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Abstract

Without real bilingual corpus available, unsupervised Neu-
ral Machine Translation (NMT) typically requires pseudo
parallel data generated with the back-translation method for
the model training. However, due to weak supervision, the
pseudo data inevitably contain noises and errors that will be
accumulated and reinforced in the subsequent training pro-
cess, leading to bad translation performance. To address this
issue, we introduce phrase based Statistic Machine Transla-
tion (SMT) models which are robust to noisy data, as pos-
terior regularizations to guide the training of unsupervised
NMT models in the iterative back-translation process. Our
method starts from SMT models built with pre-trained lan-
guage models and word-level translation tables inferred from
cross-lingual embeddings. Then SMT and NMT models are
optimized jointly and boost each other incrementally in a uni-
fied EM framework. In this way, (1) the negative effect caused
by errors in the iterative back-translation process can be al-
leviated timely by SMT filtering noises from its phrase ta-
bles; meanwhile, (2) NMT can compensate for the deficiency
of fluency inherent in SMT. Experiments conducted on en-fr
and en-de translation tasks show that our method outperforms
the strong baseline and achieves new state-of-the-art unsuper-
vised machine translation performance.

1 Introduction
Recent years have witnessed the rise and success of Neu-
ral Machine Translation (NMT) (Sutskever, Vinyals, and
Le 2014; Bahdanau, Cho, and Bengio 2014; Luong, Pham,
and Manning 2015; Wu et al. 2016; Vaswani et al. 2017;
Hassan et al. 2018). However, NMT relies heavily on large
in-domain parallel data, resulting in poor performance on
low-resource language pairs (Koehn and Knowles 2017).
For some low-resource pairs without any bilingual corpus,
how to train NMT models with only a monolingual corpus
is a popular and interesting topic.

Existing methods for unsupervised machine translation
(Artetxe et al. 2017; Lample, Denoyer, and Ranzato 2017;
Yang et al. 2018; Lample et al. 2018) are mainly the mod-
ifications of encoder-decoder schema. In their work, source
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Figure 1: The effect of noisy training data. The first training
sample contains the noise (“malade” in French means “ill”,
not “ill-fated”), leading to the wrong test result (sys).

sentences in two languages are mapped into the same latent
space with a shared encoder, which is expected to be the in-
ternal information representation irrelevant to the languages
themselves. From that target sentences are generated by a
shared or different decoders. Some of them also use denois-
ing auto-encoders (Vincent et al. 2010) and adversarial train-
ing. Despite the differences in structures and training meth-
ods, they reach a consensus to use the pseudo parallel data
generated iteratively with the back-translation method (Sen-
nrich, Haddow, and Birch 2016; Zhang et al. 2018a) to train
their unsupervised NMT models, i.e. they use monolingual
data in the target language and a target-to-source translation
model to generate source sentences, then use the pseudo par-
allel data of generated sources and real targets to train the
source-to-target model, and vice versa.

However, since the pseudo data are generated by unsu-
pervised models, random errors and noises are inevitably
introduced, such as redundant or unaligned words deviat-
ing from the meaning of source sentences. Due to the lack
of supervision, those infrequent errors will be accumulated
and reinforced by NMT models into frequent patterns dur-
ing the training iterations, leading to bad translation perfor-
mance. For instance in Figure 1, the French word “malade”
is mistakenly translated into the English word “ill-fated” in
the first training sample. With strong abilities to identify and
memorize patterns, NMT models mistakenly translate this
word into “ill-fated” when “old” (similar to “grandmother”
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in the first training sample) occurs in the test. Even so, there
are also many good translation patterns (such as “malade”
→ “ill” or “sick” in the second and third training samples),
which could have been extracted in time to guide the NMT
models into the correct training direction. The extraction
and guidance can be well carried out by Statistical Machine
Translation (SMT). As is pointed out by Khayrallah and
Koehn (2018), SMT performs better than NMT in tackling
noisy data by constructing a strong phrase table with good
and frequent translation patterns and filtering out infrequent
errors and noises. This gives the motivation that if we in-
corporate SMT in the training process, unsupervised NMT
could benefit from the robustness of SMT to noisy data.

