
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Multi-Perspective Relevance Matching with
Hierarchical ConvNets for Social Media Search

Jinfeng Rao,1∗ Wei Yang,2 Yuhao Zhang,3 Ferhan Ture,4 and Jimmy Lin2

1 Facebook Conversational AI
2 David R. Cheriton School of Computer Science, University of Waterloo

3 Department of Computer Science, Stanford University
4 Comcast Applied AI Research

raojinfeng@fb.com, {w85yang,jimmylin}@uwaterloo.ca, yuhao.zhang@stanford.edu, ferhan ture@comcast.com

Abstract

Despite substantial interest in applications of neural net-
works to information retrieval, neural ranking models have
mostly been applied to “standard” ad hoc retrieval tasks
over web pages and newswire articles. This paper proposes
MP-HCNN (Multi-Perspective Hierarchical Convolutional
Neural Network), a novel neural ranking model specifically
designed for ranking short social media posts. We identify
document length, informal language, and heterogeneous rel-
evance signals as features that distinguish documents in our
domain, and present a model specifically designed with these
characteristics in mind. Our model uses hierarchical convo-
lutional layers to learn latent semantic soft-match relevance
signals at the character, word, and phrase levels. A pooling-
based similarity measurement layer integrates evidence from
multiple types of matches between the query, the social me-
dia post, as well as URLs contained in the post. Extensive
experiments using Twitter data from the TREC Microblog
Tracks 2011–2014 show that our model significantly outper-
forms prior feature-based as well as existing neural ranking
models. To our best knowledge, this paper presents the first
substantial work tackling search over social media posts us-
ing neural ranking models. Our code and data are publicly
available.1

Introduction
In recent years, techniques based on neural networks of-
fer exciting opportunities for the information retrieval (IR)
community. For example, distributed word representations
such as word2vec (Mikolov et al. 2013) provide a promising
basis to overcome the longstanding vocabulary mismatch
problem in ranking (Ganguly et al. 2015), which refers to
the phenomenon where queries and documents describe the
same concept with different words. Nevertheless, there are
still fundamental challenges to be solved. Guo et al. (2016)
pointed out that relevance matching, which is the core prob-
lem in IR, has different characteristics from the semantic
matching problem that many NLP models are designed for,
which is essentially to model how semantically close two
pieces of texts are, such as paraphrase detection (Socher et
al. 2011) and answer sentence selection (Rao, He, and Lin

∗Work done at the University of Maryland, College Park.
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/Jeffyrao/neural-tweet-search

2016). In particular, exact match signals still play a criti-
cal role in ranking, more than the role of term matching
in, for example, paraphrase detection. Furthermore, in doc-
ument ranking there is an asymmetry between queries and
documents in terms of length and the richness of signals that
can be extracted; thus, symmetric models such as Siamese
architectures may not be entirely appropriate. Nevertheless,
significant progress has been made, and many neural rank-
ing models have been recently proposed (Shen et al. 2014;
Huang et al. 2013; Pang et al. 2016; Xiong et al. 2017),
which have been shown to be effective for ad hoc retrieval.

Despite much progress, it remains unclear how neural
ranking models designed for “traditional” ad hoc retrieval
tasks perform on searching social media posts such as tweets
on Twitter. We can identify several important differences:

• Document length. Social media posts are much shorter
than web or newswire articles. For example, tweets are
limited to 280 characters. Thus, ad hoc retrieval in this
domain contains elements of semantic matching because
queries and posts are much closer in length. In partic-
ular, neural models that rely on paragraph-level interac-
tions and global matching mechanisms (Mitra, Diaz, and
Craswell 2017) are unlikely to be effective.

• Informality. Idiosyncratic conventions (e.g., hashtags),
abbreviations (“Happy Birthday” as “HBD”), typos, in-
tentional misspellings, and emojis are prevalent in social
media posts. An effective ranking model should account
for such language variations and term mismatches due to
the informality of posts.

• Heterogeneous relevance signals. The nature of social
media platforms drives users to be actively engaged in
real-world news and events; users frequently take advan-
tage of URLs or hashtags to increase exposure to their
posts. Such heterogeneous signals are not well exploited
by existing models, which can potentially boost ranking
effectiveness when modeled together with textual content.

We present a novel neural ranking model for ad hoc re-
trieval over short social media posts that is specifically de-
signed with the above characteristics in mind. Our model,
MP-HCNN (Multi-Perspective Hierarchical Convolutional
Neural Network), aims to model the relevance of a social
media post to a query in a multi-perspective manner, and
has three key features:

232

1. To cope with the informality of social media and to sup-
port more robust matching, we apply word-level as well
as character-level modeling, with URL-specific match-
ing. This allows us to exploit noisy relevance signals at
different granularities.

2. Our model consists of hierarchical convolutional layers
to capture multi-level latent soft-match signals between
query and post contents, starting from character-level and
word-level to phrase-level, and finally to sentence-level.

3. Matching of learned representations between query and
posts as well as URLs is accomplished with a similarity
measurement layer where term importance weights are
injected at each convolutional layer as priors.

Finally, all relevance signals are integrated using a fully-
connected layer to yield the final relevance ranking. Option-
ally, neural matching scores can be integrated with lexical
matching via linear interpolation to further improve ranking.

Contributions. We view our contributions as follows:

• We highlight three important characteristics of social me-
dia posts that make ad hoc retrieval over such collections
different from searching web pages and newswire articles.
Starting from these insights, we developed MP-HCNN, a
novel neural ranking model specifically designed to ad-
dress these characteristics. To our best knowledge, ours is
the first neural ranking model developed specifically for
ad hoc retrieval over social media posts.

