(Zhang et al. 2018), etc. Such new network
representation has at least three main advantages in network
analysis tasks, namely low computational complexity, high
capability for parallelization and applicability for traditional
machine learning algorithms, thus it has received extensive
attention recently (Cui et al. 2018).

However, we find that although one may have good re-
sults by directly clustering the new network representation,
its community detection accuracy can still be improved. A
more serious problem comes from the fact that, in many
real networks, some statistically-significant nodes are often
wrongly divided using the network embedding. This pro-
duces a worse effect in real applications than just the sim-
ple decrease in accuracy, since statistically-significant nodes
often play pivotal roles in network analysis. For example,
nodes with high degree are more likely to be the authorita-
tive or active individuals which have an important effect in
network and communities, while nodes with high between-
ness are often bridges or hubs which play the pivotal role
in connecting different communities. This may be because,
although the distance is employed to capture the relation-
ship between nodes by the embedding technique, nodes af-
ter mapping to feature vectors are not coupled anymore (Cui
et al. 2018). Also, the lack of related or constraint relation-
ship between nodes has an enormous impact on statistically-
significant nodes in the network. It will thus be very impor-
tant to not only improve the accuracy of network embedding
methods, but also correct the wrongly-divided statistically-
significant nodes, which may make embedding technology
more suitable for real community detection applications.

To solve this problem, one may need a new frame-
work that not only utilizes network embedding to play a
dominant role in preserving its own advances (e.g. low
computational complexity, high capability for paralleliza-

Table 1: Datasets statistics and the overlapping ratio of
edges between each original network and the network re-
constructed via Node2Vec, DeepWalk or MNMF. Here n,
m and K are the number of nodes, edges and communities,
respectively.

Datasets n m K
Rate (%)

Node2Vec DeepWalk MNMF

Zachary’s karate club 34 78 2 38.46 41.96 32.62
Dolphin social network 62 160 2 48.71 62.95 30.64
High school friendship6 69 220 6 64.21 69.81 54.59
High school friendship7 69 220 7 64.21 69.81 54.59
Political books 105 441 3 54.71 61.15 34.47
American college football 115 613 12 72.52 76.63 72.27
Political blogs 1,490 16,717 2 14.17 20.71 17.12
Cora 2,708 5,429 7 65.59 69.12 60.33
Citeseer 3,312 4,732 6 59.14 63.91 57.77
UAI2010 3,363 45,006 19 41.98 47.15 38.48
North 13,882 381,935 7 34.41 39.44 32.25
PubMed diabetes 19,717 44,338 3 20.41 29.09 18.41

tion, and applicability for machine learning algorithms),
but also uses network topology to play a role of fine ad-
justments of the improper division of nodes (especially for
the statistically-significant nodes) caused by missing depen-
dency relationship. Fortunately, the pairwise Markov Ran-
dom Field (MRF), which has been successfully used in im-
age segmentation, meets this requirement. Specifically, its
associated energy function can be factorized into a sum of
potential functions, which consist in a set of unary poten-
tials and a set of pairwise potentials (He et al. 2018). Unary
potentials are defined to characterize the features of each in-
dividual having a main function, which is similar to the role
of network embedding. On the other hand, pairwise poten-
tials are defined based on pairs of objects and reveal inter-
objects constraints to fine-tune the unary potentials, similar
to the role of network relationship.

Based on the above idea, we define a new framework us-
ing pairwise MRF for community detection. Specifically,
we use the new network embedding in the form of a low-
dimensional vector of each node to define unary potentials,
and further use relationships (derived from network topol-
ogy) between nodes to define new pairwise potentials, as
shown in Fig. 1(b). Under this framework, the advantage
of network embedding can be preserved through the depen-
dence on the network embedding, and the drawbacks of in-
adequate representations of dependencies can be mitigated
by making up for the lack of coupling relationships.

Motivated Observations
We first show that some statistically-significant nodes in real
networks are often wrongly divided by using network em-
bedding methods. We then show that the network recon-
structed by embedding technologies loses many dependen-
cies between nodes. The real networks with ground truth
communities we use are shown in Table 1 (Newman 2017).
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Observation Experiment 1
To validate that network embedding technologies often as-
sign some statistically-significant nodes into incorrect com-
munities, we first find the community structure of different
networks based on network embeddings. We use three well
known network embedding methods, Node2Vec (Grover and
Leskovec 2016), DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), and MNMF (Wang et al. 2017) (a community pre-
serving method) to extract the network embeddings for each
of the twelve networks in Table 1. (Other methods such as
LINE (Tang et al. 2015), GraRep (Cao, Lu, and Xu 2015)
and ComE (Cavallari et al. 2017) were also tested. We do
not show them since they have similar effects.) Then, as was
done in many network embedding works (Cui et al. 2018),
we use k-means to cluster these new network representations
to get the community structures.