In this paper, we propose to leverage SMT to denoise and
guide the training of unsupervised NMT models in the itera-
tive back-translation process. Different from previous work
(He et al. 2016; Tang et al. 2016; Wang et al. 2017) intro-
ducing SMT into NMT by changing model structures in su-
pervised scenarios, we adopt the framework of posterior reg-
ularization (Ganchev et al. 2010) to leave model structures
unchanged. Our method starts from initial SMT models built
with pre-trained language models and word-level translation
tables inferred from cross-lingual embeddings. Then SMT
models and NMT models are trained jointly in a unified Ex-
pectation Maximization (EM) training framework. In each
iteration, as desired distributions, SMT models are expected
to correct NMT models timely with denoised pseudo data
generated in a constrained search space of reliable trans-
lation patterns. Based on that, enhanced NMT models can
generate better pseudo data for SMT to extract phrases of
higher quality, so that they can benefit from each other incre-
mentally. In this way, infrequent errors in NMT models can
be eliminated with the constraints exerted by SMT features,
while NMT can compensate for the deficiency in smooth-
ness inherent in SMT models. Experiments conducted on
en-fr and en-de translation tasks show that our method sig-
nificantly outperforms the strong baseline (Lample et al.
2018) and achieves the new state-of-the-art translation per-
formance in unsupervised machine translation.

2 Background

2.1 Neural Machine Translation

Given a source sentence x = (x1, x2, ..., xl) and a target one
y = (y1, y2, ..., ym), Neural Machine Translation (NMT)
directly models the word-level translation probability with
parameters θ as:

p(yi|x,y<i; θ) = softmax(g(hyi
,hy<i, ci; θ)) (1)

in which g(·) denotes a non-linear function extracting
features to predict the target word yi from the decoder
states (hyi

and hy<i
) and the context vector ci calcu-

lated with the encoder and attention mechanism. Then the
sentence-level translation probability p(y|x; θ) is calculated
by p(y|x; θ) =

∏m
i=1 p(yi|x,y<i; θ). As for training, given

a parallel corpus {(xn,yn)}Nn=1, the objective function is to
maximize log p(yn|xn; θ) over the whole training set.

2.2 Phrase-based Statistic Machine Translation
The current approach of Statistic Machine Translation
(SMT) is typically based on the log-linear model proposed
by Och and Ney (2002). According to it, the translation
probability from sentence x to sentence y is formulated as:

p(y|x;λM
1 ) =

exp [
∑M

m=1 λmhm(x,y)]∑
ỹ exp [

∑M
m=1 λmhm(x, ỹ)]

(2)

where hm(x,y) = log φm(x,y) denotes the mth feature.
In phrase based SMT (PBSMT) (Koehn, Och, and Marcu

2003), the sentence pair is segmented into a sequence of
phrases x̄I

1 and ȳJ
1 , where I and J are the counts of phrases.

During training, given a bilingual corpus, PBSMT first in-
fers word alignment, based on which phrase pairs are de-
rived and stored in the phrase table, as well as translation
probabilities. Other features such as a distortion model can
also be learned with the extracted phrase pairs. The feature
weights λM

1 can be optimized by MERT (Och 2003) with a
validation set. During decoding, PBSMT generates transla-
tion candidates ỹ bottom up via the CKY algorithm, ranked
with scores given by the log-linear model in Eq.(2).

2.3 Posterior Regularization
Posterior regularization (Ganchev et al. 2010) is a frame-
work for structured, weakly supervised learning, which in-
corporates indirect supervision from a desired distribution
q(y) via constraints on posterior distribution p(y|xn; θ) im-
posed by a Kullback-Leible (KL) divergence as follows:

F (q; θ) = L(θ)−
N∑

n=1

min
q∈Q

KL(q(y)||p(y|xn; θ)) (3)

whereL(θ) is the original likelihood of model p(y|x; θ), and
Q is a constraint posterior set satisfying:

Q = {q(y) : Eq[φ(x,y)] ≤ b} (4)

in which constraints features φ(x,y) are bounded by b.
To maximize F (q; θ), Ganchev et al. (2010) propose an

EM framework (McLachlan and Krishnan 2007) as:

E : qt+1 = argmin
q∈Q

KL(q(y)||p(y|xn; θ
t))

M : θt+1 = argmax
θ

L(θ) +Eqt+1 [log p(y|xn; θ)]
(5)

However, there may be a problem as pointed out by Zhang
et al. (2017) that it is hard to set a reasonable bound b if
we directly apply posterior regularization to NMT. To solve
this problem, we follow their practice of representing the
desired distribution q(y) as the log-linear model described in
Eq.(2). In this way, SMT models directly act as the posterior
regularization to constrain NMT models p(y|xn; θ

t).

