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Abstract

Past years have witnessed rapid developments in Neural
Machine Translation (NMT). Most recently, with advanced
modeling and training techniques, the RNN-based NMT
(RNMT) has shown its potential strength, even compared
with the well-known Transformer (self-attentional) model.
Although the RNMT model can possess very deep archi-
tectures through stacking layers, the transition depth be-
tween consecutive hidden states along the sequential axis
is still shallow. In this paper, we further enhance the RNN-
based NMT through increasing the transition depth between
consecutive hidden states and build a novel Deep Transi-
tion RNN-based Architecture for Neural Machine Transla-
tion, named DTMT. This model enhances the hidden-to-
hidden transition with multiple non-linear transformations,
as well as maintains a linear transformation path through-
out this deep transition by the well-designed linear transfor-
mation mechanism to alleviate the gradient vanishing prob-
lem. Experiments show that with the specially designed deep
transition modules, our DTMT can achieve remarkable im-
provements on translation quality. Experimental results on
Chinese⇒English translation task show that DTMT can out-
perform the Transformer model by +2.09 BLEU points and
achieve the best results ever reported in the same dataset. On
WMT14 English⇒German and English⇒French translation
tasks, DTMT shows superior quality to the state-of-the-art
NMT systems, including the Transformer and the RNMT+.

Introduction
Neural Machine Translation (NMT) with an encoder-
decoder (Cho et al. 2014; Sutskever, Vinyals, and Le 2014)
framework has made promising progress in recent years.
Generally, this kind of framework consists of two com-
ponents: an encoder network that encodes the input sen-
tence into a sequence of distributed representations, based
on which a decoder network generates the translation with
an attention mechanism (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015). Driven by the break-
through achieved in computer vision (He et al. 2016), re-
search in NMT have turned towards studying deep archi-
tectures (Wu et al. 2016; Zhou et al. 2016; Kalchbren-
ner et al. 2017; Wang et al. 2017; Gehring et al. 2017;
Vaswani et al. 2017). Among these studies, RNN-based
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NMT (RNMT) with deep stacked architectures (Wu et al.
2016; Zhou et al. 2016; Kalchbrenner et al. 2017; Wang et
al. 2017) first outperforms the conventional shallow RNMT
model, to be the de-facto standard for NMT. Most re-
cently, after absorbing the advanced modeling and train-
ing techniques, the RNMT+ (Chen et al. 2018) has shown
its greater potential strength, even surpasses the convolu-
tional seq2seq (ConvS2S) model (Gehring et al. 2017) and
achieves comparable results with the well-known Trans-
former model (Vaswani et al. 2017). These studies inspire
researchers to make efforts for searching new architectures
for RNMT.

Although the RNMT model can possess very deep archi-
tectures through stacking layers, for each recurrent level of
the stacked RNN, the transition between the consecutive hid-
den states along the sequential axis is still shallow. Since
the state transition between the consecutive hidden states
effectively adds a new input to the summary of the previ-
ous inputs represented by the hidden state, this procedure of
constructing a new summary from the combination of the
previous one and the new input should be highly nonlinear,
to allow the hidden state to rapidly adapt to quickly chang-
ing modes of the input while still preserving a useful sum-
mary of the past (Pascanu et al. 2014). From this perspective,
some researchers (Pascanu et al. 2014; Barone et al. 2017)
investigate deep transition recurrent architectures, which in-
crease the depth of the hidden-to-hidden transition. This
kind of structure extends the conventional shallow RNN in
another aspect different from the stacked RNN, and has been
proven to outperform the stacked one on language modeling
task (Pascanu et al. 2014). Barone et al. (2017) apply this
transition architecture to RNMT, while there is still a large
margin between this transition model and the state-of-the-art
model, e.g. the Transformer (Vaswani et al. 2017), in terms
of BLEU, which is also confirmed by Tang et al. (2018).

In this paper, we further enhance the RNMT through in-
creasing the transition depth of the consecutive hidden states
along the sequential axis and build a novel and effective
Deep Transition RNN-based Architecture for Neural Ma-
chine Translation, named DTMT. We design three deep
transition modules, which correspondingly extend the RNN
modules of shallow RNMT in the encoder and the decoder,
to enhance the non-linear transformation between consec-
utive hidden states. Since the deep transition increases the
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number of nonlinear steps, this may lead to the problem of
vanishing gradients. To alleviate this problem, we propose a
Linear Transformation enhanced Gated Recurrent Unit (L-
GRU) for DTMT, which provides a linear transformation
path throughout the deep transition.

