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Abstract

Directed graphs have been widely used in Community Ques-
tion Answering services (CQAs) to model asymmetric rela-
tionships among different types of nodes in CQA graphs, e.g.,
question, answer, user. Asymmetric transitivity is an essen-
tial property of directed graphs, since it can play an impor-
tant role in downstream graph inference and analysis. Ques-
tion difficulty and user expertise follow the characteristic of
asymmetric transitivity. Maintaining such properties, while
reducing the graph to a lower dimensional vector embed-
ding space, has been the focus of much recent research. In
this paper, we tackle the challenge of directed graph embed-
ding with asymmetric transitivity preservation and then lever-
age the proposed embedding method to solve a fundamental
task in CQAs: how to appropriately route and assign newly
posted questions to users with the suitable expertise and in-
terest in CQAs. The technique incorporates graph hierarchy
and reachability information naturally by relying on a non-
linear transformation that operates on the core reachability
and implicit hierarchy within such graphs. Subsequently, the
methodology levers a factorization-based approach to gener-
ate two embedding vectors for each node within the graph,
to capture the asymmetric transitivity. Extensive experiments
show that our framework consistently and significantly out-
performs the state-of-the-art baselines on three diverse real-
world tasks: link prediction, and question difficulty estima-
tion and expert finding in online forums like Stack Exchange.
Particularly, our framework can support inductive embedding
learning for newly posted questions (unseen nodes during
training), and therefore can properly route and assign these
kinds of questions to experts in CQAs.

Introduction
Community Question Answering services (CQAs) such as
Stack Exchange and Yahoo! Answers are examples of social
media sites, with their usage being examples of an impor-
tant type of computer supported cooperative work in prac-
tice. In recent years, the usage of CQAs has seen a dramatic
increase in both the frequency of questions posted and gen-
eral user activity. This, in turn, has given rise to several inter-
esting problems ranging from expertise estimation to ques-
tion difficulty estimation, and from automated question rout-
ing to incentive mechanism design on such CQAs (Fang et
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al. 2016; Sun et al. 2018a). Previous work (Wang, Jing Liu,
and Guo 2014; Sun et al. 2018a) proposed to assign a scalar
value to represent question difficulty (and user expertise).
However, question difficulty and user expertise can vary in
different topics. In Stack Exchange sites, users are required
to use tags (a tag is a word or phrase) to describe the topic(s)
of the question 1. Each question can be assigned multi-tags
to represent its most relevant topics. For example, in our ex-
periments, the average number of tags per question is 2.82
and 2.96 in Stack Exchange site Apple and Physics respec-
tively. Hence a solely scalar value to represent question dif-
ficulty level or user expertise is not thorough.

Some graph embedding methods (Fang et al. 2016; Zhao
et al. 2016; Zhao et al. 2017) are then proposed to address
the above limitation. The problem of graph embedding seeks
to represent vertices of a graph in a low-dimensional vector
space in which meaningful semantic, relational and struc-
tural information conveyed by the graph can be accurately
captured (Ma et al. 2018). Recently, one has seen a surge
of interest in developing such methods including ones for
learning such representations for directed graphs (while pre-
serving important properties) (Ou et al. 2016), which is the
focus of our research. A property of singular importance
within a directed graph is asymmetric transitivity, which
plays a very important role in tasks of graph inference and
analysis (Ou et al. 2016). Question difficulty and user ex-
pertise follow the characteristic of asymmetric transitivity.
For example, given a question q1 is easier than q2 and q2
is easier than q3, we can infer that q1 is easier than q3 eas-
ily. It happens to estimating user expertise too. We can in-
fer that u1 has more expertise than u3 based on the fact
that u1 has more expertise than u2 and u2 has more exper-
tise than u3 in a specific domain. In this paper, we tackle
the challenge of directed graph embedding with asymmetric
transitivity preservation and then leverage the proposed em-
bedding method to solve a fundamental task in CQAs: how
to appropriately route and assign newly posted questions to
users with the suitable expertise and interest in CQAs.

HOPE (Ou et al. 2016), one of the state-of-art directed
graph embedding methods, relies on high-order proximity
features (e.g. Adamic Adar (AA), Katz Index (KI), Common
Neighbors (CN)) to approximate asymmetric transitivity.