3 Method
3.1 Overview
Due to the lack of supervision, noises and infrequent errors
in the pseudo data generated by unsupervised NMT mod-
els will be accumulated and reinforced in the iterative back-
translation process (shown in the shadow area in Figure 2).
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Figure 2: Method overview. The whole procedure mainly consists of two parts as the left and the right.

To address this issue, we introduce SMT as posterior regu-
larization (the red frame above that) to denoise and guide the
training of NMT, thus the noises being eliminated timely.

The whole procedure of our method mainly consists of
two parts shown in the left and right of Figure 2. Given a
language pair X-Y, for model initialization, we build two
initial SMT models with language models pre-trained us-
ing monolingual data, and word translation tables inferred
from cross-lingual embeddings according to the approach
in 3.2. Then the initial SMT models will generate pseudo
data to warm up two NMT models. Note that the NMT
models are trained using not only the pseudo data gener-
ated by SMT models, but those generated by reverse NMT
models with the iterative back-translation method. After
that, the NMT-generated pseudo data are fed to SMT mod-
els. As posterior regularization (PR), SMT models timely
filter out noises and infrequent errors by constructing strong
phrase tables with good and frequent translation patterns,
and then generate denoised pseudo data to guide the subse-
quent NMT training. Benefiting from that, NMT then pro-
duces better pseudo data for SMT to extract phrases of
higher quality, meanwhile compensating for the deficiency
in smoothness inherent in SMT via back-translation. Those
two steps are unified in the EM framework described in 3.3,
where NMT and SMT models are trained jointly and boost
each other incrementally until final convergence.

3.2 Initialization

Our initial SMT models are built with word-based phrase
tables and two pre-trained language models via Moses1. For
the word translation table, we first train word embeddings
using monolingual corpora for two languages respectively.
Based on that, we adopt the method proposed by Artetxe
et al. (2018) to obtain respective cross-lingual embeddings
{exi}Si=1 and {eyj}Tj=1, where S and T are vocabulary sizes.

1https://github.com/moses-smt/mosesdecoder

Then the word translation probability from word xi to yj is:

p(yj |xi) =
exp [λ cos(exi , eyj )]∑
k exp [λ cos(exi

, eyk
)]

(6)

where λ is a hyper-parameter to control the peakiness of the
distribution. The calculation of p(xi|yj) is similar to Eq.(6).
Based on the above, we choose top-k translation candidates
for each word in our initial phrase table. We only use two
features in our initial phrase tables, i.e. translation probabil-
ities and inverse translation probabilities.

3.3 Unsupervised NMT with SMT as PR
As is mentioned in 3.1, SMT plays a role in denoising and
is leveraged as posterior regularization for NMT. Therefore,
we replace the posterior regularization term q(y) in Eq.(3)
with the SMT models (x → y) and (y → x) in Figure 2,
which will be denoted by−→ps(y|x) and←−ps(x|y). By the way,
the NMT models (x → y) and (y → x) will be denoted by−→pn(y|x; θx→y) and←−pn(x|y; θx←y), where θx→y and θx←y

are parameters. Then, given monolingual corpora {xi}Mi=1

and {yj}Nj=1, we formulate the training objective as:

J (θx→y, θx←y,
−→ps ,←−ps) = L̄(θx→y, θx←y)

−
M∑
i=1

min−→ps

KL(−→ps(y|xi)||−→pn(y|xi; θx→y))

−
N∑
j=1

min←−ps

KL(←−ps(x|yj)||←−pn(x|yj ; θx←y))

(7)

where L̄(θx→y, θx←y) corresponds to the training objective
of iterative back-translation for NMT models, which is

L̄(θx→y, θx←y)

=

M∑
i=1

Ey∼−→pn(y|xi;θx→y)[log
←−pn(xi|y; θx←y)]

+

N∑
j=1

Ex∼←−pn(x|yj ;θx←y)[log
−→pn(yj |x; θx→y)]

(8)
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and two Kullback-Leibler divergence (KL) terms denote the
posterior regularizations for two NMT models respectively.

