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Abstract
The ‘old world’ instrument, survey, remains a tool of choice
for firms to obtain ratings of satisfaction and experience that
customers realize while interacting online with firms. While
avenues for survey have evolved from emails and links to
pop-ups while browsing, the deficiencies persist. These in-
clude - reliance on ratings of very few respondents to in-
fer about all customers’ online interactions; failing to cap-
ture a customer’s interactions over time since the rating is a
one-time snapshot; and inability to tie back customers’ rat-
ings to specific interactions because ratings provided relate
to all interactions. To overcome these deficiencies we extract
proxy ratings from clickstream data, typically collected for
every customer’s online interactions, by developing an ap-
proach based on Reinforcement Learning (RL). We introduce
a new way to interpret values generated by the value func-
tion of RL, as proxy ratings. Our approach does not need
any survey data for training. Yet, on validation against ac-
tual survey data, proxy ratings yield reasonable performance
results. Additionally, we offer a new way to draw insights
from values of the value function, which allow associating
specific interactions to their proxy ratings. We introduce two
new metrics to represent ratings - one, customer-level and
the other, aggregate-level for click actions across customers.
Both are defined around proportion of all pairwise, succes-
sive actions that show increase in proxy ratings. This intu-
itive customer-level metric enables gauging the dynamics of
ratings over time and is a better predictor of purchase than
customer ratings from survey. The aggregate-level metric al-
lows pinpointing actions that help or hurt experience. In sum,
proxy ratings computed unobtrusively from clickstream, for
every action, for each customer, and for every session can of-
fer interpretable and more insightful alternative to surveys.

1 Introduction
With all the changes on the frontiers of the online world,
one thing remains the same. An old-world instrument, sur-
vey, is still a tool of choice for firms obtaining ratings from
customers about their degree of satisfaction and level of ex-
perience with online interactions on firms’ websites. To ob-
tain customer ratings, the relentless use of surveys may be
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surprising in the ‘new’ online world where so many rules
have been rewritten. To be sure, avenues for survey have
evolved from emails and links to pop-ups while browsing.
That said, regardless of how surveys are conducted, firms
rely upon asking questions of customers to obtain ratings
of satisfaction and experience with online interactions. Un-
fortunately, very few customers respond. With increasingly
common pop-up surveys reporting response from less than
one percent of customers in our data, the sampling bias is ap-
parent. Our proposed approach, applied on clickstream data
collected by sites for every visitor, provides proxy-ratings
of online interaction experience for one hundred percent
customers, without asking questions. Henceforth, we use
customer-rating for numerical feedback obtained through
surveys, and proxy-rating for derived-feedback computed
from clickstream data. We address three major deficiencies
of surveys: (i) Customer ratings obtained from very few re-
spondents comprise the basis on which all customers’ rat-
ings for online interactions are inferred. The difference in
ratings between the small percent who rate and the large ma-
jority of customers who do not is difficult to account and of-
ten ignored. (ii) Surveys constitute a blunt instrument since
a customer’s rating cannot be tied back to her specific online
interactions; instead, relates to all past interactions. E.g., if a
customer performs a sequence of 10 click actions at which
time the survey appears and she responds, that rating can-
not be tied back to specific click action(s); but, relates to the
whole sequence of 10 actions. (iii) Even for the few cus-
tomers whose ratings are known, a survey is a one-time,
snapshot rating since the same customer may not respond
more often even if surveyed. Hence, survey ratings do not
capture dynamics of online interaction experience over time.
We posit that all three deficiencies can be overcome by con-
sidering customers’ choice of browsing actions in a decision
theoretic manner, using Reinforcement Learning (RL) (Sut-
ton 1988) and interpreting the value function in a new way.
We show that RL can facilitate drawing rich insights about
individual customers and specific site interactions, which ex-
tends RL research (Sutton and Barto 2017) in a new direc-
tion.

Consider an e-commerce platform. A customer types
search words, applies filters, performs clicks to get spe-
cific product information and dives into details on few prod-
ucts. She may add to cart and may end up purchasing. Our
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premise is that since customers’ ratings are best mapped
to customers’ behaviors, and those behaviors manifest in
click actions, the clickstream data can provide useful sig-
nals of ratings. The marketing science literature informs that
customers are decision oriented in their browsing behaviors
(Moe 2006). We posit they are forward looking, learn from
past and current click actions to choose future click actions,
keeping in mind their eventual goals, such as search or mak-
ing a purchase. This “long view” may include successive
sessions where learned information from one session helps
a customer decide whether or where to start browsing in the
next session.

