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Abstract

The task of user ranking in signed networks, aiming to pre-
dict potential friends and enemies for each user, has attracted
increasing attention in numerous applications. Existing ap-
proaches are mainly extended from heuristics of the tradi-
tional models in unsigned networks. They suffer from two
limitations: (1) mainly focus on global rankings thus can-
not provide effective personalized ranking results, and (2)
have a relatively unrealistic assumption that each user treats
her neighbors’ social strengths indifferently. To address these
two issues, we propose a supervised method based on ran-
dom walk to learn social strengths between each user and her
neighbors, in which the random walk more likely visits “po-
tential friends” and less likely visits “potential enemies”. We
learn the personalized social strengths by optimizing on a par-
ticularly designed loss function oriented on ranking. We fur-
ther present a fast ranking method based on the local structure
among each seed node and a certain set of candidates. It much
simplifies the proposed ranking model meanwhile maintains
the performance. Experimental results demonstrate the supe-
riority of our approach over the state-of-the-art approaches.

Introduction
Signed social networks have become increasingly popu-
lar (Tang et al. 2016), in which relationship between on-
line users is not limited to be positive (e.g. friend and trust)
anymore, but also includes the negative one which is much
more consistent with the real social life. More and more
online platforms are built based on signed structures, such
as Slashdot (friend or foe), Epinions (trust or distrust), and
Wikipedia RFA (agree or disagree). The ever-growing inter-
est in signed networks has heightened the need to rethink the
user ranking problem, which becomes non-trivial because of
the existence of the negative links.

Traditional ranking methods in unsigned networks only
consider positive links, which rank user pairs by the prob-
ability of forming positive links (i.e. link prediction). In
signed networks, however, the task of ranking users trans-
forms to that of ranking potential ‘friends’ on the top of
the list whereas ranking ‘enemies’ on the bottom. Therefore,
traditional methods in unsigned networks cannot be directly
applied to the signed scenarios. For signed networks, several
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approaches have been proposed by revising the traditional
models, which can be summarized into two main types. One
representative type of approaches ranks user pairs based on
heuristic similarity scores (Symeonidis and Tiakas 2014),
which merely consider local node/edge attributes but fail to
capture the global network structure. Thus, they cannot guar-
antee a satisfying performance. The other type is derived
from random walk, which is a dominant technique for user
ranking in networks. For example, Shams et al. (2016) revise
random walk to be computable and applicable in signed net-
works by firstly converting signed networks into unsigned
ones and then obtaining ranking scores accordingly.

However, these approaches aim to generate a global rank-
ing list for the whole network, which could easily lead to
a relatively unfair scenario where some users might have a
large number of potential links in the ranking list while most
users have very few or even no links. In this case, they cannot
be easily adapted for many real-world applications such as
social recommendation or social-aware product recommen-
dation. In contrast, personalized user ranking, which gener-
ates a ranking list for each individual, is more practical and
realistic (Jung et al. 2016). Besides, the ranking list for a user
provided by existing random walk methods is fixed given a
certain network snapshot (i.e. the network structure). They
inappropriately assume all the links have the same weights
(i.e. social strengths, a.k.a. link strengths). In other words,
they cannot learn each individual’s own opinions towards
her neighbors, such as what kind of user link (i.e. neighbors)
is more important.

To fill the research gap, we propose Signed Supervised
Random Walk (SSRW), through which we learn social
strengths that capture a user’s different preferences towards
different neighbors, and thus to better facilitate the task of
personalized user ranking. More specifically, instead of con-
sidering the random walk in a given network snapshot (i.e.
training data), we split the training data into two parts in
terms of the timestamp (denoted as A and B), and learn
social strengths (i.e. transition probabilities) so that ran-
dom walk more likely visits those newly positively con-
nected nodes (i.e. in B compared to A) whereas more re-
luctantly visits the newly negatively connected nodes. We
conduct experiments on four real-world datasets and the re-
sults show that SSRW’s performance has an improvement of
6.05% compared to the state-of-the-art approaches. To im-
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prove SSRW’s efficiency but simultaneously maintain its ef-
fectiveness, we also design a fast ranking method (F-SSRW)
based on the local structure among each seed node and a cer-
tain set of candidates of the seed node. It has been demon-
strated that F-SSRW can maintain the performance in con-
trast with the original SSRW when the ranking candidates of
a user satisfy the requirement of having substantial common
neighbors with the user.