Based on that, the training processes of iterative back-
translation for NMT and SMT models as posterior regular-
ization are unified into a single objective J . Then, we mod-
ulate the EM algorithm in Eq.(5) to optimize it as follows:

E :←−pst+1 = argmax
←−ps

J (θx→y, θx←y,
−→ps ,←−ps)

= argmin
←−ps

KL(←−ps(x|yj)||←−pn(x|yj ; θ
t
x←y))

−→pst+1 = argmax
−→ps

J (θx→y, θx←y,
−→ps ,←−ps)

= argmin
−→ps

KL(−→ps(y|xi)||−→pn(y|xi; θ
t
x→y))

M : θt+1
x←y = argmax

θx←y

J (θx→y, θx←y,
−→ps ,←−ps)

= argmax
θx←y

{E←−ps
t+1 [log←−pn(x|yj ; θx←y)]

+E−→pn(y|xi;θt
x→y)

[log←−pn(xi|y; θx←y)]}

θt+1
x→y = argmax

θx→y

J (θx→y, θx←y,
−→ps ,←−ps)

= argmax
θx→y

E−→ps
t+1 [log−→pn(y|xi; θx→y)]

+E←−pn(x|yj ;θt
x←y)

[log−→pn(yj |x; θx→y)]

(9)
Briefly speaking, in the E-step, we optimize the desired

distributions represented by SMT to minimize the KL dis-
tance between SMT models and NMT models. In the M-
step, we optimize NMT models using the pseudo data gen-
erated by SMT models and the corresponding reverse NMT
models to fit the desired distributions and meanwhile per-
form back-translation iterations. We will give the specific
equation for updating parameters in 3.4.

3.4 Training Algorithm
We combine the model initialization and the whole training
procedure into Algorithm 1 as follows.

According to Eq.(9), in the E-step, we need to mini-
mize the gap between SMT models and NMT models. How-
ever, this step cannot be done by traditional gradient descent
methods. Approximately, we train SMT models using the
pseudo data generated by the corresponding NMT models to
fit the mode of NMT posterior distributions. Thus the KL di-
vergence between them is diminished. This step corresponds
to the the 7th and 8th lines in Algorithm 1, meaning SMT
extracts good and frequent translation patterns from the data
generated by current NMT models to finish denoising.

In the M-step, we optimize two NMT models with gradi-
ent descent methods. We formulate the updating for θx←y in
Eq.(10), to which that for θx→y is similar.

∇θx←yJ (θx→y, θx←y,
−→ps ,←−ps)

= Ex∼←−ps(x|yj)∇θx←y log
←−pn(x|yj ; θx←y)

+Ey∼−→pn(y|xi;θx→y)∇θx←y log
←−pn(xi|y; θx←y)

(10)

Algorithm 1: Unsupervised NMT with SMT as PR
Input: Monolingual data X = {xi}Mi=1 and Y = {yj}Nj=1

Output: Parameters of two NMT models: θx→y, θx←y

1 Train language models lx and ly using X and Y
2 Infer word translation tables txy and tyx as in 3.2
3 t := 0

while not convergence do
4 Sample data {xt} ∈ X and {yt} ∈ Y
5 // E-step:

if t = 0 then
6 Initialize −→ps0 and←−ps0 using lx, ly, txy and tyx

else
7 Generate pseudo data {(xt,y

+
t )} and {(x+

t ,yt)}
using models −→pnt and←−pnt respectively

8 Train −→pst and←−pst using (xt,y
+
t ) and (x+

t ,yt)