We model this decision orientation using RL. Given a
goal and a reward function, the value function of our RL
model generates value of being in a state, for every state,
and for every customer. States map to history of past states
and click actions. Thus, we have values corresponding to
every click action, for each customer, given her sequence of
click actions. We interpret the values as signals of her rat-
ing at each click action, or, proxy rating at each click action.
First, to test this interpretation, we validate proxy ratings of
customers against actual survey ratings from the same cus-
tomers. These survey ratings fit well with the goal of proxy
ratings since the survey question in our data specifically
seeks response on customer’s website experience and not on
satisfaction with product. Importantly, no survey customer
ratings are part of the model’s training process. Moreover,
the customer survey ratings are obtained in a natural manner,
as part of pop-up surveys that the website routinely conducts
(that is, not collected as an experiment). Second, making use
of proxy rating values at each click action, we identify click
actions that increase or decrease ratings, to identify click ac-
tions that enhance or hinder good experience. On validation
against actual survey data the proxy ratings depict reason-
ably good performance results. On the task of action identi-
fication, we obtain insightful results about specific pages on
the website that under-perform. Additionally, we test useful-
ness of proxy ratings on an auxiliary task of purchase pre-
diction, which shows good performance.

We make the following contributions to the literature.
One, we extend RL in a new domain of customer ratings,
with focus on interpretability and on drawing rich insights
from value function. Two, our approach ‘unobtrusively’
computes proxy ratings of one hundred percent of cus-
tomers. Three, proxy ratings are computed for each click ac-
tion of each customer, resulting in identification of specific
interactions which help or hurt customer goals. Four, proxy
ratings can be obtained for each session of each customer,
allowing observation of customer dynamics over time. Five,
our approach does not need any survey training data. Con-
tributions two through four address the three deficiencies of
survey described at the onset. Validation of our approach
against customer ratings from actual pop-up surveys is an
important feature of our work.

2 Related Work
Research on implicit measurement of satisfaction in the
search domain focuses on metrics of dwell time, search re-
sults click, etc. to improve search outcomes. One finding is

that implicit measurement correlates with explicit, question
based measure (Kim et al. 2014; Wang et al. 2014), lending
support to our thesis. Other work in search satisfaction in-
clude a structural learning model incorporating action level
dependencies using structured features (Wang et al. 2014),
and studying difficulties faced while searching to obtain rel-
evant information (Odijk et al. 2015). Deviating from work
in search, our problem is about decision making during in-
teractions on online platform (Moe 2006) to obtain ratings
of interaction experience, and doing so at the granularity of
every click action. A recent work in recommendation sys-
tems (Zhao et al. 2018) utilizes both explicit and implicit
feedback from click-actions to learn optimal policy through
trial-and-error of recommending items. Instead, our goal is
to measure proxy ratings for the latent construct of experi-
ence from sequence of actions. Other research which mine
clickstream data for measuring experience includes visual-
izations of common paths for site visitors (Liu et al. 2017)
and inferring personas of users (Zhang, Brown, and Shankar
2016). But, computation of ratings from clickstream is not
addressed.

RL has an established literature with extensions in many
avenues (Sutton and Barto 2017). Although interpretability
of machine learning models is studied (Lipton 2016), inter-
pretability of value function in RL for insights about user
interactions is not explored. To our knowledge, the RL liter-
ature does not examine computation of customer proxy rat-
ings from mere clickstream data. In using clickstream data
in RL, one exception is (Jain et al. 2018), which measures
user experience to predict purchase through a supervised ap-
proach that uses purchase data for training. In a departure
from this work, we uncover proxy ratings at each action, for
each customer and perform direct evaluation against actual
survey customer ratings, but, without using survey data for
training.

Recurrent Neural Networks (RNN) are used for predic-
tion tasks from click actions (Lang and Rettenmeier 2017).
Problems studied include predicting sequential clicks for
sponsored search (Zhang et al. 2014) and recognizing the se-
quence of tweets for purchase prediction (Korpusik, Mandy,
and et al. 2016). We use RNN to obtain representation of
states, capturing the sequential nature of actions, and use as
input for the RL algorithm.