• We evaluate the effectiveness of our MP-HCNN model
on four Twitter benchmark collections from the TREC
Microblog Tracks 2011–2014. Our model is compared to
learning-to-rank approaches as well as many recent state-
of-the-art neural ranking models that are designed for web
search and “traditional” ad hoc retrieval. Extensive ex-
periments show that our model significantly improves the
state of the art over previous approaches. Ablation studies
further confirm that these improvements come from spe-
cific components of our model designed to tackle charac-
teristics of social media posts identified above.

Related Work
Deep learning has achieved great success in many natu-
ral language processing and information retrieval applica-
tions (Sutskever, Vinyals, and Le 2014; Yin et al. 2015;
He and Lin 2016; Rao et al. 2017). Early attempts at neural
IR mainly focus on representation-based modeling between
query and document, such as DSSM (Huang et al. 2013),
C-DSSM (Shen et al. 2014), and SM-CNN (Severyn and
Moschitti 2015). DSSM is an early NN architecture for web
search that maps word sequences to character-level trigrams
using a word hashing layer, and then feeds the dense hashed
features to a multi-layer perceptron (MLP) for similarity
learning. C-DSSM extends this idea by replacing the MLP
in DSSM with a convolutional-based CNN to capture local
contextual signals from neighboring character trigrams.

More recently, interaction-based approaches (Guo et al.
2016; Xiong et al. 2017; Mitra, Diaz, and Craswell 2017;

Dai et al. 2018) have demonstrated increased effective-
ness in many ranking tasks. They operate on the similar-
ity matrix of word pairs from query and document, which
is usually computed through word embeddings such as
word2vec (Mikolov et al. 2013). The DRMM model (Guo
et al. 2016) introduces a pyramid pooling technique to con-
vert the similarity matrix to histogram representations, on
top of which a term gating network aggregates weighted
matching signals from different query terms. Inspired by
DRMM, Xiong et al. (2017) propose K-NRM, which in-
troduces a differentiable kernel-based pooling technique to
capture matching signals at different strength levels. Dai
et al. (2018) extends this idea to model soft-match sig-
nals for n-grams with an additional convolutional layer. The
DUET model (Mitra, Diaz, and Craswell 2017) combines
representation-based and interaction-based techniques with
a global component for semantic matches and a local com-
ponent for exact matches.

Our model differs from previous work in a number of
ways: (1) we motivate the need for character-level model-
ing of noisy texts and URLs in social media and provide a
tailored design for this purpose; (2) we organize convolu-
tional layers in a hierarchical manner to better model the se-
mantics of words and phrases, and found it to be more effec-
tive than previous architectures; (3) we propose a parameter-
free similarity measurement mechanism coupled with exter-
nal weights to capture multiple levels of term matching sig-
nals, which provides our model better interpretability. De-
tailed ablation experiments verify the contributions of vari-
ous components in our architecture.

Multi-Perspective Model
The core contribution of this paper is a novel neural ranking
model specifically designed for ad hoc retrieval over short
social media posts. As discussed in the introduction, our
model, MP-HCNN (Multi-Perspective Hierarchical Convo-
lutional Neural Network), has three key features: First, we
apply word-level as well as character-level modeling on
query, posts, and URLs to cope with the informality of social
media posts. Second, we exploit stacked convolutional lay-
ers to learn soft-match relevance at multiple granularities.
Finally, we learn matches between the learned representa-
tions via pooling with injected external weights. Our overall
model architecture is shown in Figure 1, and each of the
above key features are described in detail below.

Multi-Perspective Input Modeling
A standard starting point for neural text processing is to take
advantage of word embeddings, e.g., word2vec (Mikolov et
al. 2013), to encode each word. However, in the social media
domain, informal post contents contain many out of vocabu-
lary (OOV) words which can’t be found in pre-trained word
embeddings. The embeddings of OOV words are randomly
initialized by default. In fact, we observe that about 50%–
60% of words are OOV in the TREC Microblog datasets
(details in Table 2). This greatly complicates the matching
process if we simply rely on word-level semantics, thus mo-
tivating the need for character-level input modeling to cope
with noisy texts.

233

Figure 1: Overview of our Multi-Perspective Hierarchical Convolutional Neural Network (MP-HCNN), which consists of two
parallel components for word-level and character-level modeling between queries, social media posts, and URLs. The two
parallel components share the same architecture (with different parameters), which comprises hierarchical convolutional layers
for representation learning and a semantic similarity layer for multi-level matching. Finally, all relevance signals are integrated
using a fully-connected layer to produce the final relevance score.

To better understand the source of OOV words, we ran-
domly selected 500 OOV words from the vocabulary and
provide a few examples below of the major sources of OOV
occurrences in the social media domain:

1. Compounds (42.4%): chrome-os, actor-director
2. Non-English words (29.2%): emociones (Spanish, emo-

tions), desgostosa (Portuguese, disgusted)
3. Typos (17.1%): begngen (beggen), yawnn (yawn), tans-

port (transport), afternoo (afternoon), foreverrrr (forever)
4. Abbreviations (5.6%): EASP (European Association of

Social Psychology), b-day (birthday)
5. Domain-specific words (5.7%): utf-8, vlookup

As we can see above, compounds, non-English words,
and typos are the three biggest sources of OOV words.
Character-level modeling is beneficial for both the com-
pounds and typos cases.