We test the effectiveness of our DTMT on
Chinese⇒English, English⇒German and English⇒French
translation tasks. Experimental results on NIST
Chinese⇒English translation show that DTMT can
outperform the Transformer model by +2.09 BLEU
points and achieve the best results ever reported in
the same dataset. On WMT14 English⇒German and
English⇒French translation, it consistently leads to
substantial improvements and shows superior quality to
the state-of-the-art NMT systems (Vaswani et al. 2017;
Cheng et al. 2018). The main contributions of this paper can
be summarized as follows:
• We tap the potential strength of deep transition between

consecutive hidden states and propose a novel deep tran-
sition RNN-based architecture for NMT, which achieves
state-of-the-art results on multiple translation tasks.

• We propose a simple yet more effective linear transforma-
tion enhanced GRU for our deep transition RNMT, which
provides a linear transformation path for deep transition
of consecutive hidden states. Additionally, L-GRU can
also be used to enhance other GRU-based architectures,
such as the shallow RNMT and the stacked RNMT.

• We apply recent advanced techniques, including multi-
head attention, layer normalization, label smoothing, and
dropouts to enhance our DTMT. Additionally, we find the
positional encoding (Vaswani et al. 2017) can assist the
training of RNMT by modeling positions of the tokens
in the sequence, although it is originally designed for the
non-recurrent (self-attentional) architecture.

Background
Attention-based RNMT
Given a source sentence x = {x1, x2, · · · , xn} and a tar-
get sentence y = {y1, y2, · · · , ym}, RNN-based neural ma-
chine translation (RNMT) models the translation probability
word by word:

p(y|x) =

m∏
t=1

P (yt|y<t,x; θ)

=

m∏
t=1

softmax(f(ct, yt−1, st)) (1)

where f(·) is a non-linear function, and st is the hidden state
of decoder RNN at time step t:

st = g(st−1, yt−1, ct) (2)

ct is a distinct source representation for time t, calculated as
a weighted sum of the source annotations:

ct =

n∑
j=1

at,jhj (3)

…

…

…

… … … …

Figure 1: Deep transition RNN, in which the transition be-
tween consecutive hidden states is deep.

Formally, hj = [
−→
h j ,
←−
h j ] is the annotation of xj , which can

be computed by a bi-directional RNN (Schuster and Paliwal
1997) with GRU and contains information about the whole
source sentence with a strong focus on the parts surrounding
xj . Here,
−→
h j = GRU(xj ,

−→
h j−1);

←−
h j = GRU(xj ,

←−
h j+1) (4)

The weight at,j is computed as

at,j =
exp(et,j)∑N
k=1 exp(et,k)

(5)

where et,j = vT
a tanh(Was̃t−1 +Uahj) scores how much

s̃t−1 attends to hj , where s̃t−1 = g(st−1, yt−1) is an inter-
mediate state tailored for computing the attention score.

Deep Transition RNN
Barone et al. (2017) first apply the deep transition RNN to
NMT. As shown in Figure 1, in a deep transition RNN, the
next state is computed by the sequential application of mul-
tiple transition layers at each time step, effectively using a
feed-forward network embedded inside the recurrent cell.
Obviously, this kind of architecture increases the depth of
transition between the consecutive hidden states along the
sequential axis, unlike the deep stacked RNN, in which tran-
sition between the consecutive hidden states is still shallow.

Although the deep transition RNN has been proven to
be superior to deep stacked RNN on language modeling
task (Pascanu et al. 2014), there is still a large margin
between this deep transition NMT model (Barone et al.
2017) and the state-of-the-art NMT model, e.g. the Trans-
former (Vaswani et al. 2017), in terms of BLEU, which is
also confirmed by Tang et al. (2018).