After finding the nodes which are wrongly divided by the
above methods (by comparing with the ground truth), we
further determine which nodes among them are statistically
significant. To this end, we employ three largely used indices
of network nodes statistical significance, i.e. degree central-
ity, eigenvector centrality and betweenness centrality (New-
man 2010), to analyze each of the wrongly divided nodes.

Table 2 shows some representative nodes in each of the
networks that are wrongly divided by Node2Vec, Deep-
Walk and MNMF. Due to space limit, we display no
more than three wrongly-divided statistically-significant
nodes for each network. As shown, there are 8 out of
12 networks which include wrongly-divided statistically-
significant nodes by using Node2Vec, DeepWalk and
MNMF. This demonstrates that when one applies embed-
ding to find community structures in real-world networks,
some statistically-significant nodes which play an important
role in each network are often wrongly divided. This shows
that embedding methods (including the community preserv-
ing method MNMF) have serious drawbacks for real com-
munity detection applications. But fortunately, almost all
nodes shown in Table 2 can be corrected using our frame-
work which will be introduced in the following sections.

Observation Experiment 2
According to the first experiment, the embedding technol-
ogy will assign some statistically-significant nodes to incor-
rect communities. This may happen when the network em-
bedding method loses some dependency relationships be-
tween pairs of nodes in the network topology. To validate
this hypothesis, we first reconstruct a new network using
its embedding, and then calculate the overlapping ratio of
edges between the reconstructed and the original networks.
Intuitively, the smaller the overlapping ratio, the more de-
pendencies were lost reconstructing the network from em-
bedding, i.e. the more embedding loses dependencies.

Again, we first use embedding methods, i.e. Node2Vec,
DeepWalk and MNMF, to extract the feature vectors of
nodes for each of the twelve networks. Then, for each node
i in a network, we compute the feature similarities between
node i and all other nodes by using the cosine similarity.
Then we sort the similarity in decreasing order, select the

Table 2: The statistically-significant nodes which are
wrongly divided by Node2Vec, DeepWalk, MNMF and our
new MRF framework (our approaches using Node2Vec,
DeepWalk and MNMF as bases are named as MRF-N,
MRF-D and MRF-M, respectively). “✕” denotes a node
which is which is wrongly divided by a network embedding
method. The rank of a node is shown in terms of degree cen-
trality, eigenvector centrality (eigen for short) and between-
ness (between for short) centrality, respectively.

Datasets Node ID Node2
Vec

MRF-N Deep
Walk

MRF-D MNMF MRF-M Degree
(rank)

Eigen
(rank)

Between
(rank)

Karate
3 ✕ ✕ ✕ 4 3 4
4 ✕ ✕ 17 8 6

Friend6
2 ✕ 7 20 10
27 ✕ ✕ ✕ 8 26 21
62 ✕ ✕ 9 8 33

Friend7
7 ✕ ✕ 5 4 7
27 ✕ ✕ 8 26 21
62 ✕ ✕ 9 8 33

Polbooks
50 ✕ ✕ 38 35 2
59 ✕ ✕ ✕ 19 42 8

Polblogs
101 ✕ ✕ 63 108 24
123 ✕ ✕ 42 21 85
1,182 ✕ ✕ 234 144 262

Cora
28 ✕ ✕ 9 273 7
73 ✕ ✕ 8 203 9
88 ✕ ✕ 11 180 16

Cite
161 ✕ ✕ ✕ 351 455 78
632 ✕ ✕ 24 28 66
725 ✕ ✕ 121 63 72

North
6,404 ✕ ✕ ✕ 128 23 50
7,073 ✕ ✕ ✕ 52 76 31
7,089 ✕ ✕ 21 151 48

Pubmed
316 ✕ ✕ ✕ 36 1053 21
604 ✕ ✕ ✕ 38 819 140
3,657 ✕ ✕ ✕ 70 818 28

top di (di is the degree of node i) nodes with the highest
similarities and take them as structural neighbors (to distin-
guish from topological neighbors in the original network)
of node i in the reconstructed network. Using the structural
neighbors of all nodes, we finally reconstruct a new network.