In addition, social media posts often contain many het-
erogeneous features that can contain fruitful relevance sig-
nals, such as mentions, hashtags, and external URL links. An
analysis of the TREC Microblog Track 2011–2014 datasets
shows that around 50% of tweets contain one or more URLs.
More detailed statistics can be found in Table 2. In fact, by
taking a closer look at real data, we see that many URL links
can be fuzzy matched to query terms. We provide one ex-
ample in Table 1. For those posts without URLs, we add a
placeholder symbol “<URL>”. Note that while the HTML
pages referenced by the URLs are another obvious source
of relevance signals, we do not consider them in our model

Topic 1: BBC world service cuts
Tweet BBC slashes online budget by 25% will

cut 360 employees and 200 websites #bbcnews.
URL http://bbc-world-service-to-cut-staff.html

Table 1: Example query-post pair retrieved by topic 1 from
the TREC Microblog 2011 dataset.

because many of those URLs are no longer accessible, and
noisy HTML documents require additional preprocessing,
which is beyond the scope of this paper.

To tackle the language variation issues discussed above
and to exploit URL information, we consider multiple inputs
for relevance modeling: (1) query and post at word-level;
(2) query and post at character-level; (3) query and URL
at character-level. For character-level modeling, we segment
the query and post contents as well as the URL link to a se-
quence of character trigrams (e.g., “hello” to {#he, hel, ell,
llo, lo#}), which has been shown to yield good effectiveness
in capturing morphological variations (Huang et al. 2013).
We adopt the same architecture to capture word-level seman-
tic and character-level matching signals, discussed next.

Hierarchical Representation Learning
Given a query q and a document d, the textual match-
ing component aims to learn a relevance score f(q, d) us-
ing the query terms {wq

1, w
q
2, ..., w

q
n} and document terms

{wd
1 , w

d
2 , ..., w

d
m}, where n and m are the number of terms

in q and d, respectively. To be clear, “document” can either

234

refer to a social media post or an URL, and “term” refers
to either words or character trigrams. One important novel
aspect of our model is relevance modeling from multiple
perspectives, and our architecture exhibits symmetry in the
word- and character-level modeling (see Figure 1). Thus, for
expository convenience, we use “document” and “term” in
the generic sense above. We first employ an embedding layer
to convert each term into a L-dimensional vector represen-
tation, generating a matrix representation for the query Q
and document D, where Q ∈ Rn×L and D ∈ Rm×L. In the
following, we introduce our representation learning method
with hierarchical convolutional neural networks.

A convolutional layer applies convolutional filters to the
text, which is represented by an embedding matrix M (Q
or D). Each filter is moved through the input embedding in-
crementally as a sliding window (with window size k) to
capture the compositional representation of k neighboring
terms. Assuming a convolution layer has F filters, then this
CNN layer produces output matrix Mo ∈ R∥M∥×F with
O(F × k × L) parameters.

We then stack multiple convolutional layers in a hierar-
chical manner to obtain higher-level k-gram representations.
For notational simplicity, we drop the superscript o from all
output matrices and add a superscript h to denote the out-
put of the h-th convolutional layer. Stacking N CNN layers
therefore corresponds to obtaining the output matrix of the
h-th layer Mh ∈ R∥M∥×Fh

via:

Mh = CNNh(Mh−1), h = 1, . . . , N,

where Mh−1 is the output matrix of the (h− 1)-th convolu-
tional layer. Note that M0 = M denotes the input matrix (Q
or D) obtained directly from the word embedding layer, and
the parameters of each CNN layer are shared by the query
and document inputs.

Intuitively, consecutive convolutional layers allow us to
obtain higher-level abstractions of the text, starting from
character-level or word-level to phrase-level and eventually
to sentence-level. A single CNN layer is able to capture the
k-gram semantics from the input embeddings, and two CNN
layers together allow us to expand the context window to up
to 2k−1 terms. Generally speaking, the deeper the convolu-
tional layers, the wider the context considered for relevance
matching. Empirically, we found that a filter size k = 2
for word-level inputs and k = 4 for character-level inputs
work well. The number of convolutional layers N was set
to 4. This setting is reasonable as it enables us to gradually
learn the representations of word-level and character-level
n-grams of up to O(N × k) length. Since most queries and
documents in the social media domain are either shorter or
not much longer than this length, we can regard the output
from the last CNN layer as an approximation of sentence
representations.

An alternative to our deep hierarchical design is a wide ar-
chitecture, which reduces the depth but expands the width of
the network by concatenating multiple convolutional layers
with different filter sizes k in parallel to learn variable-sized
phrase representations. However, such a design will require
quadratically more parameters and be more difficult to learn

than our approach. More specifically, our deep model com-
prises O(N×F×kL) parameters with N CNN layers, while
a wide architecture with the same representation window
will need O(F×(kL+2kL+...+NkL)) = O(N2×F×kL)
parameters. The reduced parameters in our approach mainly
come from representation reuse at each CNN layer, which
also generalizes the learning process by sharing representa-
tions between successive layers.

Similarity Measurement and Weighting
To measure the similarity between the query and the docu-
ment, we match the query with the document at each convo-
lutional layer by taking the dot product between the query
representation matrix Mq and the document representation
matrix Md:

S = MqMd
T ,S ∈ Rn×m,

S̃i,j = softmax(Si,j) =
eSi,j∑m
k=1 e

Si,k

where Si,j can be considered the similarity score by match-
ing the query phrase vector Mq[i] with the document phrase
vector Md[j]. Since the query and document share the same
convolutional layers, similar phrases will be placed closer
together in a high-dimensional embedding space and their
product will produce larger scores. The similarity matrix
S is further normalized to S̃ with range [0, 1] through a
document-side softmax function.