1https://stackoverflow.com/help/tagging
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Zhou et al. (Zhou et al. 2017) proposed a random walk based
graph embedding method named as APP which can implic-
itly preserve the Rooted PageRank (RPR), another higher-
order proximity feature, in the embedding space. However,
cycles in directed graphs are very common, and these cy-
cles can undermine the performance of embedding strategies
such as HOPE and APP, and hence severely limit the capa-
bility of the learned embedding vectors in graph inference
and analysis. Figure 1 illustrates the limitation of using high
order proximities for preserving asymmetric transitivity.

Figure 1: Illustration of the limitation of using high order
proximities for preserving asymmetric transitivity due to the
existence of cycles in the graph: the KI proximity from
B to E (inner product between the source vector us

B and
the target vector ut

E , generated by HOPE) represented as
KI(B,E) is 0.0041, which is smaller than the KI proxim-
ity from E to B (inner product between the source vector
us
E and the target vector ut

B) represented as KI(E,B) =
0.0067. HOPE will predict the edge direction is from E to
B, which is opposite to the real edge (B,E). A similar prob-
lem occurs with RPR too, since RPR(B,E) = 0.2129,
which is smaller than RPR(E,B) = 0.2446. Due to the ex-
istence of cycles among node B, C, D, and E, CN and AA
are the same for node pair (B,E) and (E,B). The AA prox-
imity predicted by HOPE are AA(B,E) = AA(E,B) =
0.5, and CN proximity are CN(B,E) = CN(E,B) = 0.
Hence neither AA or CN can make a confident prediction
for the transitivity between B and E. However, with us-
ing our framework ATP, we can address above limitation.
For example, ATP can predict ATP (B,E) = 1.48 and
ATP (E,B) = 8.18e−10, which strongly indicates that the
edge direction is from B to E.

A strong hierarchical structure in the context of directed
networks can help explain complex interactions in many
real-world phenomena (Tatti 2015), including asymmetric
transitivity. Each node can be assigned a ranking score to
represent where it stands in the entire network. The rela-
tionship among nodes in such a scenario is fully transitive.
For example, if a node i has a lower hierarchy than j, and
j has a lower hierarchy than k, we then can infer that i
must have a lower hierarchy than k. In graphs with strong
hierarchical structure, edges are expected to flow from
lower hierarchies to higher hierarchies (Gupte et al. 2011;
Tatti 2015). However, when transitivity is being predicted
leveraging the graph hierarchy alone, without incorporating
the inherent graph reachability property, it can sometimes
lead to false positive predictions. For example, a lower hi-
erarchy node in a subgraph may not reach a higher hierar-

chy node in another subgraph which has no connection with
the previous subgraph. To redress such problems, one may
want to explicitly account for graph reachability as discussed
next.

Transitive closure (TC) of a directed graph is a methodol-
ogy (usually housed in a simple data structure) that makes
it possible to answer reachability questions. The TC of a
graph G = (V,E) is a graph G+ = (V,E+) such that for
all v, w in V there is an edge (v, w) in E+ if and only if
there is a non-null path from v to w in G. However, comput-
ing TC for large directed graphs with cycles is expensive,
while computing TC of directed acyclic graphs (DAGs) is
practical (Simon 1988). To leverage the above intuition,
we propose to first remove a subset of cycle edges which
violate the graph hierarchy to reduce a directed graph to
a DAG and then leverage the TC of the reduced DAG to
represent graph reachability. We examined several strategies
for breaking cycles while preserving the graph hierarchy
as much as possible (Herbrich, Minka, and Graepel 2007;
Tatti 2015), and found an ensemble approach proposed by
Jiankai et al. (Sun et al. 2017) coupling some of these
approaches can meet our requirements. Another benefit of
breaking cycles is that the reduced DAG has a very strict
hierarchy, and each vertex can be assigned a ranking score
effectively and efficiently.

A key challenge now is how to incorporate graph hier-
archy and reachability in a unified framework to preserve
the asymmetric transitivity in the embedding space. To this
end, we build an asymmetric matrix M , which is a non-
linear transformation of a diagonal matrix D and an ad-
jacency matrix A. Here, A is the adjacency matrix of the
transitive closure of the reduced DAG which implicitly con-
tains graph reachability information, and D is a diagonal
matrix storing the nodes’ hierarchical ranking score along
the diagonal entries of a square matrix. Then a factorization
based method is applied to M to generate approximate em-
beddings. In our experiments, an efficient non-negative ma-
trix factorization (NMF) (Cheng et al. 2017) using Cyclic
Coordinate Descent(CCD) (Nisa et al. 2017) with appro-
priate regularization is leveraged to generate the embed-
ding. Two embedding vectors, source and target vector, are
learned for each node to capture the asymmetric transitiv-
ity. Through the time complexity analysis of all procedures
in our proposed Asymmetric Transitivity Preserving graph
embedding framework (ATP), we demonstrate that ATP can
be applied to large directed graphs efficiently.