3 Framework and Model
In modeling browsing behaviors (Moe 2006) posits that “In
addition to the decision of whether to continue searching, the
consumer must also decide which item, if any, to view. At
each decision point, the consumer must decide what the next
item to view should be (pp.683)”. We model a customer’s
online browsing in a decision theoretic framework because
at each click action she decides whether to stop browsing,
or continue browsing and if so, which click actions to se-
lect. The decisions are conditional on rewards her past ac-
tions yield and her expectation of future rewards. For exam-
ple, in online shopping rewards are products she discovers,
which can be good or poor, resulting in high or low reward.
We recognize that a customer learns as she traverses along
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her sequence of actions, and that her future sequence of ac-
tions may change due to learning and is a function of goals.
This process naturally fits with RL. The value generated by
the value function, at each action level, to guide customer’s
future actions, serves as signal of her reward, which yields
proxy rating. Now the formal model is presented.

3.1 State Representation
In line with work in RL (Sutton and Barto 2017), we use
a Markov process to model customers’ browsing behaviors
on an e-commerce site. However, drawing from Section 2.2
of (Yu, Mahmood, and Sutton 2017), the Markov process is
defined by using the history of past states, not only the most
recent state. We augment each action with a vector contain-
ing information from history, as described next.

Consider a state space, S = {s1, s2, s3, ...} and a reward
function r : S → R. At time t, a user in state St ∈ S re-
ceives a reward r(St). The transition probability function is
P(si, sj) = Pr(St+1 = sj |St = si). Let the sequence of
click actions observed in a user’s browsing journey till time
t be [A1, A2, ...At] where Ai ∈ A = {a1, a2, ..., a|A|}. Let
a vector h⃗t−1 of d dimensions encode all the historical infor-
mation from the sequence [A1, A2, ...At−1]. Then, the state
at t is represented as a tuple, St = (⃗ht−1, At). Define encod-
ing function, g : S → Rd such that, h⃗0 = 0⃗ and h⃗t =

g(⃗ht−1, At). Here, St comprises h⃗t−1, a fixed dimension
continuous vector encoding the history of actions, and At,
the recent action. The fixed dimension is selected to be 150,
based on limited hyper-parameter tuning (50, 100, 150, 200).
Note h⃗t does not grow with t, being calculated using the en-
coding function g, defined above. The encoder is the hidden
state of an RNN trained to predict next action.

3.2 Reward Design
The choice of reward function r, is important in RL. We
assume a website can define r based on its objectives and
domain knowledge. A site does not know a customer’s goal.
However, the site assigns reward for its objective that aligns
with that of the customer’s goal; e.g., making a purchase.
Alternative actions of customers may be of interest to a site.
A website may want to monitor the click action cart addi-
tion for re-targeting purposes and this action can be assigned
a high reward by the site. Or, if the site is interested in pur-
chase, this action is assigned a high reward. We assume a
simple reward function for this implementation:

r(St) =

{
1, if At = Purchase
0, otherwise.

(1)

Since purchase is of interest to a site and also a well defined
customer goal we assign the purchase-action a value of 1,
and for simplicity, in the absence of domain specific knowl-
edge, assign zero values to every other action. With benefit
of domain knowledge an alternative formulation could as-
sign different rewards across actions and goals.

3.3 Value Iteration - TD Learning
We define the value of any state, V (St) as the total expected
discounted reward after t, under the state-transition proba-

Figure 1: Illustration of Model-Free Approach

bility distribution, P(.).

V (St) = E(r(St+1) + γr(St+2) + γ2r(St+3) + ...) (2)

where, γ ∈ [0, 1) is the discounting factor. The above ex-
pression can be written in the form of Bellman Equation as
follows

V (St) = E(r(St+1) + γV (St+1)) (3)

The encoder is an LSTM model trained to predict next ac-
tion by using the sequence of click-actions as input. These
categorical actions are embedded into a latent space of di-
mension 150 and fed as input to an LSTM layer that mini-
mizes categorical cross-entropy loss on next action predic-
tion. The hidden-representation obtained from output of the
LSTM layer (at each timestep of the sequence) along with
the action constitute the state representation.