We then apply max and mean pooling to the similarity
matrix to obtain discriminative feature vectors:

Max(S̃) = [max(S̃1,:), ...,max(S̃n,:)],Max(S̃) ∈ Rn;

Mean(S̃) = [mean(S̃1,:), ...,mean(S̃n,:)],Mean(S̃) ∈ Rn;

Each score generated from pooling can be viewed as one
piece of matching evidence for a specific query term or
phrase to the document, and its value denotes the importance
of the relevance signal.

To measure the relative importance of different query
terms and phrases, we inject external weights as prior in-
formation by multiplying the score after pooling with the
weight of that specific query term or phrase. These are pro-
vided as feature inputs to the subsequent learning-to-rank
layer, denoted by Φ:

Φ = {weights(q)⊙ Max(S̃), weights(q)⊙ Mean(S̃)},

where ⊙ is an element-wise product between the weights
of query terms or phrases with the pooling scores and
weights(q)[i] denotes the weight of the i-th term or phrase
in the query. We choose inverse document frequency (IDF)
as our weighting measure; a higher IDF weight implies rarer
occurrence in the collection and thus larger discriminative
power. This weighting method also reduces the impact of
high matching scores from common words like stopwords.

Our similarity measurement layer has two important prop-
erties. First, all the layers, including matching, softmax,
pooling, and weights, have no learnable parameters. Sec-
ond, the parameter-free nature enables our model to be
more interpretable and to be more robust from overfitting.

235

By matching query phrases with document phrases in a
joint manner, we can easily track which matches contribute
more to the final prediction. This greatly increases the in-
terpretability of our model, an important benefit as this is-
sue has become a prevalent concern given the complexity of
neural models for IR and NLP applications (Li et al. 2015).

Evidence Integration
Given similarity features learned from word-level Φw and
character-level Φc, we employ a multi-layer perceptron
(MLP) with a ReLU activation in between as our learning-
to-rank module:

o = softmax (MLP(Φw ⊔ Φc))

where ⊔ is a concatenation operation and the softmax func-
tion normalizes the final prediction to a similarity vector o
with its values between 0 and 1. The training goal is to min-
imize the negative log likelihood loss L summed over all
samples (oi, yi): L = −

∑
(oi,yi)

log oi[yi], where yi is the
annotation label of sample i.

Interpolation with Language Model
Various studies have shown that neural ranking models
are good at capturing soft-match signals (Guo et al. 2016;
Xiong et al. 2017). However, are exact match signals still
needed for neural methods? We examine this hypothesis by
adopting a commonly-used linear interpolation method to
combine the match scores of NN-based models with lan-
guage model scores between a (query, doc) pair:

Score(q, d) = λ · NN(q, d) + (1− λ) · LM(q, d). (1)

We use query-likelihood (QL) (Ponte and Croft 1998) as the
language model score here. The interpolation technique is
applied to our multi-perspective model as well as other neu-
ral models we use as baselines in this paper. We report both
effectiveness with and without interpolation in the experi-
mental section.

Experimental Setup
Dataset. To evaluate our proposed model for social me-
dia search, we choose four Twitter test collections from the
TREC Microblog Tracks in 2011, 2012, 2013, and 2014.
Each dataset contains about 50 queries. Following standard
experimental procedures (Ounis et al. 2011), we evaluate our
models in a reranking task, using as input the top 1000 re-
trieved documents (tweets) from a bag-of-words query like-
lihood (QL) model using the TREC Microblog Track API.2
Note that the API returns less than 1000 tweets for some
queries. The statistics of the four datasets are shown in Ta-
ble 2. Since most URLs in the tweets are shortened, for ex-
ample, given http://zdxabf we recover the original URL from
redirection for character-level modeling.

We use the Stanford Tokenizer tool3 to segment the re-
trieved tweets into token sequences to serve as model input.

2https://github.com/lintool/twitter-tools
3https://nlp.stanford.edu/software/tokenizer.shtml

Test Set 2011 2012 2013 2014
query topics 49 60 60 55
query-doc pairs 39,780 49,879 46,192 41,579
relevant docs 1,940 4,298 3,405 6,812
unique words 21,649 27,470 24,546 22,099
OOV words 13,067 17,190 15,724 14,331
URLs 20,351 25,405 23,100 20,885
hashtags 6,784 8,019 7,869 7,346

Table 2: Statistics of the TREC Microblog Track datasets.

Non-ASCII characters are removed. We run four sets of ex-
periments, where each of the four datasets is used for eval-
uation, with the other three used for training (e.g., train on
TREC 2011–2013, test on TREC 2014). In each experiment,
we sample 15% of the training queries as the validation set.
Following the official track guidelines (Ounis et al. 2011),
we adopt mean average precision (MAP) and precision at 30
(P@30) as our evaluation metrics. The relevance judgments
are made on a three-point scale (“not relevant”, “relevant”,
“highly relevant”) and we treat both higher grades as rele-
vant, per Ounis et al. (2011).
Baselines. We compare our model to a number of non-neural
baselines as well as recent neural ranking models designed
for “standard” ad hoc retrieval tasks on web and newswire
documents (we call these the neural baselines).

The non-neural baselines include the most widely-used
language model and pseudo-feedback methods: Query Like-
lihood (QL) (Ponte and Croft 1998) and RM3 (Lavrenko and
Croft 2001). We also compare to LambdaMART (Burges
2010), the learning-to-rank model (L2R) that won the Ya-
hoo! Learning to Rank Challenge (Burges et al. 2011). We
designed three sets of features: (1) Text-based: In addi-
tion to QL, we compute another four overlap-based mea-
sures between each query-tweet pair: word overlap and IDF-
weighted word overlap between all words and only non-
stopwords, from Severyn and Moschitti (2015); (2) URL-
based: whether the tweet contains URLs and the fraction
of query terms that matched parts of URLs; (3) Hashtag-
based: whether the tweet contains hashtags and the fraction
of query terms that matched hashtags.