We also conducted extensive experiments to verify the
usefulness and generality of the learned embedding in vari-
ous tasks such as link prediction, and question difficulty es-
timation and expert finding in online CQAs such as Stack
Exchange sites. Particularly, ATP can support inductive em-
bedding learning for newly posted questions (unseen nodes
during training), and therefore can route and assign these
kinds of questions to approximate experts in CQAs, which
tackles a fundamental challenge in crowdsourcing.

Related Works
Graph embedding approaches fall into three broad cate-
gories classified by Goyal et al. (Goyal and Ferrara 2017):
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(1) Factorization based, (2) Random Walk based (Perozzi,
Al-Rfou, and Skiena 2014; Yang et al. 2015; Gao et al.
2018), and (3) Deep Learning based (Pan et al. 2016;
Dong, Chawla, and Swami 2017; Liang et al. 2018). Our
proposed ATP is factorization based, and hence we focus on
discussing about factorization based techniques in this sec-
tion.

Factorization based graph embedding usually solves the
graph embedding problem in two steps as follows: (1) rep-
resent the connections between nodes in the form of a ma-
trix, and (2) factorize the matrix to get a set of node em-
bedding (Cai, Zheng, and Chang 2017; Goyal and Ferrara
2017). Based on how we construct the input matrix, ma-
trix factorization based approaches are categorized into two
types: One is to factorize graph Laplacian, and the other is
to directly factorize the node proximity matrix (Cai, Zheng,
and Chang 2017). The node proximity is preserved by min-
imizing the loss during the factorizing the node proximity
matrix.

It has been recently shown that many popular random
walk based approaches such as DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014), LINE (Tang et al. 2015), and
node2vec (Grover and Leskovec 2016) can be unified into
the matrix factorization framework with closed forms (Qiu
et al. 2018). However, these methods ignore the asymmetric
nature of the path sampling procedure and train the model
symmetrically, which restricts their applications. Since node
pairs from two hop away will be regarded as negative labels,
LINE can only preserve symmetric second-order proximity
when applied to directed graphs (Zhou et al. 2017).

Higher order proximity is considered by many traditional
similarity measurements, and has been shown to be effec-
tive in many real world tasks. HOPE (Ou et al. 2016) pro-
posed to use high-order proximities (AA, CN, RPR, and KI)
to approximate asymmetric transitivity. Theoretical analysis
shows that APP implicitly preserves the RPR (Zhou et al.
2017). However cycles in directed graphs as shown in Fig-
ure 1 can hurt the performance of asymmetric transitivity
preserving for HOPE and APP, and hence severely limit the
capability of the learned embedding vectors in graph infer-
ence and analysis.

Our Framework ATP
We now describe the 4-step work-flow of ATP framework,
which is illustrated in Figure-2 with a toy example, and then
present the computational complexity of our methodology.
In the first step (Section 3.1: Breaking Cycles), an input
directed graph G is reduced to a DAG G′ by removing a
small set of cycle edges which violate the graph hierarchy.
Then in the second step (Section 3.2: Inferring Graph Hi-
erarchy), each node is assigned a ranking score efficiently
based on the hierarchical structure of G′. The third step
(Section 3.3: Incorporating Hierarchy and Reachability) in-
volves the construction of the proposed novel objective ma-
trix M to incorporate both graph hierarchy and reachability
information. Nodes’ hierarchical information can be repre-
sented using a diagonal matrix D, while the transitive clo-
sure of G′ is represented by A. These two matrices (A and

D) are used to build the matrix M using a non-linear trans-
formation which can preserve hierarchical rankings between
local nodes much better than an ordinary linear model. The
final step (Section 3.4: Generating Asymmetric Transitiv-
ity Preserving Graph Embedding from M ) involves the effi-
cient application of NMF on M to produce two matrices S
and T , which can be interpreted as asymmetric transitivity
preserving source vectors and target vectors of all the nodes
in the graph.

Breaking Cycles
Reducing a directed graph G = (V,E) to a DAG G′ =
(V,E′) has two obvious advantages: 1) making it possible
for us to compute the transitive closure of G′; 2) inferring
the hierarchy of G′ becomes easier, since a DAG has a very
strict hierarchy.