To solve Equation 3, we use an approach based on TD-
learning (Sutton 1988) in which the values of V(.) are es-
timated in a model-free fashion directly from the stream of
events. In this scenario, the transition function, P(.) is not
known to the model. Now consider a user transitioned from
St to St+1 and only current reward r(St+1) is observed. We
make the following update to the current estimate of value
function based on this observation.

V
′
(St) = r(St+1) + γV (St+1)

TDt = V
′
(St)− V (St)

V (St) = V (St) + α(TDt)

(4)

where, α is the learning rate and V
′

is the estimate of value
based on the new observation. The difference in this new es-
timate and the current value is called the temporal-difference
(TD) error. We update the current V in the direction of the
new estimate. After a sufficiently large number of observa-
tions the estimates converge to their fixed value. Figure 1
shows the schema.

For efficiency and generalization, we use a parameterized
estimation of the value function. We define an estimation
function fθ with a set of parameters θ such that,

fθ(St) = V̂ (St) =̂ V (St) (5)

Values of θ are randomly initialized to θ0. The optimum val-
ues are estimated through gradient descent until convergence
on the TD error computed in Equation 4 is attained.
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3.4 New Interpretation of V(.) and Metrics for
Proxy Ratings

Let us define the k-th customer’s observed journey as J (k) =

[A1, A2, ..., Am] and her proxy rating for action At as y(k)At
.

The latter is equal to the computed value V (St) at time t.
Note that m varies across customers. Consistent with the
premise in marketing literature that satisfaction and expe-
rience ratings are interpreted as change from expectations
(Parasuraman, Zeithaml, and Berry 1985), the change of
proxy ratings going from one action to the next is used as
an indicator of actual ratings. We define a binary classifier
for proxy ratings as follows. Given actions At−q and At,
we consider lag(q) as a change in proxy ratings from At−q

to At. An increase in proxy ratings is assumed positive, as-
signed a value 1, and a decrease is assumed negative and
assigned a 0. For k-th customer, define lag(q) as:

z
(k)
At−q,At

=

{
1, if y(k)At

- y(k)At−q
> 0

0, otherwise.
(6)

We introduce a new metric for ratings, labeled, Propor-
tion of Good Ratings and defined as proportion of all pair-
wise, successive actions (that is, q = 1) that show increase in
proxy rating values. This simple metric intuitively captures
the notion of how often actions lead to better ratings. This
metric is defined in two ways, Z(k) and Z(au, aw), each
with its own purpose. Defined for each customer over her
journey, Z(k) renders the proportion of her pairwise succes-
sive actions that show increase in proxy ratings. For the k-th
customer,

Z(k) =
1

|J (k)| − 1

|J(k)|−1∑
t=1

z
(k)
At−1,At

(7)

For a customer performing a sequence of 20 click actions,
there are 19 pairwise, successive actions. Say, 11 pairs show
increase in proxy ratings. The proportion Z(k) is 11/19 in
this example.

The second proportion, Z(au, aw), is defined for every
pair of successive actions (au, aw) and represents the pro-
portion of all instances of a pair of successive actions (note,
q = 1) that show increase in proxy ratings.

Z(au, aw) =
1

N(au, aw)

K∑
k=1

|J(k)−1|∑
t=1

z
(k)
At−1,At

(8)

for those t where At−1 = au and At = aw and N(au, aw)
denotes number of instances of successive action-pair
(au, aw) in the data. When a pair of successive actions oc-
curs in 1000 instances with 350 of them showing increase in
proxy ratings, the proportion Z(au, aw) is 350/1000. A cus-
tomer can traverse the (au, aw) pair multiple times in a ses-
sion, where each pair is a single instance. This customer con-
tributes multiple instances to compute Z(au, aw). To wit,
let (au, aw) = (ProductCategory,ProductDetail). It is natural
for a customer to go back and forth between these two pages
at different points across the length of a session. We preserve

Figure 2: Sequence of actions with survey for k-th customer

this natural phenomenon while computing Z(au, aw), in-
stead of using a single average value for this customer across
all instances. Use of an average value per customer loses in-
formation on variability across instances within a customer.