9 // M-step:
10 Generate denoised pseudo data {(xt,y

∗
t )} and

{(x∗t ,yt)} using −→pst and←−pst
11 Train −→pnt and←−pnt using {(xt,y

∗
t )} and {(x∗t ,yt)}

12 Generate pseudo data {(xt,y
+
t )} and {(x+

t ,yt)} using
−→pnt and←−pnt respectively

13 Train −→pnt and←−pnt using {(x+
t ,yt)} ∪ {(xt,y

∗
t )} and

{(xt,y
+
t )} ∪ {(x∗t ,y)}

14 t := t+ 1

15 return θx→y, θx←y

This step corresponds to lines 14 to 17 in Algorithm 1. A
difficulty here is the exponential search space of the trans-
lation candidates. To address it, we leverage the sampling
method (Shen et al. 2015) and simply generate the top target
sentence for approximation in our experiments. Note that in
the 11th line, NMT models are trained using the denoised
pseudo data generated by SMT models only, while in the
13th line, the mixed data of those and the pseudo data gen-
erated by the reverse NMT models are used. The intention
here is to first use the denoised pseudo data to correct the
NMT models established before, and then apply iterative
back-translation to boost NMT models under the guide of
the denoised data. NMT also makes up for the deficiency in
smoothness of SMT in this step. In this way, SMT and NMT
models can benefit from each other in the EM iterations.

4 Experiments

4.1 Setup

Dataset In our experiments, we consider two language
pairs, English-French and English-German. For each lan-
guage, we use 50 million monolingual sentences in
NewsCrawl, a monolingual dataset from WMT, which is the
same as the previous work (Artetxe et al. 2017; Lample et al.
2018). For the convenience of comparison, we use newstest
2014 as the test set for the English-French pair, and newstest
2014 as well as newstest 2016 for the English-German pair.

Preprocess We use Moses scripts for word tokenization
and truecasing. In model initialization, we use the public im-
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Method fr-en en-fr de-en en-de de-en en-de
(2014) (2014) (2016) (2016)

(Artetxe et al. 2017) 15.56 15.13 10.21 6.89 - -
(Lample, Denoyer, and Ranzato 2017) 14.31 15.05 - - 13.33 9.64
(Yang et al. 2018) 15.58 16.97 - - 14.62 10.86
(Lample et al. 2018), NMT 24.18 25.41 - - 21.00 17.16
(Lample et al. 2018), PBSMT 27.16 28.11 - - 22.68 17.77
(Lample et al. 2018), NMT+PBSMT 26.29 27.12 - - 22.06 17.52
(Lample et al. 2018), PBSMT+NMT 27.68 27.60 - - 25.19 20.23
Our Method 28.79 29.21 20.04 16.43 25.92 21.07
(+ R2L regularization) 28.92 29.53 20.43 16.97 26.32 21.65

Table 1: Comparison with previous methods.

plementation of word2vec2 to train monolingual word em-
beddings of each language, and vecmap3 to obtain cross-
lingual embeddings of both language pairs. For NMT, we
use the modified version of the public implementation4 of
Transformer (Vaswani et al. 2017). We share the vocabu-
lary space of 50,000 BPE codes (Sennrich, Haddow, and
Birch 2015) for source and target languages. For each lan-
guage pair, we train two independent NMT models for dif-
ferent translation directions (i.e., source to target and target
to source) with shared embedding layers of source and target
sides. For SMT, we use the Moses implementation of PB-
SMT systems with Salm (Johnson et al. 2007), which can
denoise and reduce the size of phrase tables. And we use the
default features defined in Moses for our PBSMT models.

4.2 Comparison
Baselines Our proposed method is compared with four
baselines of unsupervised machine translation listed in the
upper area of Table 1, among which the fourth baseline con-
tains several methods. Given a language pair, the first two
baselines (Artetxe et al. 2017; Lample, Denoyer, and Ran-
zato 2017) use a shared encoder and different decoders for
the two languages. The third baseline (Yang et al. 2018) uses
different encoders and decoders, and introduces a weight
sharing mechanism. The fourth baseline (Lample et al.
2018) uses a shared encoder and decoder in their NMT sys-
tems. As for the training method, the second and third base-
lines use adversarial training. All of the four baselines use
denoising auto-encoder and iterative back-translation.