We examined several strategies for breaking cycles while
preserving the graph hierarchy as much as possible, and
found an ensemble approach H Voting proposed by Jiankai
et al. (Sun et al. 2017) can meet our requirements. H Voting
selects the edge with the highest voting score for removal in
a fast, scalable, and fully automated way. The voting score
of each edge is determined by the severity of their viola-
tion, which means that edges that respect the hierarchy re-
ceive a score of 0 and score increase linearly as the hierarchy
violation becomes more severe. The corresponding hierar-
chy is inferred by ensembling TrueSkill (Herbrich, Minka,
and Graepel 2007) and Social Agony (Gupte et al. 2011;
Tatti 2015). Figure 1 illustrates that edges (C,B), (D,B),
(E,C) and (E,D) are removed by H Voting to break cycles.
Empirically, it has been shown that H Voting, can accurately
identify the edges to be removed, even in noisy and large-
scale real-world graphs. The time complexity of breaking
cycles is O(E2) in the worst case, which happens in directed
complete graphs 2.

Inferring Graph Hierarchy
Given that the graph has been converted to a DAG using
the previous step, graph hierarchy can be inferred based on
this reduced DAG. Given a graph G = (V,E), inferring
graph hierarchy means that we have to construct a function
r : V → Z, which maps each vertex to an integer, represent-
ing corresponding vertex’s hierarchy in G. The computed
graph hierarchy is fully transitive and can be used to infer
the asymmetric transitivity in G. One straightforward way to
compute a ranking score for each vertex is to use topological
sorting. However, topological sorting is non-deterministic.
Hence we modify topological sorting algorithm by assign-
ing a ranking score to each vertex in a DAG recursively fol-
lowing the steps below: Step 1) assign the current ranking
score o 3 to all nodes with zero in-degree; Step 2) update the
target graph by removing all zero in-degree nodes and their
corresponding out-going edges; Step 3) update the current
ranking score o by increasing 1.

2Every pair of distinct vertices is connected by a pair of unique
edges (one in each direction).

3Ranking score o is initialized to 1.
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Figure 2: Illustration of Asymmetric Transitivity Preserving (ATP) graph embedding framework

Figure 1 shows each node’s ranking score inferred by
the above procedures. For example, node A’s in-degree in
the reduced DAG is 0 while its hierarchy is represented as
r(A) = 1. The time complexity of above procedure is the
same as topological sorting, which is O(|V |+ |E|).

Incorporating Hierarchy and Reachability
The hierarchical ranking score inferred by the methodology
in Section 3.2 reflects where a node stands in the entire net-
work, and it is fully transitive. However, the sole assumption
that edges are from lower to higher hierarchy nodes fails
to incorporate the inherent graph reachability property, and
hence is prone to generating many false positive predictions
during down-stream analysis tasks (eg: link prediction using
the generated node embeddings). Thus the key challenge is
to combine both graph hierarchy and reachability inside a
unified framework, which we discuss next.

TC can be thought of as constructing a data structure that
makes it possible to answer reachability questions. Instead
of computing TC of the original directed graph G, we com-
pute the TC of the reduced DAG G′ and represent it as its
adjacency matrix A ∈ R|V |×|V |. If node i can reach j in
G′, then the corresponding element Ai,j = 1, otherwise
Ai,j = 0.

A contains the information of graph reachability, but
it treats the hierarchical difference between any reachable
node pairs the same (equal to 1). To emphasize the impact
of these non-zero elements in A and leverage graph hierar-
chy, a simple way is to replace each non-zero element by
corresponding node pair’s hierarchical difference, which is
equivalent to applying a linear function to transform A to
L ∈ R|V |×|V |. For each non-zero element Ai,j = 1 in A, its
corresponding Li,j in L is ∆i,j = r(j)− r(i) and ∆i,j ≥ 1.