Model Description
In this section, we describe our novel Deep Transition RNN-
based Architecture for NMT (DTMT). As shown in Fig-
ure 2, the DTMT consists of a bidirectional deep transi-
tion encoder and a deep transition decoder, connected by the
multi-head attention (Vaswani et al. 2017). There are three
deep transition modules: 1) encoder transition for encoding
the source sentence into a sequence of distributed represen-
tations; 2) query transition for forming a query state to at-
tend to the source representations; and 3) decoder transition
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Figure 2: The architecture of DTMT. The bidirectional deep transition encoder (on the left) and the deep transition decoder (on
the right) are connected by multi-head attention. There are three deep transition modules, namely the encoder transition, the
query transition and the decoder transition, each of which consists of a L-GRU (the square frames fused with a small circle) at
the bottom followed by several T-GRUs (the square frames) from bottom to up.

for generating the final decoder state of current time step.
In each transition module, the transition block consists of a
Linear Transformation enhanced GRU (L-GRU) at the bot-
tom followed by several Transition GRUs (T-GRUs) from
bottom to up. Before proceeding to the details of DTMT,
we first describe the key components (i.e. GRU and its vari-
ants) of our deep transition modules.

Gated Recurrent Unit and its Variants
GRU: Gated Recurrent Unit (GRU) (Cho et al. 2014) is
a variation of LSTM with fewer parameters. The activa-
tion function is armed with two specifically designed gates,
named update gate and reset gate, to control the flow of in-
formation inside each unit. Each hidden state at time-step t
is computed as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (6)

where ⊙ is an element-wise product, zt is the update gate,
and h̃t is the candidate activation, computed as:

h̃t = tanh(Wxhxt + rt ⊙ (Whhht−1)) (7)

where xt is the input embedding, and rt is the reset gate.
Reset and update gates are computed as:

rt = σ(Wxrxt +Whrht−1) (8)
zt = σ(Wxzxt +Whzht−1) (9)

Actually, GRU can be viewed as a non-linear activation
function with a specially designed gating mechanism, since

the updated ht has two sources controlled by the update gate
and the reset gate: 1) the direct transfer from previous state
ht−1; and 2) the candidate update h̃t, which is a nonlinear
transformation of the previous state ht−1 and the input em-
bedding.

T-GRU: Transition GRU (T-GRU) is a key component of
deep transition block. A basic deep transition block can be
composed of a GRU followed by several T-GRUs from bot-
tom to up at each time step, just as Figure 1. In the whole
recurrent procedure, for the current time step, the “state”
output of one GRU/T-GRU is used as the “state” input of
the next T-GRU. And the “state” output of the last T-GRU
for the current time step is carried over as the “state” input
of the first GRU for the next time step. For a T-GRU, each
hidden state at time-step t is computed as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (10)

h̃t = tanh(rt ⊙ (Whhht−1)) (11)
where reset gate rt and update gate zt are computed as:

rt = σ(Whrht−1) (12)
zt = σ(Whzht−1) (13)

As we can see, T-GRU is a special case of GRU with only
“state” as input. It is also like the convolutional GRU (Kaiser
and Sutskever 2015). Here the updated ht has two sources
controlled by the update gate and the reset gate: 1) the direct
transfer from previous hidden state ht−1; and 2) the candi-
date update h̃t, which is a nonlinear transformation of the
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previous hidden state ht−1. That is to say, T-GRU conducts
both non-linear transformation and direct transfer of the in-
put. This architecture will make training deep models easier.

L-GRU: L-GRU is a Linear Transformation enhanced
GRU by incorporating an additional linear transformation
of the input in its dynamics. Each hidden state at time-step t
is computed as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (14)

where the candidate activation h̃t is computed as:

h̃t = tanh(Wxhxt + rt ⊙ (Whhht−1)) + lt ⊙H(xt) (15)

where reset gate rt and update gate zt are computed as the
formula (8) and (9), and H(xt) = Wxxt is the linear trans-
formation of the input xt, controlled by the linear transfor-
mation gate lt, which is computed as:

lt = σ(Wxlxt +Whlht−1) (16)

In L-GRU, the updated ht has three sources controlled by
the update gate, the reset gate and the linear transformation
gate: 1) the direct transfer from previous state ht−1; 2) the
candidate update h̃t; and 3) a direct contribution from the
linear transformation of input H(xt). Compared with GRU,
L-GRU conducts both non-linear transformation and linear
transformation for the inputs, including the embedding in-
put and the state input. Clearly, with L-GRU and T-GRUs,
deep transition model can alleviate the problem of vanishing
gradients since this structure provides a linear transforma-
tion path as a supplement between consecutive hidden states,
which are originally connected by only non-linear transfor-
mations with multi-steps (e.g. GRU+T-GRUs).

