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Abstract
Predicting the popularity of online article sheds light to many
applications such as recommendation, advertising and infor-
mation retrieval. However, there are several technical chal-
lenges to be addressed for developing the best of predictive
capability. (1) The popularity fluctuates under impacts of ex-
ternal factors, which are unpredictable and hard to capture.
(2) Content and meta-data features, largely determining the
online content popularity, are usually multi-modal and non-
trivial to model. (3) Besides, it also needs to figure out how
to integrate temporal process and content features modeling
for popularity prediction in different lifecycle stages of online
articles. In this paper, we propose a Deep Fusion of Temporal
process and Content features (DFTC) method to tackle them.
For modeling the temporal popularity process, we adopt the
recurrent neural network and convolutional neural network.
For multi-modal content features, we exploit the hierarchical
attention network and embedding technique. Finally, a tem-
poral attention fusion is employed for dynamically integrat-
ing all these parts. Using datasets collected from WeChat, we
show that the proposed model significantly outperforms state-
of-the-art approaches on popularity prediction.

Introduction
Online articles, such as news in portal websites and blogs
in social networks, have become the most important source
of information. The popularity of online article describes
how much attention it receives, which could be measured
by the amount of total views. Popularity is a measure of
content quality for content providers, and a way to fil-
ter information for content consumers. Unfortunately, we
can only acquire the overall popularity after the lifecyle of
the online article. Predicting the overall popularity in early
stage sheds light to many applications, such as recommenda-
tion, advertising and information retrieval (Gao et al. 2018;
Liu et al. 2016). Besides, it is also academic valuable and
industrial applicable to properly answer the question like
“How to predict the overall popularity of online content at
any time?”

Recently, popularity prediction has drawn great atten-
tions. Scholars handle this task with two-broad-category
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(b) Short term fluctuation.

Figure 1: These two sub-figures show temporal dynamic
of articles popularity in WeChat1. (a) The normalized total
views accumulative process of all articles. (b) The hourly
views amount variation of an example article.

approaches: temporal process modeling and content fea-
ture modeling. Temporal process modeling predicts popu-
larity based on temporal evolution processes of aggregated
view volumes in time slots. The accumulative popularity in-
creases over time while shows unexpected outbreaks under
impacts of external factors, shown in Fig. 1. Most exist-
ing works capture short term fluctuations based on the spe-
cific assumption about external impact (Zhao et al. 2015;
Cao et al. 2017; Rizoiu et al. 2017). However, many external
factors are unpredictable. Specific assumptions restrict these
models’ predictive power. Yu et al. tried to extract popular-
ity fluctuations from temporal process itself, based on hand-
crafted “phases” (Yu et al. 2015). However, influences of
external factors may cover different ranges and durations. It
is hard to assume the amount and shapes of fluctuations arti-
ficially. How to extract short term fluctuations automatically
is still a unsolved problem in this branch of methods.

On the other hand, recent works have proved the effective-
ness of content features in the popularity prediction, such as
short text descriptions, titles and images (Zhang et al. 2018;
Piotrkowicz et al. 2017; Sanjo and Katsurai 2017). However,
online articles are usually long texts which are non-trivial to
model, and diverse forms of meta-data features further com-
plicate the content feature modeling. None of existing works
has taken fully advantages of the long text and meta-data
features for popularity prediction of online articles.

1http://www.wechat.com
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Figure 2: The overall framework of Deep Fusion of Tempo-
ral process and Content features model.

Meanwhile, these two categories of methods have their
own strength and drawbacks over different lifecycle stages
of online article. Temporal process modeling relies on series
of history events, and performs better and better over time
since the observed popularity gets closer to the overall pop-
ularity. However, it is hard to learn the overall trend of pop-
ularity at the very beginning after online content have been
published. In practical applications, it is valuable to predict
the overall popularity in early stage of online article’s life-
cycle, so that we can recommend potential “hot” articles and
filter arid ones. In contrast, content features will not change
over time. Thus content features modeling is more reliable
in early stage, while it fails to exploit the temporal evolution
of popularity. Therefore, we should integrate the temporal
process and content feature modeling to leverage their re-
spective power. Nevertheless, different articles show differ-
ent increase rates and fluctuations in popularity evolutions.
Intuitive fusion methods, such as vector concatenation or lin-
ear combination, lack flexibility for handling the diversity of
popularity evolution processes.