Suppose D ∈ R|V |×|V | is a diagonal matrix, where each
non-zero element in the diagonal is Di,i = r(i). Then we
have:

L = AD −DA (1)

Empirically, the maximum value of ∆ in L is much larger
than the minimum value (which is 1). The high (and vary-
ing) range of values in ∆ will unfavourably amplify the ef-
fect of large hierarchical difference values while damping
the effects of smaller values, thereby negatively impacts the

transitivity preserving property in local sub-graphs. To over-
come this limitation, we seek to reduce the absolute values
of ∆ to smaller ones, while preserving its important mono-
tonic property. We observe that a simple yet popular har-
monic series, which is a non-linear and non-decreasing func-
tion, can satisfy our requirements very well and can be used
to build the proximity matrix M ∈ R|V |×|V |. Each non-zero
entry Li,j ∈ L is transformed to Mi,j = 1 + 1

2 + ...+ 1
∆i,j

in M . Since a harmonic number h(∆i,j) =
∑∆i,j

k=1
1
k can be

approximated by (γ + log(∆i,j))
4, without loss of general-

ity, we represent each non-zero element Mi,j = c+ log(e+
∆i,j), where c is a constant, and e is the mathematical con-
stant satisfying log(e + ∆) > 0. Figure 2 provides an ex-
ample of computing M , where c = 0. After this non-linear
transformation, the gap of hierarchical rankings between lo-
cal nodes can be noticed and well preserved compared to the
linear model. Thus, the final matrix M incorporating both
graph hierarchy and reachability, is computed as:

M = cA+log(eA+L) = cA+log(eA+AD−DA) (2)

Constructing the adjacency matrix A is equivalent to
computing the transitive closure of G′, which has a worst-
case time complexity of O(|V |2loglog(|V |)) (Simon 1988).
The time complexity of computing L with Equation 1 is
equal to the number of non-zero elements in A, which is
O(|V |2) in the worst case. Hence, the time complexity of
constructing M is O(|V |2loglog(|V |)) in the worst case.

Generating Asymmetric Transitivity Preserving
Graph Embedding from M

We have discussed how to build the non-negative proximity
matrix M , which is a function of the adjacency matrix of the
transitive closure of the reduced DAG and a diagonal matrix
which contains graph hierarchy. In this section, we propose
to use factorization models to generate asymmetric transitiv-
ity preserving embedding for the given directed graph.

The most straightforward way is to apply NMF on M to
generate asymmetric transitivity preserving embedding for
the given directed graph. NMF of the (|V | × |V |) matrix

4γ is the Euler-Mascheroni constant, log is the Natural loga-
rithm
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M generates a low-rank approximation of it: M ≈ ST ,
where S ∈ R|V |×k and T ∈ Rk×|V |, as shown in Figure 2.
Each row in S represents a node’s out-reach (source) vector,
and each column in T represents a node’s in-reach (target)
vector. k is the dimension size of the source/target embed-
ding space. NMF step is a core part in generating the em-
bedding and we apply a multi-core GPU version of NMF
using CCD GPUCCD++ (Nisa et al. 2017) with appropriate
regularization to generate the embedding for large graphs ef-
ficiently. The time complexity per iteration of GPUCCD++
is O(k|V |2) in the worst case.

To predict whether there is a directed path from node i
to node j, we check the value of σ(⟨s⃗i, t⃗j⟩), where σ is the
sigmoid function, s⃗i is node i’s source vector and t⃗j is node
j’s target vector respectively. If σ(⟨s⃗i, t⃗j⟩) > α, there is
a predicted path from i to j. α is a threshold with range
in [0.5, 1). We set α = 0.5 in our experiments, which we
empirically found to work well.

Complexity Analysis
In this section, we analyze the complexity of the whole
framework of ATP, given a directed graph G = (V,E) as
input. Fundamental procedures of ATP are breaking cycles,
inferring graph hierarchy, constructing M , and factoriza-
tion of M . In the worst case, their corresponding time com-
plexity is O(|E|2), O(|E|+ |V |), O(|V |2loglog(|V |)), and
O(|V |2k) per iteration (NMF) respectively. By combining
them, the time complexity of ATP is O(|E|2) in the worst
case (G is a directed complete graph). The bound is very
pessimistic in practice, and the bottleneck part (breaking cy-
cles) can be parallelized since it can perform on each SCC
independently to remove cycle edges.

Experiments and Analyses
We apply our graph embedding framework ATP to three di-
verse tasks: link prediction, and question difficulty estima-
tion and expert finding in CQAs.

Link Prediction
In link prediction, we would like to predict these missing
edges given a network with a certain fraction of edges re-
moved. The labeled dataset of edges (or node pairs) consists
of positive and negative examples. Given a random edge e,
if the removal of this edge will not disconnect the residual
network, e will be selected as a positive example. We select
r = 10% edges as positive examples. To generate negative
examples, we randomly select an equal number of node pairs
from the network which have no edges connecting them 5.
Hence 2r edges and node pairs are selected for evaluation.