Our L-GRU is inspired by the Linear Associative Unit
(LAU) (Wang et al. 2017), while we exploit more concise
operations with the same parameter quantity to the LAU to
incorporate the linear transformation of the input xt as well
as preserving the original non-linear abstraction produced
by the input and previous hidden state. Different from the
LAU, 1) the linear transformation of input is controlled by
both the update gate zt and the linear transformation gate lt;
and 2) the linear transformation gate lt only focus on the lin-
ear transformation of the embedding input. These may be the
main reasons why L-GRU is more effective than the LAU,
as verified in our experiments described later.

DTMT
The formal description of the encoder and the decoder of
DTMT is as follows:

Encoder: The encoder is a bidirectional deep transition
encoder based on recurrent neural networks. Let Ls be the
depth of encoder transition, then for the jth source word in
the forward direction the forward source state

−→
h j ≡

−→
h j,Ls

is computed as:
−→
h j,0 = L-GRU(xj ,

−→
h j−1,Ls

)
−→
h j,k = T-GRUk(

−→
h j,k−1) for 1 ≤ k ≤ Ls

where the input to the first L-GRU is the word embedding
xj , while the T-GRUs have only “state” as the input. Recur-
rence occurs as the previous state

−→
h j−1,Ls enters the com-

putation in the first L-GRU transition for the current step.
The reverse source word states are computed similarly and
concatenated to the forward ones to form the bidirectional
source annotations C ≡ {[

−→
h j,Ls

,
←−
h j,Ls

]}.

Decoder: As shown in Figure 2, the deep transition de-
coder consists of two transition modules, named query tran-
sition and decoder transition, of which query transition is
conducted before the multi-head attention and decoder tran-
sition is conducted after the multi-head attention. These tran-
sition modules can be conducted to an arbitrary transition
depth. Suppose the depth of query transition is Lq and the
depth of decoder transition is Ld, then

st,0 = L-GRU(yt−1, st−1,Lq+Ld+1)

st,k = T-GRU(st,k−1) for 1 ≤ k ≤ Lq

where yt−1 is the embedding of the previous target word.
And then the context representation ct of source sentence is
computed by multi-head additive attention:

ct = Multihead-Attention(C, st,Lq
)

after that, the decoder transition is computed as

st,Lq+1 = L-GRU(ct, st,Lq
)

st,Lq+p = T-GRU(st,Lq+p−1) for 2 ≤ p ≤ Ld + 1

The current state vector st ≡ st,Lq+Ld+1 is then used by
the feed-forward output network as Formula (1) to predict
the current target word.

Advanced Techniques
Except for the multi-head attention, we apply most recently
advanced techniques during training to enhance our model:
• Dropout: We apply dropout on embedding layers, the

output layer before prediction, and the candidate acti-
vation output (Semeniuta, Severyn, and Barth 2016) of
RNN.

• Label Smoothing: We use uniform label smoothing with
an uncertainty=0.1 (Szegedy et al. 2015), which has been
proved to have a positive impact for the performance.

• Layer Normalization: Inspired by the Transformer, per-
gate layer normalization (Ba, Kiros, and Hinton 2016) is
applied within each gate (i.e. reset gate, update gate and
linear transformation gate) of L-GRU/T-GRU. It is critical
to stabilize the training process of deep transition model.

• Positional Encoding: We also add the positional encod-
ing (Vaswani et al. 2017) to the input embeddings at the
bottoms of the encoder and decoder to assist modeling
positions of the tokens in the sequence. Although the
positional encoding is originally designed for the non-
recurrent (self-attentional) architecture, we find RNMT
can also benefit from it. To stabilize the training process of
our deep transition model, we add a scaling factor 1/

√
dk

(dk is the dimension of embedding) to the original posi-
tional encoding function.
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SYSTEM ARCHITECTURE # Para. MT06 MT02 MT03 MT04 MT05 MT08 AVE.
Existing end-to-end NMT systems