Motivated by above challenges, we propose a neural net-
work method named Deep Fusion of Temporal process and
Content features (DFTC). The framework of DFTC is shown
in Fig. 2. In our model, we tackle above challenges with
following modeling techniques: (1) For modeling the tem-
poral process, we adopt Recurrent Neural Network (RNN)
to capture the long term growth trend of popularity. As for
short-term fluctuations, we adopt attention based Convolu-
tional Neural Network (CNN) to extract rising or falling
“phases” structures automatically. (2) For modeling content
features, we exploit Hierarchical Attention Network (HAN)
(Yang et al. 2016) for capturing text features and employ
embedding techniques to embed meta-data features into ho-
mologous dense vectors. (3) For dynamic fusion, we employ
a temporal attention layer. It leverages attention mechanism
to learn flexible weights for combining all above modeling
techniques, based on their outputs and temporal contexts.
Besides, we collect real-world datasets from WeChat, and

conduct extensive experiments for evaluating prediction per-
formances in different stages, including a case study for ef-
fects of CNN and attention fusion.

Our main contributions are summarized as follows:

• We leverage RNN for long term growth trend and CNN
for short term fluctuation of temporal processes automati-
cally, rather than specific assumption of external factor or
hand-crafted “phases”.

• We adopt HAN for text features, embedding techniques
for meta-data features, and temporal attention fusion for
integrating temporal process and content feature model-
ing dynamically.

• Experimental results show the proposed model signifi-
cantly outperforms state-of-the-art methods, demonstrat-
ing the validity and superiority of our approach.

Related Work
Popularity prediction has drawn great attentions for decades.
Scholars handled this task with two-broad-category ap-
proaches: temporal processes modeling and feature-based
modeling.

Temporal process modeling. Some researchers regarded
the popularity cumulation of online content as an micro ar-
rival point process of view events. They predicted popu-
larity by modeling micro point processes of single events
based on reinforced possion processes (Shen et al. 2014),
hawkes point processes (Zhao et al. 2015) or neural network
(Cao et al. 2017; Gou et al. 2018). However, the amount of
events can be explode in a short time in large-scale applica-
tions, which will cause performance issues of micro tempo-
ral process modeling. Thus we argue that predicting popular-
ity based on macro accumulation process of event volumes
has more practical value, since macro temporal processes are
typically a few dozens to a few hundred data points.

A number of models have been proposed to describe the
evolution of macro temporal process. Hawkes intensity pro-
cesses (Rizoiu et al. 2017) expanded hawkes point process
for macro temporal process and adopted it in Youtube video
popularity prediction. HIP made specific assumptions about
functional forms of temporal processes and influences of ex-
ternal factors, which may restrict the expressive power of
these models (Du et al. 2016). Mishra et al. proposed a dual
RNN model for modeling both micro and macro temporal
process (Mishra, Rizoiu, and Xie 2018) and achieved state-
of-the-art performance. However, it still needs micro events
for modeling the fluctuation caused by external influence. Yu
et al. extracted rising and falling “phases” from macro tem-
poral process to capture fluctuations, and proposed a phase-
based linear regression approach for popularity prediction
(Yu et al. 2015). However, hand-crafted “phases” can not
handle the diversity of popularity evolution processes. In our
model, we adopt attention CNN for extracting local rising
and falling structures automatically and LSTM for captur-
ing the long term growth trend of macro temporal processes.