The right part of Table 1 shows the overlapping ratio be-
tween the original network and the network reconstructed by
Node2Vec, DeepWalk and MNMF. As shown, the average
overlapping ratio between the reconstructed and the origi-
nal networks are 46.76%, 52.90% and 40.81%, respectively,
based on Node2Vec, DeepWalk and MNMF. This indicates
that there are almost half of the dependency relationships in
the original network topology, which are lost or do not ap-
pear directly in the networks reconstructed via embedding.

Finally, let us analyze the reason why some statistically-
significant nodes are wrongly divided by the embedding
methods. As discussed in (Fortunato and Hric 2016), tra-
ditional community detection approaches mainly focus on
network topology in which statistically-significant nodes are
often highly emphasized in the community detection pro-
cess, so that it is not easy to wrongly divide them in this
case. Unfortunately, after mapping network topology to fea-
ture space by embedding methods (including the community
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preserving method MNMF), some dependency relationships
between nodes are (directly or indirectly) lost, as shown in
Table 1. Then, the statistical significance of nodes in the
original network topology cannot be preserved. This will
lead to the fact that the originally statistically-significant
nodes are not necessarily protected as before, and hence they
may be more easily divided wrongly in the embedding-based
community detection process. Our work here is to correct
network embeddings by utilizing network topology to es-
sentially improve community detection performance.

The MRF Framework
We first define a structured pairwise Markov Random Field
(MRF) to correct network embeddings by using network
topology for community detection. We then present a be-
lief propagation (BP) algorithm to learn the MRF model.
Finally, we give its complexity analysis.

The Model
Consider an undirected and unweighted network G with n
nodes and m edges, which is represented by an adjacency
matrixA= [aij ]n×n∈R

n×n, where aij is 1 if nodes i and j
are connected, or 0 otherwise. We divide the nodes into K
communities, where each node i has a label ci∈{1, · · · ,K},
indicating which of the K communities it belongs to.

Our MRF model consists of two parts (Fig. 1(b)). One is
a set of unary potentials which are defined to force the net-
work embeddings to play a dominant role. The other is a
set of pairwise potentials which are defined based on pairs
of nodes and reveal constraints to fine-tune the unary po-
tentials. All these unary potentials and pairwise constraints
in the energy function work together in order to character-
ize and exploit the network embeddings as well as network
topology to achieve a global coherent community structure.
Then, the complete energy function can be defined as:

E(C;A) =
∑
i

θi(ci) +
∑

<i,j>∈ε

θij(ci, cj) (1)

where C = (c1, c2, · · · , cn) is the community assignments
of nodes, ε is the set of edges, θi and θij define unary and
pairwise potentials respectively (see below).

With the energy function for partition C defined, we can
then adopt the Gibbs distribution, which is a function of in-
verse temperature β, to compute the posterior probability of
partition C given network topology A. This is defined as:

P (C|A) =
1

Z
e−βE(C;A) (2)

where Z is a normalization coefficient. Then, the best com-
munity partition Ĉ can be obtained according to:

Ĉ = argmax
C

P (C|A) (3)

Definition of Unary Potentials We first define unary po-
tentials using network embeddings in order to characterize
each individual’s features.

Let θi (ci) denote the unary potential of node i, where the
value of ci ranges from 1 to K. That is, θi (ci) measures the

cost of assigning community label ci to node i. For example,
if node i is more likely to belong to the first rather than the
second community, we will have θi (c1) < θi (c2). We need
to model the network embeddings of all nodes into unary
potentials in the energy function. However, network embed-
ding is a type of vector representations of nodes, which is
different from the real form of unary potentials. For this
problem, we conversely employ the Gibbs distribution in (2).
We use γci to denote the probability that node i belongs to
community ci. Then, the unary potential can be obtained by
its corresponding probability distribution:

θ(ci) =
− log γci

β
(4)

where β = 1, and γci is the probability distribution of node
i belonging to each community.