4 Data
Clickstream data from the website of a consumer electron-
ics company are used. The e-commerce site offers products
in many consumer electronics product categories. For confi-
dentiality reasons, we cannot disclose the name of the site.
After filtering the data, click actions corresponding to the
Laptop category are retained. All click actions, for each cus-
tomer, are stitched together chronologically into sequence
of click actions. Altogether 46 relevant click actions such
as product details, search filter, add to cart etc. are iden-
tified from the data. The set of unique actions is denoted
A = {a1, a2, ..., a46}. The final data are sets of sequence of
actions.

Survey data Without access to actual customer ratings
survey data we cannot validate our approach. The validation
is crucial to establish our thesis that values in value function
work as proxy ratings. The survey appears as a pop-up, with-
out warning, during some customers’ browsing session. We
do not observe in the data any systematic pattern about who
gets the survey and during which part of a browsing session
of a customer is the pop-up shown. The number of survey
responses in the whole data is from more than 8,500 unique
customers, constituting 0.7% of all customer journeys.

The data curation pipeline is described below. Click ac-
tion of Purchase is identified in the clickstream data, when-
ever a purchase occurs. A customer’s journey may or may
not include purchase; a purchase action indicates end of
journey. Most journeys do not include purchase. Also, jour-
neys that include a purchase may qualitatively differ from
those without any purchase. Based on these notions, a cus-
tomer’s journey can fall into one of the following categories,
each of which we want represented:

1. One purchase to another purchase.

2. Starting in observation period and ending in a purchase.

3. Beginning after a purchase in observation period and end-
ing without purchase in observation period.

4. No purchase throughout observation period.

To remove outlier journeys based on length, we restrict
to journeys with length in the range 10 to 210 click actions
or hits. Journeys of length less than 10 click actions provide
little signal into the sequence model. The distribution of hits
show that journeys of less than 210 cover upwards of 96%
of all journeys.
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Table 1: Sample Actions and Frequencies

Actions Number
AddToCart 37,233
Customize 30,090
Home 119,236
Prod.Category 180,299

Actions Number
Prod.Detail 262,947
Promotion 111,648
Search 34,153
ViewCart 156,491

Data Sampling In the final dataset, we keep the ratio of
purchase to no-purchase journeys as 1:2, to guard against
class imbalance. Number of journeys kept in each category
is as follows:

1. All journeys, roughly 7,500 in number.

2. Around 10,000 journeys including all journeys with a sur-
vey score.

3. Around 15,000 journeys including all journeys with a sur-
vey score.

4. Around 20,000 journeys including all journeys with a sur-
vey score.

Each hit in clickstream data is mapped to an action. The
final data are organized as a set of journey sequences. Each
timestep in the journey contains information about the action
performed, time spent, hit timestamp, customer ID and sur-
vey score (if the action corresponds to survey response). The
dataset contains around 53,000 journeys from about 46,500
customers, with some customers having multiple journeys.
Since we over-sample journeys which have a response to
pop-up survey to obtain sufficient number of customer rat-
ings for validation, the sampled data have a higher percent-
age of ratings than the 0.7% in the whole data. The dataset is
split randomly into two groups for training (75%) and testing
(25%). Frequency distribution of a few commonly occurring
actions in the training data is shown in Table 1. The training
data have altogether 1,896,697 actions.

5 Experiments and Results
5.1 Proportion of good proxy ratings Z(k)

Figure 3 shows the distribution of Z(k) by different journey
lengths. Journey lengths vary: up to [25, 50, 75, 100]. We as-
sume that proportions in the range (0.4, 0.6) do not discrimi-
nate between poor and good ratings. Most of the proportions
are in the range (0.4, 0.6) across journeys. Focusing on ar-
eas to the left and right of this range, we find that these ar-
eas are not very different from each other, for each journey
length (e.g., 0.08 and 0.19 for journey length 50). We find no
empirical evidence that longer journeys are associated with
poorer ratings. This is not surprising because customers do
not judge satisfaction merely based on reaching an end state
quickly, but finding the right product for them is very impor-
tant and satisfying even if the journey is longer. The finding
that most journeys are in the middle (0.4, 0.6) is consistent
with evidence that most customers are in the middle when it
comes to satisfaction and experience and may not respond to
surveys, thereby biasing survey ratings toward the extremes
(Krosnick and Presser 2009).