Related Work
In this section, we briefly review related works on user rank-
ing in signed networks. We summarize the literature into two
parts: the traditional link prediction and the task of person-
alized user ranking.

For traditional link prediction in signed networks, feature-
based approaches are dominant, which design topological
features with a regression model (Leskovec et al. 2010; Chi-
ang et al. 2011). Regression results are then deployed to dis-
tinguish positive and negative links. Another representative
type is low-rank models. For example, Hsieh et al. (2012)
propose a matrix factorization model to infer link signs. Li
et al. (2018) design the FILE model to rank all user pairs by
the order of positive, no-relation and negative links. How-
ever, the aforementioned approaches aim to distinguish pos-
itive and negative links, or rank user pairs globally. In this
case, the users who have limited social connections in the
past are put in an unfavorable position by these approaches
and will receive few potential links.

On the contrary, the personalized user ranking in signed
networks tries to provide a ranking list for each individ-
ual user. It is worth noting that there are lots of existing
works for personalized user ranking in unsigned networks,
and the representative approaches include similarity-based
ones (Sarkar et al. 2011; Brzozowski and Romero 2011),
random walk based models (Yin et al. 2010; Zhao et al.
2018) and low-rank models (Man et al. 2016; Wang, Shi,
and Yeung 2017; Nelakurthi and He 2017). However, these
existing methods cannot be directly applied in signed net-
works because of the existence of negative links. Therefore,
a few works have strived to extend the traditional methods
into the signed scenarios, which can also be summarized into
two categories: similarity-based approaches and the random
walk based ones.

For similarity-based approaches, Symeonidis et al. (2014)
propose a similarity metric based on users’ out/in degree
of positive and negative links. A higher similarity score be-
tween two users indicates a higher chance to establish a pos-
itive link, while a lower score indicates a possible negative
link. Zhu et al. (2017) use the number of common friends
minus the number of common enemies as the similarity met-
ric. However, these studies adopt heuristic similarity set-
tings, and cannot gain good performance. Song et al. (2015)
aim to rank user pairs as the order of positive, no-relation
and negative. They learn users’ latent vectors by adopting
matrix factorization technique, and model the ranking score
as the inner product between the corresponding user vectors.

For random walk based approaches, Shahriari et al. (2014)
firstly split the signed graph into two graphs: a positive and
a negative one, and then apply random walk with restart on

each graph. They finally combine the results from two ran-
dom walks to generate one ranking list for each user. In (Wu
et al. 2016), a signed network is converted into a positively
weighted graph, and then obtain the ranking list using the
random walk technique. Jung et al. (2016) propose a model
named SRWR, which introduces a sign into a random surfer
so that negative links can be also considered by changing the
sign of walking.

In summary, current approaches mainly focus on global
ranking rather than the personalized perspective. Besides,
they assume all the links in the network have the same
weights. In other words, they ignore the difference in so-
cial strengths, which actually play a key role in personalized
user ranking. In this paper, we propose a supervised method
to learn social strengths, which can be used to obtain a better
personalized ranking performance.

Problem Formulation and Transformation
We first define the user ranking problem as: given a seed
node i in a signed social network S ∈ Rn×n (n is the num-
ber of users) with Sij ∈ {1, 0,−1}, we aim to rank all the
users m ∈ {m|Sim = 0} in the present, by the probability
of transforming (i, m) to a positive link, maintaining no-
relation, or transforming to a negative link in the future. We
strive to answer that: “Of user pairs (i, m1) and (i, m2),
which pair is more likely to become friends (or enemies)?”

As aforementioned, social strengths have been ignored by
existing approaches in the literature. In fact, the intuition that
a user’s preferences towards other users (even towards the
set of already formed friends) are different, has been widely
explored and leveraged in the unsigned networks (Xiang et
al. 2010; Katsimpras et al. 2015). We thus adopt the idea and
consider that social strengths can also impact link formation
in signed networks. Therefore, we transform the user rank-
ing problem in signed networks into a supervised learning
problem, by which we learn social strengths to better facili-
tate user ranking task.