Datasets used for evaluation are Wiki-Vote6, GNU7, Cit-
HepPH8, which were used in prior work (Lai et al. 2017).

5Each node pair (u, v) in negative samples satisfies the condi-
tion that v can reach u, but u cannot reach v in the network.

6https://snap.stanford.edu/data/wiki-Vote.html
7https://snap.stanford.edu/data/p2p-Gnutella31.html
8https://snap.stanford.edu/data/cit-HepPh.html

Table 1: Comparisons between ATP and the state-of-the-art
methods on link prediction, evaluated by AUC

AUC Wiki-Vote Cit-HepPH GNU

LINE 2-nd order 0.4423 0.3310 0.4748

AA 0.7672 0.7385 0.5565
HOPE CN 0.7860 0.7570 0.5736

AI 0.7784 0.7440 0.6159

SVDM Harmonic 0.8200 0.7522 0.8166
log 0.8215 0.7929 0.8162

Constant 0.9123 0.7939 0.8684
Linear 0.9462 0.8682 0.8893

ATP log 0.9481 0.8916 0.9314
Harmonic 0.9478 0.8892 0.9288

Following existing literature (Grover and Leskovec 2016;
Yang et al. 2017; Tran 2018), we use Area Under Curve
(AUC) to evaluate the link prediction performance. We com-
pare our method with the most recent work for asymmetric
proximity preserving.
• ATP and its variants: ATP-Constant (M = A), ATP-

Linear (M = L), ATP-Harmonic, and ATP-log (By de-
fault ATP refers to ATP-log). ATP-Harmonic, and ATP-
log transforms L to M by harmonic and log function re-
spectively.

• HOPE(Ou et al. 2016): As the time complexity of com-
putation of RPR is too high, we only report performances
of HOPE-AA, HOPE-CN, and HOPE-KI here.

• SVDM: SVD-Harmonic and SVD-log use the same way
to build M as ATP-Harmonic and ATP-log respectively.
However, unlike ATP, SVD-Harmonic and SVD-log per-
forms Singular Value Decomposition (SVD) as used in
HOPE on M and selects the largest k singular values and
corresponding singular vectors to construct the embed-
ding.

• LINE (Tang et al. 2015): It is worth mentioning that
LINE can only preserve symmetric second-order proxim-
ity when applied to a directed graph. In our experimental
settings, vertex vectors are considered as source vectors,
and context vectors are used as target vectors.

Performance Analysis We can conclude from the perfor-
mance as shown in Table 1 that:
• Since Harmonic numbers can be approximated by log

functions, log and Harmonic transformation can achieve
similar performance in both ATP and SVDM. By default,
we use log function as our non-linear transformation. It
is noticeable that ATP performs better than SVDM. In
average, ATP improves over SVDM by 22.01% among
all datasets (from 12.45% to 40.67%), which shows the
advantage of leveraging NMF to perform transitivity pre-
serving graph embedding.

• ATP and SVDM perform better than HOPE. In average,
SVDM improves over HOPE-KI by 13.72% among all
datasets, and ATP improves over HOPE-KI from 19.84%
to 51.97%. The only difference between SVDM and
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Table 2: Statistics of Stack Exchange Sites

Sites Apple Gaming Physics Scifi Unix
# nodes 133K 117K 127K 59K 167K
# edges 161K 190K 188K 97K 249K

HOPE is the technique used to build M . The results
demonstrate the advantage of incorporating graph reach-
ability and hierarchy to construct M , in comparison to
building a higher order proximity matrix based on AA,
CN, and KI.

• Both ATP-Harmonic and ATP-log perform better than
ATP-Linear and ATP-Constant as expected, and ATP-
Linear performs better than ATP-Constant. For example,
ATP-log improves over ATP-Constant by 8.51% in av-
erage among all datasets. ATP-log improves over ATP-
Linear by 4.74% on the largest dataset GNU. It shows the
efficacy of applying non-linear transformation to M .

Question Difficulty Estimation and Expert Finding
in CQAs
In this section, we start by discussing how to apply ATP
to estimate question difficulty and user expertise. We then
show how to embed newly posted questions (unseen nodes
in the training) inductively and identify best answerers for
newly posted questions in CQAs.