5.2 Validation against Actual Survey
Validation Strategy Crucial to our validation is the pop-
up survey. Consider k-th customer’s sequence of click ac-
tions and pop-up survey response as shown in Figure 2.
The survey pops up unbeknownst to the customer during
her browsing session, provides an instantaneous measure, is
likely to prompt top of mind response during browsing, and
useful for online evaluation. It asks “Overall, how would
you rate your experience on the [company name] website to-
day?” on a 0-10 scale, where 10 is excellent. This question
relates well to the proxy ratings we compute since these rat-
ings are based purely on clickstream data, which are mani-
festations of browsing behaviors. The validation we perform
is: Do proxy ratings work as leading indicators of survey re-
sponses? The three parts to our experimental evaluation and
validation are as follows.

1. Next action prediction to obtain representations of states
capturing the history of action-sequences.

2. Value iteration to obtain proxy ratings for each click ac-
tion of each customer.

3. Validation of proxy ratings from Part 2 against customer
ratings from the pop-up survey.

The pop-up survey customer ratings are not used for model
training in Parts 1 and 2, and in Part 3 only used for final
validation. Implementation of Parts 1 and 2 is explained in
Section 3. Now we explain implementation of Part 3. From
Figure 2, the k-th customer performs a few click actions, a
pop-up appears at At(k)+1, after which more click actions
occur. Since we want the approach to be applicable across
different situations we do not want the model to know when
the survey appears. This is consistent with many online pop-
up surveys including the one in this data, where a customer
does not know while browsing whether and when a pop-up
survey may appear. Hence, the information about the sur-
vey is not treated differently from other click actions for
the purpose of model training. Our premise is that a cus-
tomer knows her goal, the set of click actions that are avail-
able to her, and she decides which click actions to choose
to reach her goal in a decision theoretic manner. The model
thus computes proxy rating values for all click actions of
this customer. Also note that we do not want the model to
know which customers receive pop-up survey and who do
not. Thus, we compute proxy ratings for all customers in the
data based on Parts 1 and 2. Then, solely for validation in
Part 3, we extract data for customers who gave actual sur-
vey ratings, since validation can only be done for those cus-
tomers. Each customer’s response to the survey is indicated
by At(k)+1. Thus, for validation, we use proxy ratings up to
and including At(k), but do not use ratings for later actions.
We do this to test whether proxy ratings up to and including
At(k) can predict survey responses with reasonable degree
of accuracy. An occurrence of purchase soon after or much
later than the pop-up survey does not impact our results.
Note that the occurrence of survey-response action At(k)+1

in the sequence of customers’ click actions vary across cus-
tomer journeys. E.g., the survey may appear after 20 click
actions (t(k) = 20) or after 100 click actions (t(k) = 100).
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Figure 3: Distribution of Z(k), by journey length (L)

Table 2: Validation on test data against Actual Survey

Variation Accuracy Recall Precision F1-Score
lag(1) 0.6274 0.7408 0.6760 0.7069
lag(2) 0.6633 0.7967 0.6938 0.7417

To be precise, for the k-th customer, we use proxy ratings
up to her action At(k), but not any rating value after At(k),
where t(k) varies across customers. Results presented are
aggregated across customers by incorporating this variation.

For each customer with a survey response, we consider
lag(1) and lag(2) values from Equation 6 for validation.
With lag(1) (substituting q = 1 in Equation 6), if z(k)At−1,At

=

1 we expect the actual survey rating to be good; while if
z
(k)
At−1,At

= 0 we expect a poor rating. Similarly, we char-
acterize lag(2) (q = 2 in Equation 6). For classification of
survey score, we use a simple approach. The 0-10 scale of
the pop-up survey has a natural mid-point 5, per design of
the scale. We assign 0-4 as poor, and 6-10 as good.