Specifically, we use the Gaussian Mixture Model (GMM)
to approximate the probability distributions γci of all nodes
belonging to various communities. Then, γci is obtained by
the sum where y is the feature vector of the node:

P
(
y
⏐⏐µ, σ2

)
=

M∑
i=1

αiφ
(
y
⏐⏐µi, σ

2
i

)
(5)

φ
(
y
⏐⏐µi, σ

2
i

)
=

1√
2πσi

exp

(
− (y − µi)

2

2σ2
i

)
(6)

where φ(y|µi, σ
2
i ) is a component in GMM with mean µi

and variance σ2
i ((µ;σ) = (µ1, · · · , µM ;σ1, · · · , σM )), and

αi is the mixing coefficient. The GMM can be taken as a
full-covariance Gaussian mixture with M components, in
which each component characterizes a community, thus the
number of components M should be equal to the number
of communities K. We employ EM algorithm to infer the
parameters, and then get the probability distributions γci ,
which can be converted into unary potentials via (4).

Definition of Pairwise Potentials We then define another
type of potential functions, i.e. pairwise potentials, which
play the role of correcting network embeddings. Different
from using the fully connected network structure as done in
(He et al. 2018), we use network topology directly as the un-
derlying MRF structure since our purpose here is to use the
coupling relationship between nodes to make up the draw-
backs of inadequate dependencies of embeddings. This also
makes the model efficient due to the sparsity of networks.

In addition, it is often believed that an observed link in a
network is either formed by a direct connection (i.e. direct
edge) or formed from indirect transmission (i.e. transitive
edge). It is not an ideal way of using these links uniformly
to form a MRF to correct network embeddings since the de-
pendency strength of transitive edges is often overestimated.
Here we use direct dependency strength proposed by (Feizi
et al. 2013) to define the dependency relationship between
linked nodes to correct network embeddings.

To be specific, let G(h) be the hth order direct depen-
dency graph of the observed network G with adjacency ma-
trix A. Then the interaction process between nodes proceeds
as follows. Given the direct dependency graph Gdir (i.e.,
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G(1)) with edges representing the tie strength of the first or-
der interactions, an individual’s influence can spread when
the nodes it interacted with connects with other nodes in
the next step, with its strength diluted along with the in-
crease of interaction order. We take the final observations
to be the cumulative effects of all the order of interactions,
that is A = Adir + A(2) + A(3) + ..., where A(h) (includ-
ing Adir = A(1)) denotes the weighted adjacency matrix
of G(h) in which each element a(h)ij represents the hth or-
der connection strength between nodes i and j. From the
high order interaction property of networks, we have A(h) =
A(h−1)Adir=(Adir)

h, h = 2, 3, . . . Based on the property of
power of matrices, we have

A(h) = (Adir)
h = U(Λdir)

hU−1 (7)

where Λdir = diag(λdir
1 , · · · , λdir

n ) in which λdir
i denotes

the ith eigenvalue of the direct dependency graph Gdir, and
U denotes the eigenvectors shared by every A(h). The ob-
servation graph can then be defined as

A = (Adir) +A(2) +A(3) + ...

= (Adir) + (Adir)
2 + (Adir)

3 + ...

= UΛU−1

(8)

Λ = diag(λ1 =
∑

i≥1(λ
dir
1 )i, · · · , λn =

∑
i≥1(λ

dir
n )i) in

which λi is the ith eigenvalue of A, and U denotes the eigen-
vectors. However, the real situation is that Λ and U can be
calculated easily since A is observed, while Λdir and Adir

need to be derived. According to (Feizi et al. 2013), each
eigenvalue of the direct dependency network is expressed as
a nonlinear function of a single corresponding eigenvalue of
the convolved observed network. We can then construct the
direct dependency graph as

Adir = UΛdirU
−1 (9)

where Λdir = diag(λdir
1 = λ1

1+λ1
, · · · , λdir

n = λn

1+λn
). Then

Adir can be easily derived based on Λ and U , in which each
element adirij represents the direct dependency strength be-
tween nodes i and j.

Based on the above preparations, we define the pairwise
potentials as follows. Let θij (ci, cj) represent the pairwise
potential of two connected nodes i and j with community
labels ci and cj respectively. Using network topology as the
underlying MRF structure and based on the direct depen-
dency strength of links, the pairwise function is defined as:∑

<i,j>∈ε

θij(ci, cj) =
∑

<i,j>∈ε

adirij × (−1)δ(ci,cj) (10)

where δ (ci, cj) is 1 if ci = cj , and 0 otherwise, ε is the set
of edges. The pairwise term in (10) achieves our goal that
we encourage pairs of nodes with high direct dependency
strength to be in the same community. Since the number of
edges in the network is fixed, if more edges appear within a
community, there will be fewer edges appearing across com-
munities. This is consistent with the definition of commu-
nity detection which aims at dividing nodes into communi-
ties with denser connections within communities and sparser
connections between communities.