Note that the fourth baseline contains four methods.
“NMT” means unsupervised NMT models, while “PBSMT”
denotes unsupervised SMT models with the back-translation
method performed by SMT. “NMT+PBSMT” and “PB-
SMT+NMT” simply combine the best pseudo data that the
former generates into the final iteration of the latter. Dif-
ferent from our proposed method, the training processes of
NMT and SMT models in their methods are independent.

Results and Discussion The comparison results are re-
ported in Table 1. The BLEU scores are calculated by multi-
bleu.pl. From the table, we find that our method significantly

2https://github.com/tmikolov/word2vec
3https://github.com/artetxem/vecmap
4https://github.com/tensorflow/tensor2tensor

outperforms all the baselines even the strong one (Lample et
al. 2018). We elaborate the reasons as follows.

(1) Our proposed method significantly improves the per-
formance over the “NMT” and “PBSMT” of (Lample et al.
2018). This is because unsupervised NMT methods suffer
from the noise problem while PBSMT is inherently defi-
cient in fluency just as the case study in 4.5 shows. Our
method can compensate for the deficiencies of them by
combining the training processes of them. (2) Notice that
“NMT+PBSMT” performs even worse than pure “PBSMT”,
which may be caused by accumulated errors in the iterations
of NMT models. Due to the lack of timely denoising meth-
ods, infrequent errors and noises are repeated and reinforced
as frequent ones by unsupervised NMT, so that even PBSMT
could not distinguish them from good patterns in the last
iteration. (3) The performance gained by “PBSMT+NMT”
verifies combining data of high quality into NMT training
could be a better choice. But the simple combination in their
method is not able to make the best of both models. In their
method, NMT and SMT models are trained independently
so that the bad patterns within the models themselves cannot
be well removed due to weak supervision. In contrast, our
proposed method integrates the training of NMT and SMT
models in a unified EM framework where they can boost
each other incrementally. The noises and errors generated
by NMT models can be reduced in time by SMT as poste-
rior regularization, while NMT can compensate for the de-
ficiency of smoothness inherent in SMT models. Therefore,
our proposed method still outperforms ”PBSMT+NMT”.

Apart from SMT as posterior regularization, our frame-
work can be easily extended to incorporate other poste-
rior regularization methods without changing model struc-
tures, such as the target-bidirectional agreement regular-
ization (Zhang et al. 2018b). This regularization can help
deal with the problem of exposure bias in supervised NMT,
where another ”reversed” NMT model is trained using data
of reversed sentences from left to right. Then the ”reversed”
NMT model is leveraged to generate pseudo data for training
the original NMT model. Specifically, we introduce the R2L
regularization after the final training iteration of NMT mod-
els (i.e., NMT2 in Table 2). With this extension, we achieve
higher performance (+R2L regularization in Table 1).
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Steps fr-en en-fr de-en en-de ave
E-step (SMT0) 15.34 11.74 11.03 8.14 11.56
M-step (NMT0) 24.06 24.82 16.29 12.88 +7.95
E-step (SMT1) 26.49 27.64 17.34 14.81 +2.06
M-step (NMT1) 28.29 29.02 19.61 16.02 +1.67
E-step (SMT2) 28.64 29.21 19.87 16.29 +0.23
M-step (NMT2) 28.79 29.17 20.04 16.43 +0.11

Table 2: Test BLEU on newstest 2014 in different steps.

4.3 Model Evolution
We conduct several EM iterations in our experiments, and
record the test BLEU scores on newstest 2014 after each E-
step (SMT) and M-step (NMT) in Table 2. We have tried
more steps but the models do converge after three EM iter-
ations. For the convenience of comparison, in the last col-
umn of the table, we also list the average improvement of
four translation models after each step. From the table, first,
we find NMT and SMT models improve incrementally after
each iteration, which accords with our proposed motivation.
Note that the improvements between adjacent NMT steps
are exactly contributions made by SMT as posterior regular-
ization. Second, the models improve the most in the first EM
iteration and nearly converge at the third EM iteration.