Feature-based modeling. Some other researchers mod-
eled content and meta-data features of online content for
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popularity prediction. Piotrkowicz et al. predicted popularity
of news articles using only headline features (Piotrkowicz
et al. 2017). Sanjo et al. proposed a visual-semantic fusion
model for online recipe popularity prediction, leveraging im-
age and short text features in recipes (Sanjo and Katsurai
2017). User-guided hierarchical attention network (Zhang et
al. 2018) learned modalities content and user features for
social image popularity prediction. Unfortunately, there is
none existing work has taken fully advantages of the long
text and meta-data features for popularity prediction of on-
line articles. Besides, these approaches also ignore popular-
ity evolution processes of online content.

Some other methods extracted various hand-crafted fea-
tures for popularity prediction, including both temporal pro-
cess and content features. Keneshloo et al. extracted meta-
data, content and temporal features, and adopted tree re-
gression for news popularity prediction (Keneshloo et al.
2016). Shulman et al. added novel social structure and early
adopter features for improving the prediction performance
(Shulman, Sharma, and Cosley 2016). Their performances
heavily depend on extracted features. However, these fea-
tures are hard to design and measure, and are often binded
to specific datasets or applications. Inspired the huge suc-
cess of deep learning, we leverage neural network for mod-
eling both the content features and temporal processes,
avoiding laborious feature engineering (Xu et al. 2012;
Xu et al. 2017).

Problem Formulation
We regard the popularity prediction task as a classification
problem, discretizing the amount of total views to n intervals
{l1, l2, · · · , ln} to represent popularity levels of online arti-
cles. Our goal is to predict the popularity level at any time af-
ter the online article has been published. For the ease of cal-
culation, we discretize continuous time to time slots, and ag-
gregate user feedback events volumes as macro time series.
Here, user feedback events contain not only “view” but also
“share”, “comment” or “like” in many applications. We take
all the volumes of these events in time slots t as feedback
vector vt. More formally, for a online content c, given any
time slot t and the history feedback series {v1,v2, · · · ,vt},
the objective is to predict the overall popularity level of c.

Model
In this section, we introduce the proposed Deep Fusion of
Temporal process and Content features (DFTC) model. The
overall framework is presented in Fig. 2. DFTC consists
of three parts: temporal process modeling, content feature
modeling and attentive fusion. The temporal process mod-
eling takes the history feedback series {v1,v2, · · · ,vt} as
inputs, and adopting recurrent neural network for modeling
the long term growth trend and convolutional neural net-
work for capturing short term fluctuations. In the content
features modeling, we leverage hierarchical attention net-
work for learning text features, and embedding technique
for extracting meta-data features. At last, we dynamically
integrate all these parts through temporal attention fusion.

Fixed Size Window

ConvSize 1 ConvSize 2 ConvSize k···

···

Attention

···

Filter Concatenation

(a) Attention CNN.

h11 h12 h1n

h21 h22 h2n

s1 s2 sn

h31 h32 h3n

h41 h42 h4n

hh

Attention

Attention

w1 w2 wn

Bidirectional
GRU layer

Bidirectional
GRU layer

Sentence
Attention

Sentence
Encoder

Word
Attention

Word
Encoder

…

…

…

…

(b) HAN

Figure 3: (a) The architecture of attention CNN for capturing
short term fluctuations. (b) Hierarchical attention network
(HAN) for modeling text content features.

Temporal Process Modeling
In this work, we employ Recurrent Neural Network (RNN)
for modeling the temporal evolution process of popularity.
Long Short Term Memory (LSTM) is the most widely used
RNN structure. We reiterate the formulation of LSTM:

it = σ(W ixt−1 + U ict−1 + V iht−1 + bi) (1)

ft = σ(W fxS
t−1 + Ufct−1 + V fht−1 + bf ) (2)

ct = ft ∗ ht−1 + it ∗ tanh(W cxt−1 + V cht−1 + bc) (3)

ot = σ(W oxS
t−1 + Uoct−1 + V oht−1 + bo) (4)

ht = ot ∗ tanh(ct) (5)