Question Difficulty and User Expertise Estimation in
CQAs We first talk about how to apply our graph embed-
ding technique into question difficulty and user expertise es-
timation, which is a central part of automated question rout-
ing in CQAs. We select 5 large and popular sites from Stack
Exchange 9 for evaluation. More details about the Stack Ex-
change sites can be found in the Table 2. For each Stack
Exchange site, ATP uses the same competition graph as the
input as QDEE (Sun et al. 2018a) which assigns solely scalar
value to represent question difficulty level and user exper-
tise. In this section, we will show the advantages of learn-
ing latent representations for question difficulty (question
nodes) and user expertise (user nodes) by leveraging ATP.

Following the same setting as QDEE (Sun et al. 2018a),
questions which were provided non-zero bounty scores
are selected as our ground truth for evaluation, and pair-
wise accuracy (Acc)10, as used by previous studies (Wang,
Jing Liu, and Guo 2014; Sun et al. 2018a), are used to
measure the effectiveness of different estimation techniques.
Higher accuracy indicates better performance of the tech-
nique. We evaluate ATP and other state-of-the-art meth-
ods such as TrueSkill (Wang, Jing Liu, and Guo 2014),
Number-Of-Answers (Yang et al. 2014), Time-First-
Answer, Time-Best-Answer (Huna, Srba, and Bielikova
2016) and QDEE (Sun et al. 2018a) on the task of question
difficulty estimation.

Question difficulty estimation performance is shown in

9We used the data dump which is released on June 12, 2017 and
is available online at https://archive.org/details/stackexchange

10Acc = # correctly predicted question pairs
# all question pairs
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Figure 3: Pairwise accuracy of different approaches to esti-
mate question difficulty

Figure 3. We can conclude that ATP performs the best on
almost all of the Stack Exchange sites. For example, ATP
improves over TrueSkill, Number-of-Answer, and QDEE
on average by 6.56%, 5.92%, and 5.06% respectively in 5
Stack Exchange sites. TrueSkill suffers from the data spar-
sity problem. Each question has only one in-edge (from
questioner) and one out-edge (to the best answerer), which
limits the accuracy of TrueSkill. ATP can leverage graph
reachability and hence each question can have interactions
with other questions and users, which can overcome the data
sparseness.

Inductive Embedding Learning for Cold Question Rout-
ing in CQAs Usually, there are two types of questions in
CQAs – resolved (questions with answers) and newly posted
questions (questions that have not received any answers). We
refer to these newly posted questions as cold questions. The
majority of approaches have focused on evaluating content
quality after the fact (after questions have been resolved)
(Yang et al. 2013). Yet, as the CQAs continue to grow, rout-
ing the cold questions to matching experts before answers
have been provided has become a critical problem. For ex-
ample, in Stack Overflow, about 4.8 million questions have
not been answered 11.

In this section, we show that ATP can generate quality
embedding for new vertices (cold questions) unseen dur-
ing training, therefore supporting inductive learning in na-
ture. Our idea is to leverage Expertise Gain Assumption
(EGA) (Sun et al. 2018a) to bridge the gap between cold-
start and well-resolved questions asked by the same user.
Given a cold question q∗ asked by a user u∗, the most recent
k questions asked by the same user u∗ are q1, q2, ..., qk and
their associated embedding are available to us (they can be
seen during training). We use the embedding of the question
which has the highest difficulty level among q1, q2, ..., qk to
approximate q∗’s embedding. A question qmax is consid-
ered to have the highest difficulty level if σ(⟨s⃗qi , t⃗qmax⟩) >
σ(⟨s⃗qmax , t⃗qi⟩) for all i ∈ [1, k] and qi ̸= qmax. Then
s⃗q∗ = s⃗qmax

and t⃗q∗ = t⃗qmax
. We note that it is possi-

ble that the user posing the question is a new user (or one
that has not posted a sufficient number of questions). In this
case, k well-resolved questions that are closest (i.e. cosine

11https://stackoverflow.com/unanswered
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similarity) to q∗ in textual descriptions 12, are picked as its
nearest neighbors. The source and target embedding of q∗ is
predicted as the averaged source and target embedding of its
nearest neighbors respectively.

Our task of cold question routing is to select the user who
has the highest possibility to be selected as the best answerer
for a newly posted question. Given the testing question set
Qt, the predicted ranking list of all potential answerers for a
test question q∗ is Rq∗ for all q∗ ∈ Qt. The ranking score of
a potential answerer u for the cold question q∗ is computed
as σ(⟨s⃗q∗ , t⃗u⟩). The answerer who has the highest ranking
score will be selected as the best answerer for q∗.