Additionally, we also compare the translation perfor-
mance on sentences of different lengths as iteration steps
progress. We group the sentences in the fr-en test set by
length as shown by the three curves in Figure 3. Then, we
record the BLEU scores of different groups after each step.
From the figure, we find the models converge much slower
on longer sentences, which indicates that it is easier for the
models to learn shorter sentences.

Figure 3: Test BLEU on sentences grouped by length.

4.4 Discussion on Initialization
In this subsection, we delve into the initialization stage
which is crucial to our method. In that stage, there are three
hyper parameters described in 3.2 that should be taken into
account, i.e., the peakiness controller λ, the vocabulary size
S or T , and the number of translation candidates k for each
word. Since the performance of initialization can be eval-
uated by SMT0, we adjust the hyper-parameters and mea-
sure the fr-en test BLEU of SMT0 models accordingly. For
brevity, we let S = T = V in our experiments. The re-
sults are illustrated in Figure 4. From this figure, we find

Figure 4: Test of initial models with various hyper-params.

that k and V have much bigger impacts on the initial model
SMT0 than λ. With the value of λ increasing, the perfor-
mance of SMT0 gradually improves but starts to decline a
bit after around 20. This is because the larger λ will make the
distribution in Eq.(6) sharper, severely restricting the search
spaces of SMT models. Similarly, the performance of SMT0
improves in accord with the value of k or V going up. But
the improvement stops after certain thresholds (about 80 of k
and 50000 of V ). The reason may be the useful information
provided by word-translation tables is saturated after those.

We also tried other initialization methods in our experi-
ments, such as directly using the pseudo parallel data con-
structed from word-by-word translation to warm up NMT
models. We compare NMT0 models warmed up with this
method (without SMT0) to NMT0 in our proposed method
(with SMT0) in the following table, which stresses the ne-
cessity of SMT0 and the importance of good initialization.

Initialization Method fr-en en-fr de-en en-de
NMT0 without SMT0 12.29 12.46 7.32 4.81
NMT0 with SMT0 24.06 24.82 16.29 12.88

Table 3: The necessity of SMT0 in model initialization. The
numbers in this table are BLEU scores on newstest 2014.

4.5 Case Study
To further demonstrate the effectiveness of our method, we
select some cases from translation results (fr-en) and com-
pare the translations generated by models of different train-
ing steps. The results are listed in Table 4. In the first case,
which is exactly the example in the Introduction, the word
“malade” in French is wrongly translated into “ill-fated” in
English by NMT0. As we can see, this error has been cor-
rected in NMT1 after the guidance of SMT1. In the second
case, apart from the wrongly aligned word “bâtisse-là” to
“canopy-back business” by NMT1, there is also a redundant
phrase “plenty of” generated by it. Those errors are both cor-
rected after the regularization of SMT1. In the third case,
we also reach the same conclusion that NMT1 can bene-
fit from SMT1 and rectify the mistake on “rendu visite à”.
There is also an interesting phenomenon from case three of
NMT adhering to “from” which makes the sentence more
fluent, even though this word is missed by SMT models. In a
word, the above analysis verifies that noises and errors in un-
supervised NMT models can be eliminated timely by SMT
models as posterior regularization with our method .
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Source J’ai eu des relations difficiles avec lui jusqu’à ce qu’il devienne vieux, malade.
SMT0 I’ve gotten of difficult relations with him until he will become old, sick.
NMT0 I’ve had difficult relations with him until he’s become old, ill-fated.
SMT1 I’ve had difficult relationships with him until he became old, sick.
NMT1 I had difficult relations with him until he became old and sick.

Reference I had a difficult relationship with him until he became old and ill.
Source Le fonds d’investissement qui était propriétaire de cette bâtisse-là avait des choix à faire.
SMT0 The owner of this underlinebuilding, so had to make a choice of which was an investment fund.
NMT0 The investment fund that was an owner of that canopy-back business had plenty of choice to do.
SMT1 The investment fund that was the owner of this building just had to make choices.
NMT1 The investment fund that was the owner of this building had choices to make.

Reference The investment fund that owned the building had to make a choice.

Source M. Dutton a rendu visite à Mme Plibersek pour garantir qu’aucun dollar du plan de sauvetage ne sera dépensé
en bureaucratie supplémentaire.