Shen et al. (2016) GRU with MRT – 37.34 40.36 40.93 41.37 38.81 29.23 38.14
Wang et al. (2017) DeepLAU (4 layers) – 37.29 – 39.35 41.15 38.07 – –
Zhang et al. (2018) Bi-directional decoding – 38.38 – 40.02 42.32 38.84 – –
Meng et al. (2018) GRU with KV-Memory – 39.08 40.67 38.40 41.10 38.73 30.87 37.95
Cheng et al. (2018) AST (2 layers) – 44.44 46.10 44.07 45.61 44.06 34.94 42.96
Vaswani et al. (2017) Transformer (BIG) 277.6M 44.78 45.32 44.13 45.92 44.06 35.33 42.95

Our end-to-end NMT systems

this work
SHALLOWRNMT 143.2M 42.99 44.24 42.96 44.97 42.69 33.00 41.57
DTMT#1 170.5M 45.99 46.90 45.85 46.78 45.96 36.58 44.41
DTMT#4 208.4M 46.74 47.03 46.34 47.52 46.70 37.61 45.04

Table 1: Case-insensitive BLEU scores (%) on NIST Chinese⇒English translation. Our deep transition model outperforms the
state-of-the-art models including the Transformer (Vaswani et al. 2017) and the deep stacked RNMT (Cheng et al. 2018).

Experiments
Setup
We carry out experiments on Chinese⇒English (Zh⇒En),
English⇒German (En⇒De) and English⇒French (En⇒Fr)
translation tasks. For these tasks, we tokenize the references
and evaluated the translation quality with BLEU scores (Pa-
pineni et al. 2002) as calculated by the multi-bleu.pl script.

For Zh⇒En, the training data consists of 1.25M sen-
tence pairs extracted from the LDC corpora. We choose
NIST 2006 (MT06) dataset as our valid set, and NIST 2002
(MT02), 2003 (MT03), 2004 (MT04), 2005 (MT05) and
2008 (MT08) datasets as our test sets. For En⇒De and
En⇒Fr, we perform our experiments on the corpora pro-
vided by WMT14 that comprise 4.5M and 36M sentence
pairs, respectively. We use newstest2013 as the valid set, and
newstest2014 as the test set.

Training Details
In training the neural networks, we follow Sennrich, Had-
dow, and Birch (2016) to split words into sub-word units.
For Zh⇒En, the number of merge operations in byte pair
encoding (BPE) is set to 30K for both source and target lan-
guages. For En⇒De and En⇒Fr, we use a shared vocabu-
lary generated by 32K BPEs following Chen et al. (2018).

The parameters are initialized uniformly between [-0.08,
0.08] and updated by SGD with the learning rate controlled
by the Adam optimizer (Kingma and Ba 2014) (β1 = 0.9,
β2 = 0.999, and ϵ = 1e−6). And we follow Chen et
al. (2018) to vary the learning rate as follows:

lr = lr0 ·min(1 + t · (n− 1)/np, n, n · (2n)
s−nt
e−s ) (17)

Here, t is the current step, n is the number of concurrent
model replicas in training, p is the number of warmup steps,
s is the start step of the exponential decay, and e is the end
step of the decay. For Zh⇒En, we use 2 M40 GPUs for syn-
chronous training and set lr0, p, s and e to 10−3, 500, 8000,
and 64000 respectively. For En⇒De, we use 8 M40 GPUs
and set lr0, p, s and e to 10−4, 50, 200000, and 1200000
respectively. For En⇒Fr, we use 8 M40 GPUs and set lr0,
p, s and e to 10−4, 50, 400000, and 3000000 respectively.

We limit the length of sentences to 128 sub-words for
Zh⇒En and 256 sub-words for En⇒De and En⇒Fr in the

training stage. We batch sentence pairs according to the
approximate length, and limit input and output tokens to
4096 per GPU. We apply dropout strategy to avoid over-
fitting (Hinton et al. 2012). In particular, for Zh⇒En, we
set dropout rates of the embedding layers, the layer before
prediction and the RNN output layer to 0.5, 0.5 and 0.3 re-
spectively. For En⇒De, we set these dropout rates to 0.3, 0.3
and 0.1 respectively. For En⇒Fr, we set these dropout rates
to 0.2, 0.2 and 0.1 respectively. For each model of the trans-
lation tasks, the dimension of word embeddings and hidden
layer is 1024. Translations are generated by beam search and
log-likelihood scores are normalized by the sentence length.
We set beam size = 4 and length penalty alpha = 0.6. We
monitor the training process every 2K iterations and decide
the early stop condition by validation BLEU.