Model Inference
We now need to derive the best community partition Ĉ
by maximizing the posterior probability P (C|A) of this
model. Here, instead of optimization of individual per-
variable marginal probabilities as done in other community
detection models, we use the belief propagation (BP) algo-
rithm with a max-sum version to maximize joint probability
distribution so as to derive the better configuration of com-
munity memberships.

The key idea of our BP algorithm is that: each node i
sends a ‘message’ to node j directly connected with i in the
network topology (j is i’s neighbor), indicating the maxi-
mum negative energy achievable when fixing the community
of i to ci if j is absent. We use it to denote the maximum neg-
ative energy that i will be in community ci in the absence of
j, which is obtained by recursively computing the messages
that i receives from other neighbors (k) of i:

ψi→j
ci ←β log γci+

∑
k∈N(i)/j

[
max
ck

[
−βadirij (−1)δ(ci,ck)+ψk→i

ck

]]
(11)

When the algorithm converges, the variable max-belief, that
is µi (ci), can be computed as:

µi(ci)←β log γci+
∑

k∈N(i)

[
max
ck

[
−βadirij (−1)δ(ci,ck)+ψk→i

ck

]]
(12)

To recover the joint maximum posterior labeling, we se-
lect the state which corresponds to maximum max-belief for
each variable ci:

ĉi = argmax
ci∈{1,...,K}

µi(ci) (13)

Complexity Analysis
The pairwise structure of our framework is the same as net-
work topology in which each node needs to send K ‘mes-
sages’ to its neighbors at each iteration, thus the total num-
ber of ‘messages’ to be updated in each iteration is 2mK,
where m and K are the number of edges and communities,
respectively. Also, the complexity of updating a message is
constant, i.e. O(1), so that the complete complexity of our al-
gorithm is O(2mKT ), where T is the number of iterations.
Because T and K can be taken as constants compared with
network scales (i.e. m), the complexity of our algorithm is
finally O(m) which is nearly linear on large sparse networks.

Experiments
We first compare our approach with three network embed-
ding methods for community detection. We then compare it
with some state-of-the-art community detection methods.

Compare with Network Embedding Algorithms
We mainly focus on whether our framework maintains the
advantages of network embedding methods and overcomes
their disadvantages, making it suitable for community de-
tection. Specifically, we compare our approach with three
well-known embedding methods (Node2Vec, DeepWalk and
MNMF) on twelve real networks with known communities
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listed in Table 1. We use the default parameter for all the
methods. The feature dimension is set to 64. We use k-means
algorithm (as in other network embedding papers for com-
munity detection (Cui et al. 2018)) to cluster the feature vec-
tors derived from Node2Vec, DeepWalk and MNMF. Corre-
spondingly, our framework using Node2Vec, DeepWalk and
MNMF features is called MRF-N, MRF-D and MRF-M, re-
spectively. We use normalized mutual information (NMI) as
the accuracy metric and runtime as the efficiency metric.

(a) (b) (c)

Figure 2: Comparison of our method with three embedding
methods, (a) Node2Vec, (b) DeepWalk, (c) MNMF, in terms
of NMI on 12 real networks with ground truth communities
in Table 1. The name of each network is represented with its
first three characters.

Table 3: Comparison of our new MRF framework with three
network embedding methods in terms of percentage of sta-
tistically significant nodes which were misclassified.

Datasets
Rate (%)

RER(%)
Rate (%)

RER(%)
Rate (%)

RER(%)
Node2Vec MRF-N DeepWalk MRF-D MNMF MRF-M

Karate 75.00 0 100 100 0 100 80.00 0 100
Dolphin 50.00 0 100 0 0 100 50.00 0 100
Friend6 21.02 0 100 21.05 0 100 23.33 0 100
Friend7 66.67 25.00 66.30 33.33 0 100 48.87 0 100
Polbooks 38.89 21.55 44.59 37.65 21.90 41.83 38.89 21.55 44.59
Football 20.00 15.38 23.08 23.53 20.00 15.00 20.46 15.55 24.00
Polblogs 19.30 15.79 18.18 33.33 21.00 39.99 28.32 19.92 29.66
Cora 27.99 20.10 28.19 30.69 20.05 34.67 32.68 21.48 34.27
Citeseer 32.68 26.11 20.10 32.68 21.48 34.21 31.70 22.23 29.87
UAI2010 35.04 24.00 31.50 34.95 28.33 18.94 32.87 27.98 14.88
North 26.50 19.92 24.83 20.46 12.10 40.86 26.50 13.54 48.91
PubMed 26.11 18.88 27.69 24.48 18.88 22.88 24.59 16.71 32.05