Formally, for any link (i, j) (i.e. user pair), we learn its
link strength fwi

(xij), in which f(·) is a differentiable func-
tion parameterized by wi and xij is the observable feature
vector of the link. By doing this, we obtain a weighted net-
work with different edge strength fwi

(xij). We use rim to
represent m’s ranking score given seed node i, which is
the probability obtained from random walk based on the
weighted network. Thus, the problem is reduced to:

“Given a seed node i and any nodes m,n ∈ Ci, we aim to
find the optimal wi, which satisfies: if there is a new positive
link generated from i to m in future meanwhile there is no
positive link (i.e. no-relation or a negative link) between i
and n, the ranking score should follow rim ≥ rin. Similarly,
rim ≤ rin if a negative link is formed between i and m.”

The main notations are summarized in Table 1. For the
seed user i, we aim to optimize the following function:

Minimize
w

F (wi) = ||wi||2 +
1

θ

∑
emn

s.t. rin − rim + emn ≥ 1, ∀m,n ∈ Ci

(1)

where θ = |Ni| · |Pi|+ |Ui| · |Pi|+ |Ni| · |Ui|, in which |Pi|,
|Ui| and |Ni| are the number of nodes in the corresponding
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Table 1: Notations

S adjacency matrix, S ∈ Rn×n, Sij ∈ {1, 0,−1}
i seed node
(i, j) link i → j
Ci node i’s candidate set, Ci = Pi ∪ Ui ∪Ni

m,n node m,n ∈ Ci

xij feature vector of (i, j)
fwi(xij) strength function of (i, j) parameterized by wi

Pi Pi = {m|St
im = 0 & St+1

im = 1,m ∈ Ci}
Ni Ni = {m|St

im = 0 & St+1
im = −1,m ∈ Ci}

Ui Ui = {m|St
im = 0 & St+1

im = 0,m ∈ Ci}
δi node i’s bias on distrust
r+im seed node’s positive ranking score towards m
r−im seed node’s negative ranking score towards m
rim the final ranking score
q unit vector with qi = 1

set respectively, and
∑

emn is equivalent to:

α
∑

m∈Ni,n∈Pi

e1mn + β
∑

m∈Ui,n∈Pi

e2mn + γ
∑

m∈Ni,n∈Ui

e3mn (2)

The corresponding weights α, β, γ are user-specified and
application-dependent, denoting the penalties of different
types of errors, where e1mn is type 1 error that m ∈ Ni, n ∈
Pi, e2mn is type 2 error that m ∈ Ui, n ∈ Pi, and e3mn is type
3 error that m ∈ Ni, n ∈ Ui. The objective of the optimiza-
tion equation 1 is to find the optimal parameter set w and can
be proceeded once the ranking score r and ∂r

∂w are obtained.
Therefore, our main research question is reduced to “how
to design the function r and then calculate its derivation ac-
cordingly”. In this paper, we extend the supervised random
walk technique (Backstrom and Leskovec 2011) to signed
networks, i.e. signed supervised random walk, for obtaining
the ranking score r.

SSRW: Signed Supervised Random Walk
In SSRW, we first follow the idea of the sign surfer (Jung
et al. 2016) to make random walk workable in signed net-
works. A surfer begins with a positive sign (since it will al-
ways trust itself) and then visits other nodes, and the sign
flips if it meets a negative link, otherwise the sign remains
unchanged.

The intuition of the sign flips is adopted from balance
theory (Antal et al. 2006), which can be explained as “my
friend’s friend is my friend” or “my enemy’s friend is my
enemy’, and considered solidly effective in signed networks
(Leskovec et al. 2010). As a personalized ranking approach,
the surfer will restart with a probability c, and the sign will
be reset to positive. When the surfer visits a certain node,
the sign can be either positive or negative since it can reach
the node via different routes. Therefore, for the seed node i,
each node m in Ci will eventually get two ranking scores:
a positive one (i.e. r+im) and a negative one (i.e. r−im), from
which we can obtain the final ranking score r as:

rim = r+im − δir
−
im (3)

where δi is user i’s bias on distrust (i.e. negative relation-
ship), as some users will be more likely to distrust others,
while some might be more reluctantly to distrust others.