The superiority of RNN for temporal modeling is that the
hidden state ht involves all the history information so that
we need not to make a specific assumption about functional
forms of the history trend (Du et al. 2016). What’s more, the
memory cell ct in LSTM ensures the long term dependency
can also be captured. Thus we adopt LSTM to learn the
long term growth trend of popularity. Concretely, we feed
the feedback vector v of each time slot into LSTM, and ob-
tain the history growth pattern in the output vector hr

t .
On the other hand, the short term popularity of online

content can be effected by external events and shows un-
expected outbreaks (Zhao et al. 2015; Rizoiu et al. 2017;
Cao et al. 2017). However, it is very difficult to figure out all
impact factors since many of them are unpredictable. There-
fore, we suppose to capture the short term fluctuation from
the temporal process itself. Considering the short term pop-
ularity curve in one dimensional time axis, the fluctuation
caused by external factors makes the curve consist of rising
and falling phases, which look like “mountains” and “val-
leys”, as shown in Fig. 1b. These “mountains” and “valleys”
are translation invariant local structures. Thus we exploit 1-
D convolutional neural network, which has been proved op-
timum for capturing such structures. Furthermore, effects of
different factors continue over different time spans, which
means “mountains” have different widths. Inspired by the
inception module (Szegedy et al. 2016), we adopt multiple
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kernels with different sizes to capture different scale of fluc-
tuations, shown in Fig. 3a. After then, we stack outputs of
all convolutional kernels vertically.

Note that CNNs usually need fixed size inputs. Thus, we
take a clipped series {vt−k+1,vt−k+2, · · · ,vt} with fixed
length k before t. Then we apply same padding and get an
output series {ct−k+1, ct−k+2, · · · , ct} with length k too,
which captures the fluctuation pattern of the recent history.
At last, we need to merge output series through temporal
dimension into output vector hc

t . There are several widely
used methods for the merging operator, such as vector con-
catenation, max/mean pooling and linear combination. Here
we adopt the attention mechanism (Vaswani et al. 2017) for
merging {ct−k+1, ct−k+2, · · · , ct}. Attention mechanism
helps the output hc

t to focus on such time slots that are influ-
enced by external factors, via multiplying different attentive
weights αc to different vectors c. The calculation of attentive
weights αc and the output vector hc

t is as follows:

aci = V c
i tanh(

k∑
i=1

W c
j ct−k+i + bc) (6)

αc
i =

exp(aci )∑k
j=1 exp(a

c
j)

(7)

hc
t =

k∑
i=1

αc
ict−k+i (8)

Content Features Modeling
Content features of online articles, including text and meta-
data features, largely determine their popularity. Online ar-
ticles are usually long text documents, such as news articles
and blogs. Inspired by the huge success of neural network in
nature language process (Lai et al. 2015; Yang et al. 2016;
Huo, Li, and Zhou 2016), we adopt the Hierarchical Atten-
tion Network (HAN) (Yang et al. 2016) for modeling the
text content feature. The framework of HAN is showed in
Fig. 3b. Considering the inherent hierarchical structure of
documents (i.e. words form sentences and sentences form a
document), HAN encodes a document to a vector with two
levels of encoder and attention, applied at the word-level
and sentence-level. Both word-level and sentence-level en-
coders are bidirectional Gated Recurrent Unit. For more de-
tails of HAN, please refer to their research article (Yang et
al. 2016). Besides, titles are high-level overviews of articles
and show primary impressions. We also learn a title repre-
sentation vector as a supplement. Since the title is usually
a phrase or a sentence, we encode the short text to a vector
with only word-level encoder and attention. Then we con-
catenate document vector and title vector together as text
features hh.

Meta-data features consist of both one-hot features, such
as category, and numerical features, such as fans number of
author. Instead of hand-crafted selection and combination
of these features, we exploit embedding techniques for em-
bedding these features into homologous dense vectors and
apply fully connected layers for the feature combination.

Embedding

Concatenation

FC layers

0 1 0···

··

·

One hot features

··

·0.5

Numerical features

(a) Embedding.
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(b) Temporal Attention Fusion.

Figure 4: (a) The illustration of embedding techniques for
meta-data features. (b) The architecture of the temporal at-
tention layer.