The neural baselines include recent state-of-the-art neural
ranking models from the information retrieval literature. We
compared to three sets of neural baselines:

• Character-based: DSSM (Huang et al. 2013), C-DSSM
(Shen et al. 2014), DUET (Mitra, Diaz, and Craswell
2017)

• Word-based: DRMM (Guo et al. 2016), K-NRM (Xiong
et al. 2017)

• Word ngram-based: PACRR (Hui et al. 2017)

Implementation Details. We apply the same padding strat-
egy to the four datasets based on the longest (query, tweet)
length in the datasets. The URLs are truncated and padded
to 120 characters. Mentions are removed and hashtags are
treated as normal words (i.e., “#bbc” to “bbc”). The IDF
weights of word and character k-grams are computed from

236

ID
Model 2011 2012 2013 2014

Metric MAP P30 MAP P30 MAP P30 MAP P30
Non-Neural Baselines

1 QL 0.3576 0.4000 0.2091 0.3311 0.2532 0.4450 0.3924 0.6182
2 RM3 0.38241 0.42111 0.23421 0.3452 0.27661,2 0.47331 0.44801,3 0.6339
3 L2R (all) 0.38451 0.4279 0.22911 0.3559 0.2477 0.4617 0.3943 0.6200

(text) 0.3547 0.4027 0.2072 0.3294 0.2394 0.4456 0.3824 0.6091
(text+URL) 0.3816 0.4272 0.2317 0.3667 0.2489 0.4506 0.3974 0.6206

(text+hashtag) 0.3473 0.4020 0.2039 0.3175 0.2447 0.4533 0.3815 0.5939
Neural Baselines

4 DSSM (2013) 0.1742 0.2340 0.1087 0.1791 0.1434 0.2772 0.2566 0.4261
5 C-DSSM (2014) 0.0887 0.1122 0.0803 0.1525 0.0892 0.1717 0.1884 0.2752
6 DUET (2017) 0.1533 0.2109 0.1325 0.2356 0.1380 0.2528 0.2680 0.4091
7 DRMM (2016) 0.2635 0.3095 0.1777 0.3169 0.2102 0.4061 0.3440 0.5424
8 K-NRM (2017) 0.2519 0.3034 0.1607 0.2966 0.1750 0.3178 0.3472 0.5388
9 PACRR (2017) 0.2856 0.3435 0.2053 0.3232 0.2627 0.4872 0.3667 0.5642

Neural Baselines with Interpolation
10 DUET+ 0.3576 0.4000 0.22431 0.36441 0.27791,3 0.48781 0.42191,3 0.64671

11 DRMM+ 0.3477 0.4034 0.2213 0.3537 0.2639 0.4772 0.4042 0.6139
12 K-NRM+ 0.3576 0.4000 0.22771 0.35201 0.27211,3 0.4756 0.41371,3 0.63581

13 PACRR+ 0.3810 0.42861 0.23111 0.35761 0.28031,3 0.49441 0.41401,3 0.63581

Our Model
14 MP-HCNN 0.3832 0.4075 0.23371 0.36891 0.28181,3 0.52221,3 0.43041,3 0.6297
15 MP-HCNN+ 0.40431,2,3

12 0.42931
12 0.24601,3

12,13 0.37911,2,3
12,13 0.28961,3

12 0.52941,2,3
12,13 0.44201,3

12,13 0.6394
(+13.1%) (+7.3%) (+17.6%) (+14.5%) (+14.3%) (+18.9%) (+12.6%) (+3.4%)

Table 3: Main results on the TREC Microblog 2011–2014 datasets. Rows are numbered in the first column, where each repre-
sents a model or a contrastive condition. The last row shows the relative improvement against QL. The best numbers on each
dataset are in bold. Superscripts and subscripts indicate the row indexes for which a metric difference is statistically significant
at p < 0.05. Only methods 1–3 and 12–13 are compared with all other methods in the significance tests.

the Tweets2013 collection (Lin and Efron 2013), which con-
sists of 243 million tweets crawled from Twitter’s public
sample stream between February 1 and March 31, 2013.

To enable fair comparisons with the baselines, we adopt
the same training strategies in all our experiments, including
embeddings, optimizer, and hyper-parameter settings. We
used trainable word2vec embeddings (Mikolov et al. 2013)
with a learning rate of 0.05 and the SGD optimizer. We ran-
domly initialize the embedding of OOV words and character
trigrams between [0, 0.1]. The number of convolutional lay-
ers N is set to 4. We tune the number of convolutional fil-
ters and batch size in [256, 128, 64] and the dropout rate be-
tween 0.1 and 0.5. The interpolation parameter λ (with the
QL score) is tuned after the neural network model converges.
Our code and data are publicly available,4 while other neural
baselines can be found in the MatchZoo library.5

Results
Our main results are shown in Table 3. Rows are numbered
in the first column, where each represents a model or a con-
trastive condition. We compare our model to three sets of
baselines: non-neural, neural, and interpolation. Interpola-
tion methods are denoted by a symbol “+” at the end of

4https://github.com/Jeffyrao/neural-tweet-search
5https://github.com/faneshion/MatchZoo

the original model name, such as DUET+. We run statistical
significance tests using Fisher’s two-sided, paired random-
ization test (Smucker, Allan, and Carterette 2007) against
the three non-neural baselines: QL, RM3, and L2R (with
all features), and the best neural baselines: K-NRM+ and
PACRR+. Superscripts and subscripts indicate the row in-
dexes for which a metric difference is statistically significant
at p < 0.05.