Next, we investigate the connection between link strength
fwi

(·) and r. Let aij be the normalized link strength of (i, j),
which equals to 0 if there is no direct link from node i to j:

aij =
fwi

(xij)∑
z fwi

(xiz)
, ∃(i, j) (4)

In this case, the matrix of transition probability Q is:

Qij =

{
aij ∃(i, j)
0 otherwise (5)

and we split Q to two matrices Q+ and Q− according to the
link sign between users. Specifically, Qij ∈ Q+ if Sij = 1,
and Qij ∈ Q− if Sij = −1. We thus have:

Q = Q+ +Q− (6)

Based on the setting and sign surfer, seed node i’s ranking
score matrices r+i and r−i towards other users are recursively
entangled and derived as follows:

r+i = (1− c)(Q+r+i +Q−r−i ) + cq

r−i = (1− c)(Q+r−i +Q−r+i )
(7)

where q is the unit vector with qi = 1. Thus, for a node
m ∈ Ci, its ranking score can be written as:

r+im = (1− c)
∑

j(r
+
ijQ

+
jm + r−ijQ

−
jm)

r−im = (1− c)
∑

j(r
−
ijQ

+
jm + r+ijQ

−
jm)

(8)

We take the corresponding derivations to compute ∂rim
∂wi

:

∂r
+
im

∂wi
= (1 − c)

∑
j
Q+

jm

∂r
+
ij

∂wi
+ r+ij

∂Q
+
jm

∂wi
+ Q−

jm

∂r
−
ij

∂wi
+ r−ij

∂Q
−
jm

∂wi

∂r
−
im

∂wi
= (1 − c)

∑
j
Q+

jm

∂r
−
ij

∂wi
+ r+ij

∂Q
−
jm

∂wi
+ Q−

jm

∂r
+
ij

∂wi
+ r−ij

∂Q
+
jm

∂wi

(9)
where ∂Qjm

∂wi
can be derived as:

∂Qjm
∂wi

=

∂fwi
(xjm)

∂wi
(
∑

z fwi
(xjz))−fwi

(xjm)(
∑

z
∂fwi

(xjz)

∂wi
)

(
∑

z fwi
(xjz))2

(10)

Similarly, r+im, r−im, ∂r+im
∂wi

, and ∂r−im
∂wi

are recursively entan-
gled, and can be computed iteratively as in Algorithm 1.

Based on the computed r+im, r−im, ∂r+im
∂wi

, and ∂r−im
∂wi

, we then
apply the gradient descent method (Chapelle and Keerthi
2010) to find a local minimum for Equation 1.

The advantage of SSRW is to well capture the global
structure of a network, and thus to obtain the global op-
timum, but it is also computationally expensive. Through
SSRW, every single user m ∈ {m|Sim = 0} will eventually
get a ranking score with respect to the seed node i. How-
ever, it is intuitive that most users will not connect to the
seed node ultimately. In other words, we do not need to con-
sider all the nodes in the network, since the link formation
probabilities between the seed node and them are negligi-
ble. Inspired by this, we thus propose a fast ranking method,
denoted as F-SSRW and detailed in the next section.
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Algorithm 1 Computation of r+im, r−im, ∂r+im
∂wi

, and ∂r−im
∂wi

Initialize: r+(0)
im , r−(0)

im , ∂r
+(0)
im

∂wi
= 0, ∂r

−(0)
im
∂wi

= 0,
t = 1
repeat

Calculate r
+(t)
im , r−(t)

im based on Equation 8;
t = t+ 1;

until Converge
r+im = r

+(t−1)
im , r−im = r

−(t−1)
im

t = 1
repeat

Calculate ∂r
+(t)
im

∂wi
, ∂r

−(t)
im

∂wi
based on Equation 9;

t = t+ 1;
until Converge
∂r+im
∂wi

=
∂r

+(t−1)
im
∂wi

, ∂r−im
∂wi

=
∂r

−(t−1)
im
∂wi

Output: r+im, r−im, ∂r+im
∂wi

, ∂r−im
∂wi

F-SSRW
As aforementioned, given a seed node, we aim to speed up
the ranking procedure by only considering a certain set of
candidates who have much larger probability to form a link
with the seed node. Intuitively, we select candidates by two
criteria: (1) hop distance between the seed node and the can-
didates; (2) the number of their mutual neighbors.