As shown in Fig. 4a, we embed one-hot features to vec-
tors through embedding matrices. On the other hand, we
multiply numerical features by embedding vectors for map-
ping them to homologous dense vectors. Then we concate-
nate embedding vectors and apply fully connected layers for
combining all meta-data features to he.

Attentive Fusion
For fusing above modeling techniques, a direct way is
to concatenate outputs of all these parts and feed the
concatenation result into output layers for prediction. Let
hr
t ,h

c
t ,h

h,he represent outputs of RNN, CNN, HAN and
meta-feature embedding. Then we can get prediction at t as:
ŷt = f(W [hr

t ,h
c
t ,h

h,he] + b). In this way, hr
t ,h

c
t ,h

h,he

are combined with fixed weights W . As mentioned in Sec-
tion 1, we argue that it lacks flexibility for handling the dy-
namic evolution of temporal process. At the very beginning
after online articles have been published, it is hard for tem-
poral process modeling to learn the overall growth trend of
popularity. Thus the prediction should mainly depend on
content feature modeling. As time goes on, the observed
popularity gets closer to the overall popularity, so tempo-
ral modeling should take a major part in prediction. On that
basis, we suppose to integrate hr

t ,h
c
t ,h

h,he with a flexi-
ble weight α. α should be a function of of hr

t ,h
c
t ,h

h,he

and temporal context t, so that it could automatically adapt
different outputs and temporal context.

In this work, we adopt an attention mechanism to achieve
dynamic integration, shown in Fig. 4b. Attention mechanism
is a element-wise combination, thus we feed hr

t ,h
c
t ,h

h,he

into fully connected layers for feature combination and ac-
quire element-wise aligned vectors ĥr

t , ĥ
c
t , ĥ

h, ĥe. Then we
use a two-layer neural network to compute the attentive
weights αm as:

ami = V m
i tanh(

∑
j∈{r,c,h,e}

Wm
j

ˆ
hj
t +Wm

t t+ bm) (9)

αm
i =

exp(ami )∑
k∈{r,c,h,e} exp(a

m
k )

(10)

Temporal context t consists of periodic properties (i.e.
hour of day and day of week) of the given time slot t, time
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interval of t and the publish time. Here, periodic proper-
ties are one hot features and time interval is a numerical
feature. We apply the same strategy as embedding meta-
data features to embed temporal context into vector. With
attentive weights αm, we combine all subnetworks dynam-
ically as hmerge

t and get a probability distribution Pt =
{pt(l1), pt(l2), · · · , pt(ln)} of popularity levels after fully
connected layers and softmax output layer. Then we take the
popularity level with max probability as prediction result ŷt.

hmerge
t =

∑
i∈{r,c,h,e}

αm
i ĥi

t (11)

Pt = softmax(f(hmerge
t )) (12)

ŷt = argmax
l

pt(l) (13)

Temporal Decayed Loss
With the proposed model, we get a probability distribution
Pt of popularity levels of online article c at time slot t. Sup-
posing the true level of c is lc, the single step loss at t is
defined by the cross entropy as Lt = − log pt(lc). Through
the whole time series of c, we can define the overall loss of
our model as J =

∑
t Lt.

In practical applications, it is much more valuable to pre-
dict overall popularity in early stage. Besides, the inherent
relation between the observed popularity and overall popu-
larity makes it easier to make predictions in the later period.
In order to help our model to invest more efforts to opti-
mize the prediction performance in early stage, we multiply
a temporal decayed factor to the single step loss:

J =
∑
t

D(∆t)Lt = −
∑
t

D(∆t) log pt(lc) (14)

The temporal decayed factor D(∆t) should be a
monotonous and non increasing function of the time interval
∆t between t and the publish time. In this work, we choose
a function as follows:

D(∆t) = ⌈logγ(∆t+ 1)⌉−1 (15)

Here, ⌈·⌉ represents up rounding operator. ∆t is number of
time slots from the publish time to t, thus ∆t and ⌈logγ(∆t+
1)⌉ are both positive integers. γ > 1 is a hyper-parameter
for controlling the decay rate. We adopt the log function to
ensure the decay rate of D(∆t) will get smaller and smaller
with time goes by. The up rounding operator is employed for
restricting the initial decay rate of log function.