The comparison results in terms of NMI are given in Fig.
2. As shown, our methods MRF-N, MRF-D and MRF-M
have the best performance on all twelve networks. On av-
erage, MRF-N and MRF-D are 12.30% and 9.99% more
accurate than Node2Vec and DeepWalk, respectively. Espe-
cially, MRF-M also improves MNMF which is a community
preserving-based embedding technology (by ∼12.21%).

However, the runtime of our MRF is somewhat larger than
that of the original embedding methods. But on average,
MRF-N, MRF-D and MRF-M increased by only 16%, 25%
and 21% over Node2Vec, DeepWalk and MNMF, respec-
tively, in runtime from the results. The reason is that our ap-
proach needs to calculate embeddings to define unary poten-
tials first before its inference, thus needs a little more time.
This result further demonstrates that the high-efficiency
property of embedding methods has been reasonably main-
tained in our MRF framework.

In addition, remember the Observation Experiment1 sec-
tion. There are some statistically-significant nodes in differ-
ent networks wrongly divided by embedding methods, such
as Node2Vec, DeepWalk and MNMF. In Table 3, we show
that the percentage of statistically-significant nodes which
were misclassified in the whole network for each dataset,
by embedding methods and our method. These results indi-
cate that some statistically-significant nodes are wrongly di-
vided using embedding methods, including the community-
preserving approach MNMF. Based on this, we compute the
relative error reduction (RER) for each network, given in
Table 3. (RER = (errorm1 − errorm2)/errorm2 × 100%,
where errorm1 and errorm2 represent the percentage of
statistically-significant nodes which were misclassified by
our method and embedding method.) As shown, the RER
value of each network is very high, which indicates that our
approach can successfully correct most of the wrongly di-
vided statistically-significant nodes. This may be because
the dependency relationship which is neglected by embed-
ding technology is actually made up by our framework, and
the statistically-significant nodes which were wrongly di-
vided for this reason can now be corrected by it. This fur-
ther indicates that our framework not only improves the ac-
curacy of network embedding methods for community de-
tection, but also corrects the wrongly-divided statistically-
significant nodes, making network embedding suitable for
community detection essentially. In comparison, the com-
munity preserving-based embedding technology, such as
MNMF, does not have this ability.

Compare with Community Detection Algorithms
Here we mainly validate whether our new MRF framework
is competitive with or performs better than the existing com-
munity detection methods, particularly in the realm of sta-
tistical models. Besides the 12 network with ground truth
communities in Table 1, here we also add 8 networks with-
out known communities. We compare our approach with
six baseline algorithms, i.e. 1) Karrer’s method which is a
degree-corrected stochastic block model (Karrer and New-
man 2011); 2) SNMF (Wang et al. 2011), 3) BNMTF (Zhang
and Yeung 2012) and 4) MNDP (Jin et al. 2015) which are
nonnegative matrix factorization based methods; 5) DNR
(Yang et al. 2016) which is an algorithm using deep learn-
ing; 6) NetMRF(He et al. 2018) the MRF-based community
detection method. We use normalized mutual information
(NMI) and accuracy (AC) (Fortunato and Hric 2016) as ac-
curacy metrics when ground-truth of communities is known,
and modularity Q (Newman 2010) as quality metrics when
true communities are unknown.

We take the source codes of the baselines and report re-
sults using the default parameters, except DNR (Yang et al.
2016). For DNR, we use the results that were reported in the
original paper since getting satisfactory results requires ad-
justment of too many parameters. All the methods converge
to local minima, so that we run each method 20 times and
report the result with the highest likelihood.