In this section, we first empirically investigate these two
factors which may influence link formation. We mainly con-
duct the analysis in Epinions dataset1, which contains the
timestamp of every link formation over 30 months. We also
perform analysis in other three real-world signed networks:
Slashdot2, Wikipedia RFA3 and Bitcoins4.

Hop distance. We check the hop distance between two
users when they are linked. As can be seen in Table 2, two-
hop distance is dominant with which a much larger number
of links are configured compared to all other ones. Besides,
as shown in Figure 1(a), the majority of connected links
have direct common neighbors (i.e. the corresponding two
users are within two-hop distance). In other words, users are
more likely to get linked if they are within two-hop distance.
This intuition has also been well validated in unsigned net-
works (Sun et al. 2005).

Table 2: The hop distance between users when they form
new links in Epinions dataset.

Hop distance Link counts Ratio

2 187, 990 71.65%
3 32, 014 12.20%
4+ 42, 371 16.15%

1http://www.trustlet.org/epinions.html
2snap.stanford.edu/data/soc-Slashdot0902.html
3snap.stanford.edu/data/wiki-RfA.html
4cs.umd.edu/˜srijan/wsn

Number of mutual neighbors. We further check the re-
lation between link formation and the number of mutual
neighbors. Figure 1(b) depicts the cumulative distribution
of the number of mutual neighbors between linked users.
Specifically, more than 90% of links have at least 3 mutual
neighbors, and more than 82% of them have at least 5 mutual
neighbors. Therefore, in signed networks, users with more
common neighbors are more likely to form links (either pos-
itive or negative).

Epinions SlashdotWikipedia Bitcoin0
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Figure 1: (a) Distribution of hop distance; (b) Distribution of
the number of mutual neighbors.

The results of data analysis further inspire our design of
the fast ranking model which mainly focuses on local struc-
ture among the seed node and certain set of candidates.
Specifically, for a seed node i, we prune the graph to in-
clude only {i, {j},m}, in which j is a common neighbor of
i and m, and j ∈ {j|∃(i, j) & (j,m)}. In other words, we
only consider the candidates who are two-hop distance with
the seed node i. Besides, we further reduce the number of
candidates by constraining each to have at least T mutual
neighbors with i. In this case, we keep the candidates which
are more likely to obtain a higher r+im or r−im. In the pruned
graph, based on random walk, a candidate node m’s ranking
score rim can be estimated as:

rim ∝
∑
j

rijajm (11)

Because the pruned graph only contains i’s two-hop
neighbors, we can further approximate rim as

rim ∝
∑
j

rijajm ∝
∑
j

aijajm (12)

where we strategically ignore the routes with more than 2
hops. We argue that the gap between the approximation and
global optimum (obtained from random walk) is actually
small since the contribution of 3-hop routes is limited in term
of hitting probabilities compared to 2-hop routes. The intu-
ition has been shown in data analysis meanwhile being well
validated in the literature (Sun et al. 2005).

Similarly, grounded on balance theory, we will also obtain
two ranking scores, r+im and r−im in the signed network:{

r+im ∝
∑

aijajm if SijSjm = 1
r−im ∝

∑
aijajm if SijSjm = −1

(13)
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Finally, we obtain rim following Equation 3, denoted as:

rim =
∑
j

(rj+im − δir
j−
im) (14)

where rj+im and rj−im denote the respective ranking score con-
tributed by the route i → j → m, and following Equation 4:

rjim =
fwi

(xij) · fwi
(xjm)∑

k fwi
(xik)

∑
k fwi

(xjk)
(15)

By taking derivation on equation 14, we thus obtain:

∂rim
∂wi

=
∑
j

(
∂rj+im
∂wi

− δi
∂rj−im
∂wi

) (16)

Based on the computed rim and ∂rim
∂wi

, we then apply the
gradient descent method to find a local minimum for Equa-
tion 1.