Experiments
Datasets
We collect an online article dataset from a widely used mo-
bile social application WeChat2. Both media organizations
and personal users can set up their official accounts for pub-
lishing news and articles. Users can follow official accounts

2http://www.wechat.com

hot normal cold

>1,000 ≤1,000 >10 ≤10

training
#articles

18,832 9,159 9,243 8,946 8,884

balanced test
#articles

2,093 1,020 989 1,009 1,007

random test
#articles

78 467 2,060 4,308 23,087

Table 1: Datasets Statistics

to subscribe article updates. WeChat provides article recom-
mendation and search function for users. When reading ar-
ticles, users can also take “share”, “save”, “like” and “tip”
actions. Nowadays, there are more than 500,000 new arti-
cles and 2 billion “views” per day in WeChat.

We divide the overall popularity of articles into three cat-
egories, “hot” (more than 10,000 views), “cold” (less than
100 views) and “normal” (otherwise). Here, we take the to-
tal views of 15 days after articles are published as an ap-
proximation of overall popularity. The distribution of article
views is a typical power-law distribution. Only 0.08% ar-
ticles are “hot”, while more than 93% articles are “cold”.
Thus we collect all “hot” articles from May 25 to July 25
and under sample other two category articles. In order to
ensure the diversity of training data, we adopt a piecewise
uniform sampling over the logarithmic views amount. We
count the amount of “view” ,“share”, “save”, “like” and “tip”
actions per 5 minutes of each article as macro time series.
Then we clip these time series before the observed popular-
ity achieves 80% of overall popularity or the 80% of “hot”
threshold. The articles whose time series lengths are less
than 12 is filtered, because they either become “hot” imme-
diately or retain “cold” all the time. Finally, we get 61,178
articles from WeChat. In following experiments, we take
85% of articles for training our model, 5% articles for vali-
dation and 10% articles for evaluation, called balanced test
set. For evaluating our model on the realistic distribution,
we randomly sample other 30,000 articles as random test set
from July 26 to August 10. The dataset statistics information
is shown in Table 1. Besides, meta-data features consist of
“category”, “publish time”, “content length”, “video num-
ber” and “fans numbers of publisher”.

Experiment Settings
Baselines We compare the proposed DFTC method with
following baselines:

• Feature-based classifier. We adopt logistic regression
(LR) and random forests (RF) as baselines of the popular-
ity classification task. These classifiers take both temporal
process features and content features as inputs.

• HIP (Rizoiu et al. 2017). Hawkes Intensity Process ex-
tents the well known hawkes point process for modeling
macro temporal process and is applied for predicting pop-
ularity of videos.

• VoRNN-TS (Mishra, Rizoiu, and Xie 2018). Volumn
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Method
Results of Balanced Test Set Results of Random Test Set

Accuracy hot F1 normal F1 cold F1 Accuracy hot F1 normal F1 cold F1
LR 0.6441 0.3575 0.6446 0.7088 0.7551 0.4248 0.8272 0.8973
RF 0.6587 0.4246 0.6506 0.7277 0.8086 0.4743 0.8454 0.8909
HIP 0.6502 0.4353 0.6330 0.7182 0.7860 0.4342 0.7742 0.9217

VoRNN-TS 0.6709 0.4447 0.6530 0.7366 0.8569 0.4581 0.8505 0.9540
CACNN 0.6965 0.4018 0.7040 0.7394 0.8498 0.4825 0.8472 0.9493

DFTC-TS 0.7278 0.4858 0.7203 0.7638 0.8863 0.5253 0.8592 0.9698
DFTC-SF 0.6542 0.5343 0.6754 0.6212 0.6879 0.5536 0.6926 0.7869
DFTC-SM 0.7559 0.5554 0.7489 0.7812 0.9301 0.5649 0.8625 0.9759

DFTC 0.8147 0.6110 0.7822 0.8393 0.9653 0.6292 0.8729 0.9916

Table 2: Overall Prediction Performance

RNN achieves the state-of-the-art performance on macro
temporal proceses, leveraging the superiority of LSTM.