We compare ATP with state-of-the-art methods (
BoW (Figueroa and Neumann 2013), Doc2Vec (Dong et
al. 2015), LDA (Ji et al. 2012), CQARank (Yang et al.
2013)), QDEE (Sun et al. 2018a), and ColdRoute (Sun
et al. 2018b), based on several popular evaluation criteria
such as Mean Reciprocal Rank (MRR) (Zhu et al. 2014),
Precision@3 (Zhao et al. 2017; Sun et al. 2018b), and Ac-
curacy (Zhao et al. 2017; Sun et al. 2018b). We followed the
same settings proposed by Jiankai et al. (Sun et al. 2018b)
to select cold questions for evaluation.

Table 3 shows the performance of different approaches
on the task of cold question routing, evaluated by MRR,
Precision@3 and Accuracy. Jiankai et al. (Sun et al. 2018b)
reported that ColdRoute performed consistently better than
BoW, Doc2Vec and LDA. To save space, we omitted their
performance Table 3. Based on the results, we can make the
following observations:

• ATP performs the best overall evaluation metrics in al-
most all Stack Exchange sites. For example, ATP im-
proves upon routing metric Accuracy over ColdRoute
by 6.14%, since ColdRoute fails to take the interac-
tions between questions (asked by the same asker) into
consideration. ATP improves upon routing metric MRR
over QDEE by 7.59%, which indicates that incorporat-
ing graph reachability and representing user expertise and
question difficulty as a feature vector can help ATP iden-
tify matching experts for cold questions more accurately
and robustly than the state-of-the-art methods.

• ATP performs better than CQARank. The reason is that
CQARank’s Q&A graph contain more noise than the
competition graph used by ATP. The direction of edges
in CQARank’s Q&A graph is from the asker to the an-
swerer. The underlying assumption is that askers have
lower expertise than corresponding answerers. However,
Wang et al. (Wang, Jing Liu, and Guo 2014) shows that
the expertise of the asker is not assumed to be lower than
the expertise score of a non-best answerer, since such a
user may just happen to see the question and responded
that, rather than knowing the answer well. These kinds
of answers do not show corresponding answerers’ ex-
pertise are higher than the asker’s expertise. The gen-
erated noise edges in CQARank’s Q&A graph can un-
dermine CQARank’s performance on experts finding for

12Each question can be represented as a feature vector by
LDA (Ji et al. 2012)

Table 3: Comparisons between ATP and the state of the art
methods on cold question routing in CQAs, evaluated by
MRR, Precision@3 (P@3), and Accuracy.

Apple Gaming Physics Scifi

MRR CQARank 0.4914 0.4463 0.5315 0.4628
QDEE 0.5579 0.6011 0.524 0.5895

ColdRoute 0.5365 0.6445 0.5288 0.6462
ATP 0.574 0.6242 0.5814 0.6405

P@3 CQARank 0.5855 0.5144 0.699 0.552
QDEE 0.7094 0.8019 0.6888 0.7455

ColdRoute 0.6581 0.7796 0.7194 0.7741
ATP 0.7564 0.8179 0.7398 0.8064

Acc. CQARank 0.5555 0.4979 0.6483 0.5693
QDEE 0.6852 0.737 0.6401 0.711

ColdRoute 0.6324 0.7387 0.6354 0.7369
ATP 0.7041 0.7504 0.6895 0.7695

cold questions.

Conclusion
In this paper, we have proposed a novel asymmetric tran-
sitivity preserving directed graph embedding framework
(ATP). Our scalable embedding technique incorporates both
graph hierarchy and reachability information by construct-
ing a novel asymmetric matrix, which is a non-linear trans-
formation of an adjacency matrix (graph reachability) and a
diagonal matrix (graph hierarchy). An efficient factorization
based approach is used to generate two embedding vectors
for each node to capture the asymmetric transitivity.

With incorporating graph hierarchy and reachability, ATP
can perform better than the state-of-the-art in various tasks
such as link prediction, and question difficulty estimation
and cold question routing in CQAs. And we have proposed
several approaches to combine both graph hierarchy and
reachability inside a unified framework, and empirically the
non-linear transformation works the best.

As extension of current study, we plan to apply our model
to other applications such as community detection in dy-
namic networks (Wang et al. 2018) and exception-tolerant
abduction (Zhang, Mathew, and Juba 2017) in attributed
networks (Liang et al. 2018). We also would like to address
the problem of routing newly posted questions (item cold-
start) to newly registered users (user cold-start) in CQAs,
with hoping to increase the expertise of the entire commu-
nity.
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