Discussion
F-SSRW is a simplified version of SSRW, which works
on the pruned graph and only focuses on selected can-
didates. Therefore, in F-SSRW, we can only obtain ap-
proximate ranking scores for these candidates. In contrast,
SSRW works on the global graph and every single user
m ∈ {m|Sim = 0} will eventually get a ranking score.
For both of them, the time complexity of the optimization
method is O(|Ci|2). For each iteration to get the derivation,
SSRW takes O(|E| + |V |), in which |E| is the number of
links and |V | is the number of nodes in the graph, whereas
in each iteration F-SSRW takes O(|Ci|). As the candidate
set and the graph in F-SSRW are much smaller than those
in SSRW, accordingly the efficiency of the F-SSRW is much
more largely improved than that in SSRW.

Experiments
We conduct experiments on four real-world datasets and
compare our approaches with the state-of-the-art methods.

Experimental Settings
Data. We employ the four datasets (i.e. Epinions, Slash-
dot, Wikipedia RFA and Bitcoin), which are the only pub-
lic available datasets with signed structure. In this study,
we focus on the users (i.e. seed nodes) who are active in
the social networks, where the activeness is measured by
user’s degree. Specifically, to conform with the previous
studies (Backstrom and Leskovec 2011), the selected users’
degree is larger than 20. We randomly select 200 of them as
seed nodes. Besides, to make a more comprehensive evalu-
ation, we adopt different criteria for candidate node selec-
tion. Based on the data analysis, we only select two-hop
neighbors as candidates, meanwhile further filter them by
the number of mutual neighbors with the seed node. Specif-
ically, we use d ≥ 3, d ≥ 5 and d ≥ 10. The major statistics
of the datasets are listed in Table 3.

Table 3: Dataset statistics.

Epinions Slashdot Wikipedia Bitcoin

Users 131, 828 82, 140 9, 654 3, 783

Positive links 717, 667 425, 072 87, 766 22, 650

Negative links 123, 705 124, 130 16, 788 1, 536

d ≥ 3 Candidate users 800.4 137.4 243.9 201.1

(Per seed) Linked users 54.4 9.8 34.1 29.9

d ≥ 5 Candidate users 382.3 41.6 106.5 85.6

Linked users 44 5.7 23.8 20.6

d ≥ 10 Candidate users 168.4 14.9 22.9 26.7

Linked users 31.9 3.5 9 11.4

Evaluation Metrics. We use 2-fold cross-validation for
training and testing, and utilize GAUC (Generalized
AUC) (Song and Meyer 2015) to measure the ranking per-
formance, which is formulated as:

1

|P |+ |N |

(
1

|U |+ |N |
∑
m∈P

∑
n∈U∪N

I (r(m) > r(n))+

1

|U |+ |P |
∑
m∈N

∑
n∈U∪P

I (r(m) < r(n))

)
Another metric is precision@top k, by which we evaluate

the performance of the link recommendation. Specifically,
we use PPrec@k (NPrec@k) to denote the ratio of positive
(or negative) links in the top (or bottom) k prediction.

Benchmarking approaches. We compare with state-of-
the-art approaches, including similarity-based models: Sim-
ilarity with Positive and Negative Relations (SPNR) (Zhu et
al. 2017), friend Transitive Node Similarity (TNS) (Syme-
onidis and Tiakas 2014), Social Feature Model (SFM) (Li et
al. 2017), and random walk based model: Signed Random
Walk with Restart (RWR) (Jung et al. 2016). We also com-
pare our personalized models with the global version of our
model (G-SSRW), which is based on SSRW but strives to
minimize the sum of losses over all seed nodes in the net-
work, instead of loss minimization over every seed node.

Parameter settings. In this experiment, we consider 5
features for the vector x to describe a user pair. Two of the
features are two users’ degrees respectively, which imply
their activeness; and the rest three are the number of their
common friends, enemies, and frenemies (one’s friend but
the other one’s enemy) respectively, which describe the so-
cial patterns within their joint relationship. we utilize the lin-
ear model to represent the link strength, i.e., fw(x) = wTx,
where w can be seen as the weight vector of the features, and
denote importance degrees of the corresponding features.