From the first block “Non-Neural Baselines” in Table 3,
we can see that RM3 significantly outperforms QL on
all datasets, demonstrating its superior effectiveness. How-
ever, RM3 requires an additional round of retrieval to se-
lect terms for query expansion, and thus is substantially
slower. LambdaMART achieves effectiveness on par with
RM3 when using all the hand-crafted features. From its con-
trastive variant with only text-based features, we can see that
the overlap-based features provide little gain over QL. Com-
paring the rows “(text+URL)” and “(text+hashtag)” to row
“(text)”, adding URL-based features leads to a significant
improvement over text-based features, while hashtag-based
features seem to bring fewer benefits. This confirms our ob-
servation (cf. Table 2) that URLs appear frequently in tweets
and contain meaningful relevance signals.

Looking at the second block “Neural Baselines”, we find
that all the neural methods perform worse than the QL base-
line, showing that existing neural ranking models fail to

237

Setting 2011 2012 2013 2014
Metric MAP P30 MAP P30 MAP P30 MAP P30
MP-HCNN 0.3832 0.4075 0.2337 0.3689 0.2818 0.5222 0.4304 0.6297
− mean pooling 0.3687⋆ 0.4054 0.2251 0.3480 0.2766 0.5000 0.3907⋆ 0.5897⋆
− max pooling 0.0982⋆ 0.1320⋆ 0.0767⋆ 0.1243⋆ 0.0920⋆ 0.1706⋆ 0.1934⋆ 0.2176⋆
− IDF weighting 0.3511⋆ 0.3714⋆ 0.2119⋆ 0.3452 0.2717⋆ 0.4967⋆ 0.3992 0.6097⋆
− word module 0.1651⋆ 0.1293⋆ 0.0762⋆ 0.1119⋆ 0.0987⋆ 0.1517⋆ 0.1849⋆ 0.2048⋆
− URL char rep. 0.3594⋆ 0.3707⋆ 0.2131⋆ 0.3333⋆ 0.2797⋆ 0.4989⋆ 0.4037⋆ 0.6085⋆
− doc char rep. 0.3603⋆ 0.3721⋆ 0.2188⋆ 0.3537⋆ 0.2757⋆ 0.5122 0.4012 0.6103
− all char rep. 0.3528⋆ 0.3709⋆ 0.2087⋆ 0.3271⋆ 0.2718⋆ 0.5011⋆ 0.4050⋆ 0.6091⋆

Table 4: Ablation Study. ⋆ denotes scores significantly lower than the MP-HCNN model at p < 0.05.

adapt to tweet search. In fact, all the character-based ap-
proaches (DSSM, C-DSSM, DUET) are consistently worse
than the word-based approaches (DRMM, K-NRM). This is
likely attributable to the fact that all word-based NN mod-
els use pre-trained word vectors that encode more seman-
tics than a random initialization of character trigram embed-
dings, suggesting that the Twitter datasets are not sufficient
to support learning character-based representations from
scratch. Particularly, C-DSSM suffers more than DSSM,
showing that a more complex model leads to lower effec-
tiveness in a data-poor setting.

Comparing word-based models (DRMM, K-NRM) with
ngram-based models (PACRR), we see that PACRR per-
forms much better by modeling ngram semantics. In addi-
tion, the small parameter space of DRMM (1541 parameters
in total) suggests that the low effectiveness of neural base-
lines is not simply due to a shortage of data. In comparison,
our MP-HCNN achieves high effectiveness on all datasets
for both metrics, beating all neural baselines by a large mar-
gin. We believe that effectiveness gains mainly come from
two aspects: 1) Unlike all neural baselines that model the
similarity matrix computed from the product of query and
document embeddings, our approach directly models the
raw texts and better preserves semantic representations af-
ter hierarchical convolutional operations; 2) Character-level
modeling provides additional relevance signals.

In the third block “Interpolation Baselines”, we observe
that simple interpolation with QL boosts the effectiveness of
all neural baselines dramatically, showing that exact match
signals are complementary to the soft match signals captured
by NN methods. This observation also holds for our MP-
HCNN+, although the margin of improvement is smaller due
to the effectiveness of MP-HCNN alone. The best results on
the TREC Microblog 2011–2013 datasets are obtained by
MP-HCNN+, with an average of 14.3% relative improve-
ment against QL (shown in the last row). Also, MP-HCNN+
is significantly better than all the best baselines in most set-
tings, except for TREC 2014, where the QL baseline already
achieves fairly high effectiveness in absolute terms, limiting
the space for potential improvement.

Ablation Study
To better understand the contribution of each module in our
proposed model, we perform an ablation study on the base
MP-HCNN model, removing each component step by step.

0 1 2 3 4

0.36
0.37
0.38

20
11

1 2 3 4

0.215
0.22

0.225

20
12

0 1 2 3 4
0.27

0.275
0.28

20
13

0 1 2 3 4

0.405
0.41

0.415

20
14

Figure 2: MAP with different convolutional depth N on
TREC 2011–2014 datasets.

Here, we aim to study how the semantic-level, character-
level, and weighting modules contribute to model effective-
ness. Results on the TREC 2011–2014 datasets are shown
in Table 4, with each row denoting the removal of a specific
module. For example, the row “− URL char rep.” represents
removing the URL modeling module. The ⋆ symbol denotes
that the model’s effectiveness in an ablation setting is signif-
icantly lower than MP-HCNN at p < 0.05.

From the first two rows “− mean/max pooling”, we can
see that removing max pooling leads to a significant effec-
tiveness drop while removing mean pooling only results in a
minor reduction. Also, removing the IDF weights makes the
results consistently and significantly worse across all four
datasets, which confirms that injecting external weights is
important for tweet search. It is also no surprise that the
complete word-level module is essential to capture rele-
vance, as shown in the table.