Validation Results With survey ratings and change in
proxy ratings classified as good and poor, we create a con-
fusion matrix across all respondent customers and evaluate
with common metrics such as, precision, recall, accuracy,
and F1. The results from the test data are presented in Ta-
ble 2. The first row uses z

(k)
At−1,At

. The second row uses

z
(k)
At−2,At

. We find accuracy varying between 0.63 and 0.66,
recall 0.74 to 0.80, precision 0.68 to 0.69, and F1 0.71 to
0.74. We note that these numbers are reasonable, but are not
high relative to domains of prediction and recommendation.
That said, (i) we do not use survey data to train the model;
and (ii) we posit an RL model with purchase as the only goal,
while customers arrive on a site with other goals, e.g., seek-
ing information. If customers can be grouped by goals and
different goal-specific rewards assigned, we expect perfor-
mance metrics to improve. Identification of customer-goals
becomes an interesting research problem in its own right. In
summary, we show that ratings uncovered from clickstream
work as reasonable proxy for actual survey responses, with
the large benefit of being obtained for every customer, and
for every session or journey.

5.3 Specific Action Identification
Action Identification Strategy Having shown that useful
proxy ratings can be obtained from clickstream, we now ex-

Table 3: Actions impacting experience

Source Target Purch. Z(au, aw)

Customize ProductCategory No 0.58± 0.010
Customize ProductCategory Yes 0.44± 0.009

Customize ProductDetail No 0.52± 0.014
Customize ProductDetail Yes 0.77± 0.013

Home ProductCategory No 0.68± 0.011
Home ProductCategory Yes 0.63± 0.013

Home ProductDetail No 0.22± 0.012
Home ProductDetail Yes 0.16± 0.009

amine whether useful insights can be drawn for individual
actions that customers perform on a site. By interpreting
value function outputs as proxy ratings and introducing a
new metric, we offer a systematic approach to identify ac-
tions that hinder or help toward better ratings. Since proxy
ratings are computed for every click action customers per-
form, our approach provides insights to websites by identi-
fying appropriate click actions which may require corrective
measure. For example, if it is found that a pair of succes-
sive actions (ac, ad) results in poor proxy score across most
customers, it behooves examining this sequence for proba-
ble corrective measure such as making the click action ad
less readily available when ac is clicked. We perform action
identification by confining to pairs of successive actions, that
is, sequences of length two. Alternatively, we can consider
sequences of length greater than two. But, it is difficult to at-
tribute a specific pair of action to a poor rating or a good rat-
ing. As an illustration, if the sequence (ac, ad, ae, af ) yields
poor rating, we cannot attribute which among (ad, ae, af )
behoove attention without additional analysis.

For each pair of successive actions we compute the pro-
portion of good ratings Z(au, aw), separately for journeys
that include purchase and for those which do not include pur-
chase. This is important because we want to avoid the poten-
tial confound of ratings with whether customers end up with
a purchase. Thus, for each of purchase and no-purchase con-
ditions, with 46 unique actions in our data, we have a 46x46
matrix, or, 2116 cells. However, since all action pairs are not
observed in the data (e.g., (Home, Add To Cart)), empiri-
cally we have 1861 populated cells. Note that the successive
actions in a pair can be identical; e.g., (ProductDetail, Pro-
ductDetail). Most action-pairs are not popularly traversed by
users. A site can choose to focus on action-pairs traversed
above a threshold value.
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Figure 4: Distribution of Correlations between y
(k)
At

and probability of purchase, by journey length (L)

Figure 5: Distribution of Correlations between Z(k) and probability of purchase, by journey length (L)

Action Identification Results Table 3 conveys results for
selected sample pairs as a way to illustrate the types of
interpretation and insight these proxy ratings can provide.
The results are presented in pairs of rows, corresponding
to (No,Yes) in Purchase column, for every pair of succes-
sive actions (Source, Target). Reviewing the last column
Z(au, aw) we note that if a proportion is close to 0.50 it
is not discernible for action identification, since good and
poor proportions are similar. We make two types of com-
parison: (a) for each successive pair of actions (Source,
Target), compare proportions for those who purchase and
those who do not; (b) for each type of customer groups -
non-purchasers and purchasers, compare proportions across
action-pairs. Considering (a), the proportions do not show
systematic differences between purchase and no-purchase
groups, although these differences are statistically signifi-
cant at 5%. In three action-pairs purchasers show a lower
score, while higher in one pair (Customize, ProductDetail).
Across all 1861 pairs in the data, we find no systematic dif-
ferences between these two groups, providing support that
our approach does not necessarily associate proportion of
good ratings with purchase. This is consistent with the lit-
erature that satisfaction and experience are not simply about
purchase (Lemon and Verhoef 2016) and also shows that our
approach to proxy ratings is not biased toward purchase. Fo-
cusing on (b), first consider action-pairs (Customize, Pro-
ductCategory) and (Customize, ProductDetail) for Purchase
= Yes. Moving from Customize to ProductDetail generates
significantly more good proxy ratings than moving from
Customize to ProductCategory (mean values 0.77 versus
0.44). This can be interpreted using the well-known concept
of purchase funnel (Hoban and Bucklin 2015), where transi-
tion along a funnel moves consumers from one stage to the
next; e.g., Home to ProductCategory to Customize to Pro-
ductDetail. If the transition moves to a stage further ahead
by skipping a stage, that may go against a smooth transi-
tion. To wit, Customize is a more detail-oriented activity.