For the benchmark approaches, we set the parameters rec-
ommended in the literature. In SSRW, there are five hyper-
parameters: δ, α, β, γ and the restart probability c. The first
four are application-dependent, and in view of simplicity
and fair comparisons, we make them equal to 1 respectively.
Besides, we set c = 0.2 for SSRW in the comparative exper-
iments considering favourable performance of our model in
this setting.
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Table 4: Performance of different methods. The best performance is highlighted in bold, and the second-best one (except
SSRWs) is marked by *. ‘Improvement’ indicates the improvement of SSRW over the model having the highest performance
among existing models.

Datasets SPNR TNS SFM RWR G-SSRW F-SSRW SSRW Improvement
Epinions@3 0.619 0.462 0.609 0.628∗ 0.644 0.639 0.678 7.96 %
Epinions@5 0.621 0.475 0.633 0.671∗ 0.660 0.676 0.702 4.62 %
Epinions@10 0.598 0.499 0.677∗ 0.647 0.673 0.729 0.743 9.75 %
Slashdot@3 0.619 0.567 0.541 0.633∗ 0.601 0.626 0.645 1.90 %
Slashdot@5 0.605 0.563 0.537 0.627∗ 0.612 0.634 0.659 5.10 %
Slashdot@10 0.554 0.628 0.569 0.645∗ 0.658 0.718 0.715 11.32 %
Wikipedia@3 0.549 0.545 0.487 0.568∗ 0.583 0.587 0.633 11.44 %
Wikipedia@5 0.544 0.582 0.574 0.579∗ 0.612 0.619 0.638 10.38 %
Wikipedia@10 0.558 0.598 0.679∗ 0.596 0.647 0.658 0.681 0.29 %
Bitcoin@3 0.589 0.472 0.554 0.613 0.574 0.588 0.601∗ −0.33 %
Bitcoin@5 0.596∗ 0.490 0.585 0.583 0.599 0.601 0.614 6.67 %
Bitcoin@10 0.573 0.557 0.640∗ 0.615 0.621 0.663 0.657 3.59 %

Experimental Results
Here, we show the comparison results under different sce-
narios and the impact of different parameters on the ap-
proaches.

Overall Performance. Table 4 depicts the experimental
results under different scenarios in terms of GAUC. Overall,
SSRW achieves the best performance when compared with
other approaches across all the datasets, and the improve-
ment is 6.05% on average. The results of t-test demonstrate
that the improvement of our approach is statistically signifi-
cant (p-value< 0.01).

Particularly, among all these approaches, similarity-based
models (SPNR and TNS) perform the worst under almost
all scenarios, indicating that traditional similarity metrics
cannot be easily extended into signed networks. The global
ranking approaches, including SPNR, TNS and SFM, per-
form worse than the personalized approaches (e.g. RWR).
On the contrary, SSRW and F-SSRW perform much better
than RWR, validating the effectiveness of the supervised ap-
proach and personalized link strengths. Besides, SSRW per-
forms much better than G-SSRW, implying the reasonability
of personalized user ranking compared to the global one.

With regard to the SSRW and F-SSRW, we can see that
SSRW is better than F-SSRW, which performs almost bet-
ter than all the rest approaches except SSRW. In addition,
as the increase of d, the performance gap between F-SSRW
and SSRW becomes smaller, further demonstrating the ef-
fectiveness of our heuristic intuitions.

Impact of candidate selection by d. To demonstrate the
robustness of the proposed approaches, we check the per-
formance of different approaches in terms of GAUC as the
change of d in the range of [1, 10]. We compare SSRW
and F-SSRW with RWR as it performs the best among all
the benchmarks. As shown in Figure 4, we can find that
SSRW consistently performs better than RWR and F-SSRW.
As d increases, the performance gap between F-SSRW and
SSRW becomes smaller, validating the soundness of our ar-
gument that a greater d can assure a better approximation

of F-SSRW compared to SSRW. In other words, considering
the efficiency, we can adopt the F-SSRW model in those ap-
plications where the candidate nodes have substantial com-
mon neighbors with the seed node.

(a) Runtime comparison
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Figure 2: Comparison between SSRW and F-SSRW.

Epinions Slashdot Wikipedia Bitcoin0.5

1.0

1.5

2.0

2.5

3.0

#

SPNR
SFM
RWR

F-SSRW
SSRW

(a) PPrec@10

Epinions Slashdot Wikipedia Bitcoin0.0

0.2

0.4

0.6

0.8

#

(b) NPrec@10

Figure 3: Comparative performance in terms of ranking top
10 positive links and negative links.