Turning our attention to the last three rows, we observe
that removing the character representations of URLs or doc-
uments both lead to significant drops across all datasets, with
larger drops when URLs are removed. This suggests that
URLs provide more relevance signals than character-level
document modeling. Taking away the entire character-level
module causes slightly more effectiveness loss. To conclude,
the word-level matching module contributes the most effec-
tiveness, but the character-level matching module still pro-
vides complementary and significantly useful signals. How-
ever, given the low effectiveness of the character-based mod-
els in Table 3, we add a caveat: with more training data or
pre-trained character embeddings, we would expect the ben-
efits of the character-level matching module to increase.

We also examine how the depth of the hierarchical convo-
lutional layers affects model effectiveness. Figure 2 shows

238

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6
2011: MP-HCNN vs. QL

1

2

3 4

5

6

7

8

9

10

11 12

13

14

15

17

19

20

21

22

23

24

25 26
27

28
29

30
31

32 33

34

35
36 37

38

39

40
41

42
43

44

45

46
47

48

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6
2011: MP-HCNN+ vs. QL

1

2

3

4

5
6

7

8

9

10

11 12

13

14

15

17

19

20

21
22

23 24 25 26

27

28
29

30

31 32 33

34

35
36 37

38

39

40

41
42

43

44
45

46

47

48

Figure 3: Per-topic MAP differences of MP-HCNN and MP-HCNN+ vs. QL on TREC 2011.

ID Sample Tweet Label
Score(Rank)

QL MP-HCNN
1 #ps3 best sellers: fifa soccer 11 ps3 #cheaptweet https://www.amazon.com/fifa-soccer-11-playstation-3 I 7.33(#54) 0.85(#1)
2 qatar ’s 2022 fifa world cup stadiums: https://wordlesstech.com/qatars-2022-fifa-world-cup-stadiums/ R 10.58(#2) 0.41(#105)

3
2022 world cup could be held at end of year: fifa : lausanne switzerland the 2022 world cup in qatar:

http://www.reuters.com/article/us-soccer-world-blatter
R 11.25(#1) 0.31(#127)

Table 5: Sample analysis of the worst-performing topic 2 (“2022 fifa soccer”). I denotes irrelevant and R denotes relevant.

effectiveness in terms of MAP with different convolutional
depth N on the TREC 2011–2014 datasets. A setting of
N = 0 means that there are no convolutional layers on top
of the embedding layer, and the prediction is purely based
on matching evidence at the word-level. A larger value of N
indicates that longer phrases are captured and represented.
We can clearly see that there is a consistent gain in effec-
tiveness with increasing depths on the datasets, except for
N = 3 on TREC 2011. Here, the improvement at N = 2 is
already quite close to the upper bound at N = 4. This sug-
gests that modeling short phrases brings immediate benefit
while the inclusion of longer phrases only marginally boosts
overall effectiveness. In summary, this ablation experiment
clearly shows the value of our hierarchical design in seman-
tic modeling at the phrase level.

Error Analysis
So far, we have shown that our weighted similarity measure-
ment component, as well as the URL matching and phrase
matching components (enabled by the hierarchical archi-
tecture), are crucial to our model’s effectiveness. However,
we still lack knowledge about the following two questions:
(1) What are the common characteristics of well-performing
topics, and how do the different components contribute to
overall effectiveness? (2) When does our model fail, and
how can we further improve the model? To answer these
questions, we provide additional qualitative and quantita-
tive analyses over sample tweets from well-performing and
poor-performing topics.

In Figure 3, we visualize per-topic differences in terms of
MAP for MP-HCNN and MP-HCNN+ against the QL base-
line on the TREC 2011 dataset. Since other datasets exhibit
similar trends, we omit their figures here. Overall, we see
that the MP-HCNN model shows improvements for the ma-
jority of topics. In total, MP-HCNN wins on 26 topics and
loses on 13 topics out of 49 topics. The average margin of
improvement is also greater than the losses. With the inter-
polation technique, MP-HCNN+ is able to smooth out the
errors in many poor-performing topics, such as topic 5 “nist
computer security”, resulting in more stable improvements.

In addition, we select the five best-performing topics (15,

Category Percentage (%)
Exact word match 100
Exact phrase match 44
Partial paraphrase match 59
Partial URL match 29

Table 6: Matching evidence breakdown by category based
on manual analysis of the top 100 tweets for the five best-
performing topics.

17, 39, 91, 105) from the TREC 2011 and 2012 datasets. For
each topic, we select the top 20 tweets with the highest MP-
HCNN prediction scores for analysis. We manually classify
the matching evidence of the 100 selected tweets into the fol-
lowing categories (a tweet can satisfy multiple categories):
1) exact word match; 2) exact phrase match; 3) partial para-
phrase match and 4) partial URL match, where partial match
means that part of the tweet or URL matches query terms.

Table 6 provides a breakdown of matching evidence by
category. We can see that all tweets have exact word matches
to the queries, and partial paraphrase matches occur more
frequently than exact phrase matches, suggesting that our
hierarchical architecture with embedding inputs is able to
capture those soft semantic match signals. In addition, par-
tial URL matches make up another big portion, affirming the
need for character-level URL modeling.

To gain additional insights into how our model fails,
we analyze some sample tweets for the worst-performing
topic 2 (“2022 fifa soccer”), shown in Table 5. Column “La-
bel” represents whether the tweet is relevant to the query:
“R” denotes relevant and “I” denotes irrelevant. Column
“Score(Rank)” shows the prediction scores and the rank po-
sition of sample tweets by each method (QL or MP-HCNN).