• CACNN (Gao et al. 2018). Context Attention Convolu-
tional Neural Network is proposed for click-through rate
forecasting, which models temporal process with atten-
tion CNN and incorporate meta-data features.

• DFTC-TS & DFTC-SF. DFTC-TS is the temporal pro-
cess modeling part of our model.DFTC-SF is the content
feature modeling part of our model.

• DFTC-SM. DFTC-SM merge temporal process and con-
tent feature modeling via vector concatenation.

Metrics We adopt the accuracy and F1-score as metrics
for the classification performance. Accuracy is the ratio of
accurate predictions to all predictions. In our experiment, we
study F1-scores of popularity levels by taking each of them
as positive and other two levels as negative respectively.

Parameter settings In temporal process modeling, we
adopt a single LSTM layer with hidden size 512. We em-
ploy 4 kinds of kernels with sizes of 1,3,7,11 respectively.
The number of each kind of kernels is set as 128. The CNN
input window size k is 3 hours. In content feature modeling,
we start with a pre-trained HAN for a relevant classification
task and fine-tune parameters with our dataset. Embedding
sizes of meta-data features are set as 32. We employ 2 FC
layers for meta-data embedding combination, 1 FC layer for
aligning hr

t ,h
c
t ,h

h,he, and 1 FC layer after attention layer.
All of FC layers employ ReLU as active function and have
unified hidden size 512. In the decayed loss function, we
set γ as 12. At last, we leverage the Xavier initialization
and Adam optimizer for parameters learning, and employ
dropout on each FC and RNN layers for regularization.

Complexity analysis As for our neural network, the major
space consumption is the storage of weight matrix and the
major time cost is the flops of linear transformation. Let n
represent the max hidden size in the network, the space and
time complexity of our model are both O(n2). In some other
neural networks such as 2D-CNN for CV tasks, the interme-
diate results also consume lots of space. However, the inter-
mediate results of our model is 1D-vector with max size n,

which has no need for major consideration. Concretely, un-
der our experiment setting, the total number of parameters is
6.2M. In the online prediction, the HAN and embedding part
of our model compute only once for each specific article.
The LSTM, attention CNN and attention fusion part of our
model will be executed for each time step. For comparing
time cost of the proposed model with LSTM and attention
CNN, we conduct experiments based on TensorFlow with
Tesla P40 GPU. One step forward prediction with batch size
64 consumes 0.29ms for CNN, 0.49ms for RNN and 0.97ms
for our proposed DFTC.

Result Analysis
Comparison with Baselines Table 2 shows the predic-
tion performance comparison measured by accuracy and F1-
score. We can observe that the proposed method achieves
the best result through all metrics on both test sets. Note that
all methods get better results on the random test set. Under
the realistic distribution, most articles’ view amount are far
away from the view amount of articles in other categories.
Most “cold” articles have less than 10 views and most “nor-
mal” articles have less than 1000 views, as shown in Table
1. In balanced test set, there are much more examples closed
to the classification boundary, which is more convincing for
performance evaluation.

Specifically, feature-based classifiers’ performances
heavily depend on extracted features, which are hard to
design and measure, especially for time series and text
content. Thus they get the worst results. Hawks intensity
processes only achieves the similar performance with
feature-based classifiers, since the specific assumption of
popularity dynamic limits the expressive power. Volume
RNN models the popularity growth trend with LSTM,
rather than a empirical function form. It outperforms
feature-based classifiers and HIP, while it still lacks of
predictive capability without regard to text and meta-data
features. CACNN performs a little bit better than other
state-of-the-art baselines in balanced test set, integrating
both temporal process and meta-data feature modeling.
However, the input of CNN is only a part of temporal
process, which can not capture the long term growth trend
of popularity. Comparing with them, the proposed DFTC
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Figure 5: Performance Analysis. (a) The heatmap of average attentive weights αm and the line chart of short term fluctuations
per 10% of time series. The weight of RNN increases over time and the weight of CNN corresponds to fluctuations. (b) Average
accuracies of first 5 hours after articles are published. (c) Average accuracies when the observed popularity runs up to 10%-50%
of the overall popularity.

model captures long term trend and short term fluctuation
of the temporal process, and integrates text and meta-data
features dynamically. Based on these modeling techniques,
DFTC method significantly outperforms state-of-the-art
methods. In balanced test set, it shows 17.0% increase of
accuracy and 37.4%, 12.0%, 13.5% improvement of hot,
normal and cold F1-score respectively. Our model have
been applied in article recommendation in WeChat now.