SMT0 Mr Dutton paid a visit to Ms Plibersek to guarantee that the greenback no rescue plan of not be spent in extra bureaucracy.
NMT0 Mr Dutton said Ms Plibersek’visit to guarantee any dollar from the rescue plan will be spent in extra bureaucracy.
SMT1 Mr Dutton was visiting Ms Plibersek to guarantee that no dollar rescue plan will be spent on additional bureaucracy.
NMT1 Mr Dutton paid a visit to Ms Plibersek to guarantee that no dollar from the rescue plan will be spent on extra bureaucracy.

Reference Mr Dutton called on Ms Plibersek to guarantee that not one dollar out of the rescue package would be spent on
additional bureaucracy.

Table 4: Cases of translation results from French to English in newstest 2014. The models of SMT0, NMT0, SMT1 and NMT1
are corresponding to the steps in Table 2.

From these cases, we find that SMT can also benefit from
NMT models. Even though the meanings of the key words
could be captured by SMT, the outputs of SMT0 are not flu-
ent especially in the second case. This problem is relieved in
SMT1, after SMT is fed with more fluent pseudo data gen-
erated by NMT0, which validates that SMT and NMT can
incrementally boost each other with our method.

5 Related Work
Previous unsupervised neural machine translation systems
(Artetxe et al. 2017; Lample, Denoyer, and Ranzato 2017;
Yang et al. 2018) are mainly the modifications of the cur-
rent encoder-decoder structure. To constrain outputs of en-
coders for two languages into a same latent space, Artetxe
et al. (2017), and Lample et al. (2017) use a shared encoder,
while Yang et al. (2018) use a weight sharing mechanism.
Denoising auto-encoder (Vincent et al. 2010) and adversar-
ial training methods are also leveraged to improve the ability
of encoders. Besides, iterative back-translation is applied to
generated pseudo parallel data for cross-lingual training.

After that, Lample et al. (2018) summarize three princi-
ples for unsupervised machine translation, which are initial-
ization, language modeling and iterative back-translation,
and propose some effective methods with simplified training
procedures. Four methods are leveraged in their work, in-
cluding unsupervised NMT, unsupervised PBSMT and two
combinations of them. Our method is different from them.
In their methods, SMT and NMT are treated as independent
models so that they suffer from respective deficiencies and
cannot benefit from each other in their training processes. In
contrast, we combine them into a unified EM training frame-
work and enable them to improve jointly and boost each
other incrementally, where NMT models are responsible for
smoothing and fluency, while SMT models are responsible
for denoising and guiding NMT models.

Moreover, there has been some work exploiting SMT fea-
tures to improve supervised NMT. In He et al. (2016), the
probability calculated by NMT is integrated as a feature into
a log-linear model. After that, Tang et al. (2016) and Wang
et al. (2017) leverage gate mechanisms to introduce a phrase
table or candidates provided by SMT into NMT models. Dif-
ferent from them, we leave the model structures unchanged
via the framework of posterior regularization. Zhang et al.
(2017) also integrate more prior knowledge into the training
of NMT with the help of posterior regularization. But there
is a major difference that we introduce the successful prac-
tice of iterative back-translation into this framework with a
unified EM training algorithm, where SMT and NMT mod-
els can benefit from each other. Additionally, in unsuper-
vised scenarios, our SMT features are learned from scratch
and improved incrementally, rather than pre-trained from
real bilingual data and fixed during the whole procedure.

6 Conclusion

In this paper, we introduce SMT models as posterior regu-
larization to denoise and guide unsupervised NMT models
with the ability of constructing more reliable phrase tables
and eliminating the infrequent and bad patterns generated
in the back-translation iterations of NMT. We unify SMT
and NMT models within the EM training algorithm where
they can be trained jointly and benefit from each other incre-
mentally. In the experiments conducted on en-fr and en-de
language pairs, our method significantly outperforms previ-
ous methods, and achieves the new state-of-the-art perfor-
mance of unsupervised machine translation, which demon-
strates the effectiveness of our method. In the future, we may
delve into the initialization stage, which is crucial to the final
performance of the proposed method.
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