A move from Customize to ProductCategory is a regressive
step, while moving to ProductDetail is a progressive step.
Thus, the latter is associated with higher good proxy rat-
ing. Next, consider action-pairs (Home, ProductCategory)
and (Home, ProductDetail). Within each of these pairs of ac-
tions, the no-purchase and purchase conditions show mean
values that are numerically close, namely, (0.68, 0.63) and
(0.22, 0.16), respectively. Across action-pairs, for both no-
purchase and purchase conditions, the values are different.
Going from Home directly to ProductDetail, by skipping
ProductCategory, is being interpreted as less fulfilling (0.22,
0.16), because often customers backtrack to ProductCate-
gory and re-start the funnel. The (Home, ProductCategory)
is a natural progression and favorable scores (0.68, 0.63)
support that interpretation. Thus, from (b), the differences
show that proxy scores can be interpreted to yield useful
insights which are associated with customer behavior in a
marketing funnel.

6 Discussion and Conclusion
We validate proxy ratings against actual survey scores and
identify relevant actions using proportions. As an auxiliary
goal, we now address purchase prediction since it is of com-
mon interest. In the following paragraphs we discuss two
purchase prediction tasks - one, predicting purchase at each
timestep of click action for every customer, and two, pre-
dicting whether a journey ends up with a purchase.

The benchmark model for task one is an LSTM trained
in a supervised manner to predict probability of purchase at
every timestep. For each timestep, our model yields proxy
rating as well as proportion of good ratings. For every
customer-journey, we compute correlation across time steps,
between probability of purchase and proxy rating y

(k)
At

. Fig-
ure 4 shows distributions of correlations by lengths of jour-
ney. The correlations are centered around zero as uni-modal
distributions. With journeys of length up to 25, the variance
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is large, but decreases with longer journeys. We also com-
pute, for every customer-journey, correlation across time
steps, between probability of purchase and proportion of
good ratings Z(k). Figure 5 shows these correlations form
bi-modal distributions and depict different patterns from that
of Figure 4. This suggests that the proportion Z(k) is a bet-
ter discriminator than proxy rating y

(k)
At

in relating to prob-
ability of purchase at each timestep. Additionally, our enu-
merated metrics are distinct from purchase probabilities at
every timestep and capture information about customer in-
teractions that purchase probability models do not.

Coming to task two, we know which journeys end up in
purchase. We enumerate Z(k) for every customer, across the
person’s whole journey. Then we use Z(k) to predict whether
or not purchase occurs at the end of the journey. We obtain
an AUC = 0.73. If we use actual customer survey scores to
predict purchase, an AUC = 0.51 is obtained, which is no
better than random prediction. Note that for the latter we
confine only to customers who provide survey ratings, most
of whom do not purchase. The metric Z(k) appears useful to
predict eventual purchase in a journey. Last but not the least,
yet another value-add from our model is that proxy ratings
can be computed every time a customer browses on a site
and thus her satisfaction and experience over sessions and
journeys can be ascertained. This unobtrusive measure can
provide early warning through downward trend in her proxy
ratings. This cannot be done using surveys.

In conclusion, we show that proxy ratings and derived
metrics of proportion are interpretable and insightful and can
serve as reasonably good alternatives to surveys. With much
advancement in online presence of firms, surveys have re-
mained prevalent despite well-known deficiencies. We offer
a way out of this situation through a reinforcement learn-
ing based extrication of proxy ratings from easily available
clickstream data. This research takes RL in a new direction
to better understand interactions in customer data and brings
RL a step closer to realizing its potential in the online firm-
customer interaction domain.
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