Runtime. We then further empirically check the actual
runtime of our approaches conducted on a four CPU 3.7GHz
machine with 16GB memory. Figure 2(a) shows the runtime
comparison between SSRW and F-SSRW on the Epinions
dataset, and we can see that F-SSRW is significantly effi-
cient than SSRW. Figure 2(b) demonstrates the convergence
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Figure 4: The comparative performance with the change of d.

1 2 3 4 5 6 7 8 9 10
k

0.05
0.10
0.15
0.20
0.25
0.30
0.35

PP
re

c@
to

p 
k

SSRW
F-SSRW
RWR
SPNR

1 2 3 4 5 6 7 8 9 10
k

0.03

0.06

0.09

0.12

N
Pr

ec
@

to
p 

k

(a) d = 3

1 2 3 4 5 6 7 8 9 10
k

0.05
0.10
0.15
0.20
0.25
0.30
0.35

PP
re

c@
to

p 
k

1 2 3 4 5 6 7 8 9 10
k

0.03

0.06

0.09

0.12

N
Pr

ec
@

to
p 

k

(b) d = 5
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Figure 5: PPrec@top k (left) and NPrec@top k (right) in the
Epinions dataset with different d.
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Figure 6: Impact of the parameter c on SSRW (d = 5).

of our approaches in dataset E@5, where an iteration repre-
sents an update of the parameter w.

Precision@Top-k. We investigate the ranking perfor-
mance of different approaches in terms of PPrec@k and
NPrec@k. Figure 3 shows the comparison results in Epin-
ions on top 10 precision when d equals to 3. We can see
that SSRW consistently achieves the best results across
all datasets. Random-walk based approaches (i.e. SSRW,
F-SSRW and RWR) obtain better performance than other
benchmarks, implying that simply taking local attributes
into consideration for similarity-based metrics cannot assure
satisfying performance in personalized user ranking task.
The better performance of SSRW and F-SSRW compared
with others also indicates the reasonability of taking person-
alized social strengths into account.

We also examine the performance of top k by varying k in
the range [1, 10], along with different d. We show the exper-
imental results in Epinions in Figure 1, which demonstrate
the consistent superior of SSRW over benchmarks. Besides,
the performance of F-SSRW becomes better as d increases.
Overall, the results imply the effectiveness of our model on
top@k ranking, where positive top @k can be used for link
recommendation, whereas the negative top k can be used in
security-related domains.

Impact of the parameter c. The restart probability c is an
important parameter for random walk. A smaller c will allow
the model ‘walk’ far away from the seed node while a larger
c will force the model to walk within the local structure. We
thus check the impact of c on SSRW in terms of GAUC by
varying c in the range of [0.1, 0.9]. As shown in Figure 6,
c indeed affects SSRW’s performance, and we can obtain
a relatively better performance when c ∈ [0.2, 0.4]. When
c ≥ 0.4, SSRW performs slightly worse with the increase of
c. However, the performance variance is insignificant, indi-
cating that SSRW is relatively insensitive and robust in terms
of the restart probability c.

Conclusions and Future Work
User ranking is a fundamental and key research problem in
signed networks, which has wide applications in real-world
scenarios such as recommendation systems and security-
related platforms. In this paper, we propose the SSRW
model which learns social strengths to optimize the user
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ranking list for each individual user. Specifically, we apply
supervised random walk in signed scenarios and learn link
strengths to guide more effective random walk. Based on
the heuristics from data analysis, we further design a simpli-
fied and efficient ranking method (F-SSRW), which only fo-
cuses on certain candidate nodes and runs the learning algo-
rithm within the local graph of the seed node. A comprehen-
sive evaluation demonstrates the superiority of the proposed
models over state-of-the-art approaches, and the robustness
in terms of parameters and experimental settings.

In the future, we will try more complex functions to rep-
resent the ranking score function by simultaneously incor-
porating more explicit features. Besides, we strive to apply
SSRW in real-world scenarios such as social recommenda-
tion to further validate their effectiveness.
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