Looking at the first tweet, it obtains the highest score by
MP-HCNN due to the phrase match “fifa soccer” (a match
score of 0.89 from the softmax at the similarity measurement
layers) for the content and URL. However, the MP-HCNN
fails to understand that “fifa soccer 11” refers to a video
game on the PS3, showing the limits of a matching-based

239

algorithm for entity disambiguation. In contrast, though the
second and third tweets look more relevant to the query, they
are assigned much lower scores by the MP-HCNN. This
is because the query term “2022” is an out-of-vocabulary
word, and thus its matching evidence is greatly reduced due
to the random initializations of OOV word embeddings. The
semantic match of the phrase “world cup” to the query has a
low match score of 0.36, which doesn’t help boost its overall
relevance.

In summary, results from these manual analyses confirm
the quantitative results from the previous sections. Exact
term match remains critical to relevance modeling, while
soft matches that incorporate phrases and semantic similar-
ities make substantial contributions as well. Furthermore,
although URLs play a smaller role in matching, they pro-
vide complementary signals. Though soft-match signals can
be led astray, as our error analysis shows, overall they help
more than they hurt.

Conclusions
To conclude, this paper presents, to our knowledge, the first
substantial work on neural ranking models for ad hoc re-
trieval on social media. We have identified three main char-
acteristics of social media posts that make our problem dif-
ferent from “standard” document ranking over web pages
and newswire articles. Our model is specifically designed
to cope with each of these issues, capturing multiple sig-
nals from queries, social media posts, as well as URLs con-
tained in the posts, at the character-, word-, and phrase-
levels. Extensive experiments demonstrate the effectiveness
of our model and ablation studies verify the importance of
each model component, suggesting that our customized ar-
chitecture indeed captures the characteristics of our domain-
specific ranking challenge.

References
Burges, C.; Svore, K.; Bennett, P.; Pastusiak, A.; and Wu,
Q. 2011. Learning to rank using an ensemble of lambda-
gradient models. In Proceedings of the Learning to Rank
Challenge, 25–35.
Burges, C. J. 2010. From ranknet to lambdarank to lamb-
damart: An overview. Learning 11(23-581).
Dai, Z.; Xiong, C.; Callan, J.; and Liu, Z. 2018. Convolu-
tional neural networks for soft-matching n-grams in ad-hoc
search. In WSDM, 126–134.
Ganguly, D.; Roy, D.; Mitra, M.; and Jones, G. J. F. 2015.
Word embedding based generalized language model for in-
formation retrieval. In SIGIR, 795–798.
Guo, J.; Fan, Y.; Ai, Q.; and Croft, W. B. 2016. A deep
relevance matching model for ad-hoc retrieval. In CIKM,
55–64.
He, H., and Lin, J. 2016. Pairwise word interaction modeling
with deep neural networks for semantic similarity measure-
ment. In NAACL-HLT, 937–948.
Huang, P.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In CIKM, 2333–2338.

Hui, K.; Yates, A.; Berberich, K.; and de Melo, G. 2017.
Pacrr: A position-aware neural ir model for relevance match-
ing. In EMNLP, 1060–1069.
Lavrenko, V., and Croft, W. B. 2001. Relevance based lan-
guage models. In SIGIR, 120–127.
Li, J.; Chen, X.; Hovy, E.; and Jurafsky, D. 2015.
Visualizing and understanding neural models in nlp.
arXiv:1506.01066.
Lin, J., and Efron, M. 2013. Overview of the TREC-2014
microblog track. In TREC.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Mitra, B.; Diaz, F.; and Craswell, N. 2017. Learning to
match using local and distributed representations of text for
web search. In WWW, 1291–1299.
Ounis, I.; Macdonald, C.; Lin, J.; and Soboroff, I. 2011.
Overview of the trec-2011 microblog track. In TREC, vol-
ume 32.
Pang, L.; Lan, Y.; Guo, J.; Xu, J.; Wan, S.; and Cheng, X.
2016. Text matching as image recognition. In AAAI, 2793–
2799.
Ponte, J. M., and Croft, W. B. 1998. A language modeling
approach to information retrieval. In SIGIR, 275–281.
Rao, J.; Ture, F.; He, H.; Jojic, O.; and Lin, J. 2017. Talk-
ing to your tv: Context-aware voice search with hierarchical
recurrent neural networks. In CIKM, 557–566.
Rao, J.; He, H.; and Lin, J. 2016. Noise-contrastive esti-
mation for answer selection with deep neural networks. In
CIKM, 1913–1916.
Severyn, A., and Moschitti, A. 2015. Learning to rank short
text pairs with convolutional deep neural networks. In SI-
GIR, 373–382.
Shen, Y.; He, X.; Gao, J.; Deng, L.; and Mesnil, G. 2014.
Learning semantic representations using convolutional neu-
ral networks for web search. In WWW, 373–374.
Smucker, M. D.; Allan, J.; and Carterette, B. 2007. A
comparison of statistical significance tests for information
retrieval evaluation. In CIKM, 623–632.
Socher, R.; Huang, E.; Pennin, J.; Manning, C.; and Ng,
A. 2011. Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In NIPS, 801–809.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In NIPS, 3104–
3112.
Xiong, C.; Dai, Z.; Callan, J.; Liu, Z.; and Power, R. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In
SIGIR, 55–64.
Yin, W.; Schütze, H.; Xiang, B.; and Zhou, B. 2015. Abcnn:
Attention-based convolutional neural network for modeling
sentence pairs. arXiv:1512.05193.

240