Ablation Analysis The proposed model is also superior
to its variants, i.e. DFTC-TS, DFTC-SF and DFTC-SM.
DFTC-TS and DFTC-SF only leverage temporal processes
or content features for prediction. It is no surprising that their
performances are not desirable. Note that DFTC-TS out-
performs other temporal process methods, i.e. VoRNN-TS
and HIP, illustrating that the design of LSTM for long term
trend and CNN for short term fluctuation is effective and su-
perior. DFTC-SM combines temporal process and content
feature modeling through vector concatenation, which lacks
flexibility for handling the dynamic growth of time series.
In contrast, DFTC method adopts attention mechanism to
learn flexible weights for dynamic fusion. Thus it outper-
forms DFTC-SM by 7.8% on accuracy in balanced test set.

Case study In order to study effects of attention CNN and
temporal attentive fusion, we randomly select a “hot” arti-
cle as case study. We average its attentive weights αm and
aggregate its view amount per 10% of time series, shown in
Fig. 5a. The four rows of upper heat map represent attentive
weights αm of RNN, CNN, HAN and embedding respec-
tively. The bigger the weight is, the darker the color is. It can
be observed that all these parts make similar contribution for
prediction at the beginning. As the observed popularity get-
ting closer to the overall popularity, RNN can learn the long
term growth trend more accurately. Thus RNN model plays
a major role in prediction at the later period. The lower line
chart shows short term fluctuations of this article. We can
observe the view amount shows outbreaks at the beginning
and end of time series. Accordingly, attention CNN has high
attentive weights at the beginning and the end, which means
it effectively captures such local rising and falling structures
that are important to the overall popularity prediction.

Performance in Early Stage In practical applications, it
is much valuable to predict overall popularity in early stage.
Figure 5b shows average accuracies of first 5 hours after ar-
ticles are published and Fig. 5c shows average accuracies
when the observed popularity runs up to 10%-50% of the
overall popularity in balanced test set. We can observe that
our model shows an obvious improvement of the early stage
prediction performance, from both time and observed popu-
larity aspects. Note that the performance of HIP is not shown
here, because it needs a long enough temporal process to es-
timate parameters well (Rizoiu et al. 2017). Feature-based
methods perform very poorly in early stage, since hand-
crafted features can hardly capture temporal dynamic pat-
terns. CACNN integrates meta-data features for prediction,
thus it performs better than VoRNN-TS in early stage.

DFTC-CL is our model with the common sequence loss.
Content feature modeling enables our method to make re-
liable predictions when the temporal process lacks enough
information, and the attentive fusion ensures content feature
modeling plays a major role in early stage. Thus DFTC-
CL significantly outperforms state-of-the-art methods. The
temporal decayed factor of loss function helps our model to
invest more efforts to optimize the prediction performance
of early stages. When we apply the temporal decayed loss
function for optimizing, i.e. DFTC-TL, the early stage per-
formance is further improved. Besides, since the observed
popularity gets closer to overall popularity over time, it can
also get a desirable performance in the latter period, even if
we reduce their weights.

Conclusion
In this work, we propose a novel online articles popularity
prediction method. We adopt RNN for capture the long term
trend and CNN to extract short term fluctuation. We exploit
HAN to model text features and employ embedding tech-
niques to learn meta-data features. At last, a temporal at-
tention fusion layer is employed to integrate all these parts
dynamically. Evaluation results based on real-world online
article dataset demonstrate the effectiveness and superiority
of the proposed model.
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