Real Networks with Known Communities The networks
with known communities are listed in Table 1. Because all
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the methods need the number of communities K to be given,
we set K to the ground-truth when true communities are
known. The methods that were compared in NMI and AC,
along with the results on the twelve networks, are shown
in Tables 4 and 5. In terms of NMI, our methods MRF-N,
MRF-D and MRF-M show the best performance on 11 and
10 out of the 12 networks respectively. For example, using
NMI index, our MRF-N is 13.65%, 10.07%, 9.15%, 7.93%,
7%, 5.84% and 4.62% more accurate than Karrer’s method,
SNMF, BNMTF, MNDP, DNR-L2, DNR-CE and NetMRF
on average; MRF-D and MRF-M have similar effects. We
also have similar results in AC. These further emphasize the
superiority of our approach compared with the existing ones,
including another MRF-based method NetMRF.

Real Networks without Known Communities We fur-
ther compare these methods on eight real networks with no
known communities (Newman 2017) which are listed in Ta-
ble 6. When no “true” number of communities K is known,
our framework can run on different K’s (e.g. in a range of
Kmin to Kmax), and get the best K as well as communities
which correspond to the smallest energy function. However,
the methods compared cannot find the number of communi-
ties automatically, which is typically an issue for statistical
model-based methods. So for fair comparison, we ran Lou-
vain method (Blondel et al. 2008) to estimate the numbers of
communities and used the estimated numbers in all methods.
We adopted modularity Q (Newman 2010) for evaluating the
quality of a community structure.

Results are shown in Table 6. It is not a surprise that
NetMRF has the best performance in terms of modular-
ity Q in general, since it does optimize Q. But except for
NetMRF, our MRF-N, MRF-D and MRF-M have the best
performance on 6, 7 and 7 of 8 networks, respectively. On
average, MRF-N is 0.1728, 0.0334, 0.0514 and 0.0293 better
than Karrer’s method, SNMF, BNMTF and MNDP; MRF-D
is 0.1673, 0.0279, 0.0493 and 0.0238 better than Karrer’s
method, SNMF, BNMTF and MNDP; MRF-M is 0.1642,
0.0248, 0.0448 and 0.0207 better than Karrer’s method,
SNMF, BNMTF and MNDP. Particularly, as the Q-values
are normally in the range of 0.3 to 0.8 (Newman 2010), our
MRF framework obviously outperforms other methods, ex-
cept for NetMRF which optimizes Q.

Runtime on Real Networks We validate the efficiency of
our framework. We test it on all 20 networks used above, and
compare it with Karrer’s method, SNMF, BNMTF, MNDP
and NetMRF. From the results, though our MRF-N, MRF-D
and MRF-M need a little more time on small networks, they
outperform or are at least competitive with the best baselines
on larger networks. On average, MRF-M takes 6%, 74%,
0.16%, 3.4% and 16% of the runtime of Karrer’s method,
SNMF, BNMTF, MNDP and NetMRF, respectively, on large
networks including Cora, Citeseer, UAI2010, NorthEastern,
PubMed, E-mail, Power and Word. MRF-N and MRF-D
also have similar results, which means that our approach is
suitable to deal with large-scale networks. Especially, our
approach is much faster than NetMRF since we use a sparser
pairwise structure than NetMRF.

Table 4: Comparison with 6 methods in NMI on 12 real net-
works with ground-truth communities. DNR-L2 and DNR-
CE are two versions of the deep learning method in (Yang et
al. 2016). The former is DNR with L2 norm and the latter is
that with cross-entropy distance. They did not give DNR’s
results on some networks so we mark them as ‘N/A’. ‘-’ de-
notes run time >100 hours.

Datasets
NMI index (%)

Karrer SNMF BNMTF MNDP DNRL2DNRCENetMRF&MRFNMRFDMRFM

Karate 83.72 100 100 100 100 100 100 100 100 100
Dolphin 88.88 81.41 81.41 88.88 88.9 81.8 88.88 100 100 100
Friend6 77.02 78.64 71.22 79.30 88.8 92.4 93.98 95.21 94.24 95.21
Friend7 85.10 82.11 84.30 84.26 90.7 93.2 93.24 94.55 93.95 92.77
Polbooks 54.20 56.48 51.18 53.01 55.2 58.2 56.88 58.61 58.61 58.61
Football 87.06 90.38 92.42 92.42 92.7 91.4 92.42 93.91 92.77 92.71
Polblogs 45.68 70.95 70.78 71.07 38.9 51.7 71.83 74.21 73.09 74.27
Cora 17.06 24.72 26.08 33.99 46.3 42.1 37.24 41.01 45.68 44.46
Citeseer 4.05 7.77 15.51 10.21 N/A N/A 11.15 15.66 15.25 15.19
UAI2010 20.98 23.24 21.68 25.01 N/A N/A 25.76 32.92 34.15 28.30
North 49.13 38.66 - 40.67 N/A N/A 45.24 52.84 52.53 51.07
PubMed 12.28 13.80 - 14.96 N/A N/A 16.89 30.02 27.01 29.98

Table 5: Comparison with 5 methods in AC on 12 real net-
works with ground-truth of communities. DNR does not ap-
pear here because they did not use AC in (Yang et al. 2016).