System Description
• SHALLOWRNMT: a shallow yet strong RNMT base-

line system, which is our in-house implementation of
the attention-based RNMT (Bahdanau, Cho, and Bengio
2015) augmented by combining advanced techniques, in-
cluding multi-head attention, layer normalization, label
smoothing, dropouts on multi-layers (the embedding lay-
ers, the output layer before prediction and the candidate
activation output of each GRU) and the positional encod-
ing.

• DTMT#NUM: our deep transition systems, and the #NUM
stands for the transition depth (i.e. the number of T-GRUs)
above the bottom L-GRU in each transition module (i.e.
encoder transition, query transition, and decoder transi-
tion). For example, DTMT#2 means each transition mod-
ule contains 1 L-GRU layer and 2 T-GRU layers, namely
3 layers in the encoder and 6 layers in the decoder.

Results on NIST Chinese⇒English
Table 1 shows the results on NIST Zh⇒En translation task.
Our baseline system SHALLOWRNMT significantly out-
performs previous RNN-based NMT systems on the same
datasets. Shen et al. (2016) propose minimum risk training
(MRT) to optimize the model with respect to BLEU scores.
Wang et al. (2017) propose the linear associative units
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SYSTEM ARCHITECTURE EN-DE EN-FR
Zhou et al. (2016) LSTM (8 layers) 20.60 37.70
Luong, Pham, and Manning (2015) LSTM (4 layers) 20.90 31.50
Wang et al. (2017) DeepLAU (4 layers) 23.80 35.10
Wu et al. (2016) GNMT (8 layers) 24.60 38.95
Gehring et al. (2017) ConvS2S (15 layers) 25.16 40.46
Cheng et al. (2018) AST (2 layers) 25.26 –
Vaswani et al. (2017) Transformer (BIG) 28.40 41.00
Chen et al. (2018) RNMT+ (8 layers) 28.49 41.00

this work
SHALLOWRNMT 25.66 39.28
DTMT#1 27.92 40.75
DTMT#4 28.70 42.02

Table 2: Case-sensitive BLEU scores (%) on WMT
14 English⇒German and English⇒French translation.
DTMT#4 outperforms the state-of-the-art models in-
cluding the Transformer (Vaswani et al. 2017) and the
RNMT+ (Chen et al. 2018).

(LAU) to address the issue of gradient diffusion, and their
system is a deep model with 4 layers. Zhang et al. (2018)
propose to exploit both left-to-right and right-to-left decod-
ing strategies to capture bidirectional dependencies. Meng
et al. (2018) propose key-value memory augmented atten-
tion to improve the adequacy of translation. Compared with
them, our baseline system SHALLOWRNMT outperforms
their best models by more than 3 BLEU points. SHAL-
LOWRNMT is only 1.4 BLEU points lower than the state-
of-the-art deep models, i.e. the Transformer (with 6 attention
layers) (Vaswani et al. 2017) and the deep stacked RNMT
augmented with adversarial stability training (AST) (Cheng
et al. 2018). We build this strong baseline system to show
that the shallow RNMT model with advanced techniques is
indeed powerful. And we hope that the strong baseline sys-
tem used in this work makes the evaluation convincing.

Our deep transition model DTMT#1 with only one tran-
sition layer can further bring in up to +3.58 BLEU points
(+2.84 BLEU on average) improvements over the strong
baseline SHALLOWRNMT. DTMT#1 outperforms all the
previous systems list in Table 1, and achieves about +1.45
BLEU points improvements over the best model. With a
deeper transition architecture, DTMT#4 achieves the best
results, which is up to +4.61 BLEU points (+3.47 BLEU
on average) higher than the SHALLOWRNMT. Compared
with the Transformer and deep RNMT augmented with AST,
DTMT#4 yields a gain of +2.08 BLEU on average and
achieves the best performance ever reported on this dataset.

Results on WMT14 En⇒De and En⇒Fr
To demonstrate that our models work well across differ-
ent language pairs, we also evaluate our models on the
WMT14 benchmarks on En⇒De and En⇒Fr translation
tasks, as listed in Table 2. For comparison, we list exist-
ing NMT systems which are trained on the same WMT 14
corpora. Among these systems, the Transformer (Vaswani
et al. 2017) represents the best non-recurrent model, and
the RNMT+ (Chen et al. 2018) represents the best RNMT
model. Our baseline system SHALLOWRNMT can achieve
better performance than most RNMT systems except for the
RNMT+, which demonstrates that SHALLOWRNMT is also
a strong baseline system for both En⇒De and En⇒Fr.

Our deep transition model DTMT#1 with only one tran-

ARCHITECTURE RNN # Para. BLEU

SHALLOWRNMT
GRU 143.2M 41.57
LAU 157.9M 43.06
L-GRU 157.9M 43.83

DTMT#1
GRU+T-GRU 155.8M 43.63
LAU+T-GRU 170.5M 43.79
L-GRU+T-GRU 170.5M 44.41

DTMT#4
GRU+T-GRUs 193.7M 44.16
LAU+T-GRUs 208.4M 44.54
L-GRU+T-GRUS 208.4M 45.04

Table 3: Comparisons of GRU, LAU and L-GRU with
different architectures on NIST Chinese⇒English transla-
tion (average BLEU scores (%) on test sets). The italics
in the “RNN” column indicate the potential variants of the
corresponding architecture. For example, the RNN units in
DTMT#1 can be replaced with the LAU+T-GRU.

sition layer can bring in +2.26 BLEU for En⇒De and
+1.47 BLEU for En⇒Fr over the strong baseline SHAL-
LOWRNMT. With a deeper transition architecture, our
DTMT#4 achieves +3.04 BLEU for En⇒De and +2.74
BLEU for En⇒Fr over the baseline, and outperforms state-
of-the-art systems, i.e. the Transformer and the RNMT+.

Analysis
L-GRU vs. GRU & LAU: We investigate the effective-
ness of the proposed L-GRU on different architectures, in-
cluding the SHALLOWRNMT and the DTMTs. From Ta-
ble 3 we can see that the L-GRU is effective since it can
consistently bring in substantial improvements over differ-
ent architectures. In particular, it brings in +2.26 BLEU
points improvements over SHALLOWRNMT averagely on
five test sets, and it also leads to +0.78∼ +0.88 BLEU points
improvements over our deep transition architectures (i.e.
DTMT#1 and DTMT#4). Additionally, with more concise
operations and the same parameter quantity, L-GRU can fur-
ther outperform the LAU (Wang et al. 2017) on different
strong systems by +0.5∼ +0.77 BLEU points. These results
demonstrate that L-GRU is a more effective unit for both
deep transition models and the shallow RNMT model.

Ablation Study: Our deep transition model consists of
three deep transition modules, including the encoder tran-
sition, the query transition and the decoder transition. We
perform an ablation study on Zh⇒En translation to investi-
gate the effectiveness of these transition modules by choos-
ing DTMT#4 as an example. As shown in Table 4, re-
placing any one with its corresponding part of the shal-
low RNMT (Bahdanau, Cho, and Bengio 2015) leads to
the translation performance decrease (-0.68∼ -1.74 BLEU).
Among these transition modules, the encoder transition is
the most important, since deleting it leads to the most ob-
vious decline (-1.74 BLEU). We also conduct an ablation
study of the L-GRU and the “Advanced Techniques” on
En⇒De task. As shown in Table 5, deleting the L-GRU
and/or the “Advanced Techniques” leads to sharp declines
on translation quality. Therefore, we can conclude that both
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enc-transion query-transion dec-transion BLEU√ √ √
45.04

×
√ √

43.30√
×

√
44.35√ √

× 44.36

Table 4: Ablation study of deep transition modules on NIST
Chinese⇒English translation (average BLEU scores (%) on
test sets). Here “×” stands for replacing the transition mod-
ule with the corresponding part of the conventional shallow
RNMT (Bahdanau, Cho, and Bengio 2015).

ARCHITECTURE BLEU
DTMT#4 28.70
−L-GRU 27.81
−L-GRU & Advanced Techniques 26.27

Table 5: Ablation study of the L-GRU and the “Advanced
Techniques” on WMT14 English⇒German translation.

the L-GRU and the “Advanced Techniques” are key com-
ponents for DTMT#4 to achieve the state-of-the-art perfor-
mance.