Datasets
Accuracy AC (%)

Karrer SNMF BNMTF MNDP NetMRF MRF-N MRF-D MRF-M

Karate 97.06 100 100 100 100 100 100 100
Dolphin 98.39 96.77 96.77 98.39 96.77 100 100 100
Friend6 81.16 78.26 60.87 78.26 95.65 97.10 97.10 96.67
Friend7 94.20 88.41 89.86 89.86 95.65 95.65 95.65 95.33
Polbooks 82.86 80.95 69.52 81.90 83.81 84.76 84.76 82.97
Football 84.35 87.83 91.30 91.30 91.30 93.04 93.04 92.76
Polblogs 87.18 94.69 94.61 94.69 95.01 95.42 95.26 95.26
Cora 37.70 42.25 40.95 44.39 58.05 58.88 58.68 63.05
Citeseer 26.57 32.79 27.12 25.79 25.79 34.76 35.76 34.11
UAI2010 27.78 28.52 25.51 28.92 31.14 34.83 35.38 34.71
North 66.36 58.87 - 56.4 65.11 70.66 71.01 68.96
PubMed 53.64 52.87 - 50.72 55.53 66.50 65.30 66.41

Table 6: Comparison with 4 methods on eight real networks
without ground-truth. n is the number of nodes, m the num-
ber of edges and K the number of communities derived by
Louvain method (Blondel et al. 2008).

Datasets n m K
Modularity Q

Karrer SNMF BNMTF MNDP MRFN MRFD MRFM NetMRF
LesMis 77 254 6 0.4575 0.5453 0.5487 0.5434 0.5556 0.5502 0.5533 0.5600
Adjnoun 112 425 7 0.1041 0.2672 0.2634 0.2712 0.2602 0.2818 0.2588 0.2813
Jazz 198 2,742 4 0.3696 0.4348 0.4347 0.4377 0.4409 0.4405 0.4405 0.4495
Neural 297 2,148 5 0.2617 0.3701 0.3689 0.3811 0.3938 0.3877 0.3911 0.4120
Metabolic 453 2,025 10 0.2656 0.3879 0.3834 0.3796 0.4119 0.4281 0.4201 0.4579
E-mail 1,133 5,451 11 0.5126 0.5007 0.4685 0.5154 0.5652 0.5652 0.5484 0.5712
Power 4,941 6,594 39 0.1796 0.8649 0.7212 0.8683 0.9207 0.8803 0.8901 0.9266
Word 5,018 55,234 12 0.4595 0.3546 - 0.3613 0.4446 0.4147 0.4214 0.4266
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Conclusion
We developed a general MRF framework, which employs
coupling relationships to correct the drawbacks of inade-
quate network embeddings of dependencies. Our framework
corrects most of the wrongly-divided statistically-significant
nodes while maintaining the advantage of embedding tech-
nology, making embedding suitable for real community de-
tection applications. More importantly, this new framework
is applicable to nearly all types of network embedding meth-
ods. Experimental results verify above views well.

We also analyzed some community preserving-based net-
work embedding methods presented recently to improve
community detection (Cavallari et al. 2017; Wang et al.
2017; Sun et al. 2017). We found that these methods still
possess the drawback, i.e. many statistically significant
nodes are often wrongly divided (see Tables 1 and 3). This
is because they still map nodes from the dependent network
space into the independent feature space. Thus, in essence,
there is no difference between them and other embedding
techniques in solving this problem. They lose the coupling
relationship between nodes, so they cannot solve this draw-
back of using network embedding for community detection.

Compared with NetMRF, our approach 1) adds the defini-
tion of unary potentials using network embeddings, 2) uses
the sparse network structure instead of the fully connected
node pairs to define the MRF structure, which makes it not
only efficient but also suitable to correct network embed-
dings using coupling relationship, and 3) introduces direct
dependency strength on links to alleviate the situation that
indirect links are overestimated, in order to further improve
the ability of correcting network embeddings.
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