Transition Depth & Positional Encoding: Table 6 shows
the impact of the transition depth and the positional encod-
ing on Zh⇒En translation. From these results, we can draw
the following conclusions: 1) with the increasing of transi-
tion depth (rows 3-6), our model can consistently achieve
better performance; 2) T-GRUs do bring in significant im-
provements even over the strong baseline (rows 2-3); and 3)
on different architectures, we can see that the positional en-
coding can further bring in consistent improvements (+0.1∼
+0.3 BLEU) over its counterpart without the positional en-
coding. This demonstrates that, although the positional en-
coding is originally designed for non-recurrent network (i.e.
Transformer), it also can assist the training of RNN-based
models by modeling positions of tokens in the sequence.

About Length: A more detailed comparison between
DTMT#4, DTMT#1, SHALLOWRNMT and the Trans-
former suggest that our deep transition architectures are es-
sential to achieve the superior performance. Figure 3 shows
the BLEU scores of generated translations on the test sets
with respect to the lengths of the source sentences. In par-
ticular, we test the BLEU scores on sentences longer than
{0, 10, 20, 30, 40, 50, 60} in the merged test set of MT02,
MT03, MT04, MT05 and MT08. Clearly, on sentences with
different lengths, DTMT#4 and DTMT#1 always yield
higher BLEU scores than SHALLOWRNMT and the Trans-
former consistently. And DTMT#4 yields the best BLEU
scores on sentences with different lengths.

Related Work
Our work is inspired by the deep transition RNN (Pascanu
et al. 2014), which is applied on language modeling task.
Barone et al. (2017) fist apply this kind of architecture on

# ARCHITECTURE NON-PE PE
1 SHALLOWRNMT 41.22 41.57
2 + L-GRU 43.54 43.83
3 DTMT#1 44.28 44.41
4 DTMT#2 44.50 44.66
5 DTMT#3 44.61 44.70
6 DTMT#4 44.72 45.04

Table 6: Impact of transition depth and the positional en-
coding (PE) on NIST Chinese⇒English translation (average
BLEU scores (%) on test sets).
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Figure 3: The BLEU scores (%) of generated translations
on the merged four test sets with respect to the lengths of
source sentences. The numbers on X-axis of the figure stand
for sentences longer than the corresponding length, e.g., 40
for source sentences with > 40 words.

NMT, while there is still a large margin between this transi-
tion model and the state-of-the-art NMT models. Different
from these works, we extremely enhance the deep transi-
tion architecture and build the state-of-the-art deep transition
NMT model from three aspects: 1) fusing L-GRU and T-
GRUs, to provide a linear transformation path between con-
secutive hidden states, as well as preserving the non-linear
transformation path; 2) exploiting three deep transition mod-
ules, including the encoder transition, the query transition
and the decoder transition; and 3) investigating and combing
recent advanced techniques, including multi-head attention,
labeling smoothing, layer normalization, dropout on multi-
layers and positional encoding.

Our work is also inspired by deep stacked RNN models
for NMT (Zhou et al. 2016; Wang et al. 2017; Chen et al.
2018). Zhou et al. (2016) propose fast-forward connections
to address the notorious problem of vanishing/exploding
gradients for deep stacked RNMT. Wang et al. (2017) pro-
pose the Linear Associative Unit (LAU) to reduce the gradi-
ent path inside the recurrent units. Different from these stud-
ies, we focus on the deep transition architecture and propose
a novel linear transformation enhanced GRU (L-GRU) for
our deep transition RNMT. L-GRU is verified more effec-
tive than the LAU, although L-GRU exploits more concise
operations with the same parameter quantity to incorporate
the linear transformation of the embedding input. Inspired
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by RNMT+ (Chen et al. 2018), we investigate and combine
generally applicable training and optimization techniques,
and finally enable our DTMT to achieve superior quality to
state-of-the-art NMT systems.

Conclusion
We propose a novel and effective deep transition architec-
ture for NMT. Our empirical study on Chinese⇒English,
English⇒German and English⇒French translation tasks
shows that our DTMT can achieve remarkable improve-
ments on translation quality. Experimental results on NIST
Chinese⇒English translation show that DTMT can out-
perform the Transformer by +2.09 BLEU points even with
fewer parameters and achieve the best results ever reported
on the same dataset. On WMT14 English⇒German and
English⇒French tasks, it shows superior quality to the state-
of-the-art NMT systems (Vaswani et al. 2017; Chen et al.
2018).
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