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Abstract

Fine-grained classification is absorbed in recognizing the
subordinate categories of one field, which need a large num-
ber of labeled images, while it is expensive to label these
images. Utilizing web data has been an attractive option to
meet the demands of training data for convolutional neural
networks (CNNs), especially when the well-labeled data is
not enough. However, directly training on such easily ob-
tained images often leads to unsatisfactory performance due
to factors such as noisy labels. This has been conventionally
addressed by reducing the noise level of web data. In this
paper, we take a fundamentally different view and propose
an adversarial discriminative loss to advocate representation
coherence between standard and web data. This is further
encapsulated in a simple, scalable and end-to-end trainable
multi-task learning framework. We experiment on three pub-
lic datasets using large-scale web data to evaluate the effec-
tiveness and generalizability of the proposed approach. Ex-
tensive experiments demonstrate that our approach performs
favorably against the state-of-the-art methods.

Introduction
Deep learning has shown impressive improvement on many
computer vision tasks, e.g., general image classification, ob-
ject detection and scene recognition etc. Many fine-grained
classification works using convolutional neural networks
(CNNs) also achieved surprising results (Xiao et al. 2015).
The success of CNNs is inseparable from large-scale well-
annotated image datasets. Nevertheless, CNNs are data-
hungry. (Oquab et al. 2014; Yang et al. 2015) consider the
transferability of CNNs by firstly initializing parameters
with a pre-trained model (e.g., AlexNet, VggNet) generated
on a large-scale dataset and then fine-tuning it on a target
well-labeled dataset. This is partially mitigated by employ-
ing pre-trained models, but a large-scale dataset is still nec-
essary for better domain adaptation. Hence, they are becom-
ing the de facto standard for tasks where it is possible to
collect large well-annotated training sets, often by crowd-
sourcing manual annotations. However, manual labeling is
costly, time-consuming and error-prone, raises privacy con-
cerns, and requires massive human intervention for every
new task.
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Figure 1: Examples from (a) the Stanford Dogs dataset, (b)
the web images (Web-Dog) and (c) the L-Dog dataset. Note
the Stanford Dogs dataset is well-labeled by users, while the
other two datasets are labeled with keywords on the web.
The cross dataset training-testing accuracies are shown in
the center, where “Tr” and “Te” indicate training set and test
set respectively. The gap between the results of Tr and Te
on the same dataset and those of Tr and Te on different
datasets shows that these datasets are not generalized well
to each other.

As an alternative approach, using network can collect a
large number of images more quickly and easily. Although
it is inevitable that the web data has some noise, the large
number of network data can make up for this deficiency.
Some recent works (Chen and Gupta 2015; Xu et al. 2015;
Gong and Wang 2017) have shown that fine-tuning CNNs
with extensive web data can be more effective than only
with a small-scale clean dataset. Different from work focus-
ing on reducing the noisy level of web data, we consider
that the content of the web image is usually complicated
comparing with the clean dataset. For example, a web im-
age contains several objects including a target object, where
the target object is located at the edge of the image or has
a small size, which makes the target object difficult to be
distinguished. Therefore, there is a gap between web im-
ages and well-labeled images, which may be produced by
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different levels of information complexity (web images of-
ten contain richer content than clean training images), var-
ious localizations and scales of objects, and the image la-
bel differences (noisy labels), etc. To effectively utilize web
data, previous work focuses on filtering web data to remove
noisy images with incorrect tags as much as possible. Inter-
estingly, (Joulin et al. 2016) suggests that if the amount of
web data is large, “label cleansing” may not be necessary
even if the network data is noisy.

In this paper, we address this problem by exploring the
gap between web and well-labeled data which is attributed
to many factors including noisy labels, and differences in
object locations, object sizes, viewing angles, scenes, back-
ground clutter, etc. For a quick preview, the cross dataset
training-testing results in Figure 1 demonstrate the influence
of the gap between the web and standard datasets. The model
fine-tuned from Resnet50 on Stanford Dogs dataset (Aditya
et al. 2011) has the testing accuracy of 0.81 on itself, but only
gets 0.58 on the web data (Yang et al. 2018) and 0.63 on the
L-Dog dataset. Moreover, the model trained directly on web
data and tested on Stanford Dogs dataset gets an accuracy
of 0.68, which is greatly lower than 0.81 (both training and
testing are on the standard dataset). Here, L-Dogd1 is col-
lected for dog classification in Goldfince dataset (Krause et
al. 2016). In addition, we also conduct the same experiment
on Food-101 (Bossard, Guillaumin, and Van Gool 2014) and
MIT Indoor 67 (Ariadna and Antonio 2009) dataset, train-
ing on web data and testing on standard data get an accu-
racy of 0.74 (the result of train and test on standard data
is 0.84) and 0.66 (the result of train and test on standard
data is 0.80) respectively. To reduce the influence of the gap
between different datasets, we propose a novel CNN archi-
tecture that jointly optimizes the two classifiers operating
on the representation: (i) the label predictor, which is used
during both training and testing stages for object classifica-
tion tasks, and (ii) the source classifier that distinguishes the
data from the standard and web datasets during the training
stage. The source classifier predicts the binary datasets la-
bel, and the corresponding loss–adversarial loss encourages
the learned representations to be coherent between differ-
ent datasets. The two classifiers mentioned above are well
encapsulated in a multi-task learning framework where the
second task helps to regularize the learning of the first one
towards more generalizable performance.

We make the following contributions:
(1) We propose a jointly optimized deep architecture

towards overcoming the dataset gap between easily ac-
quired web images and the well-labeled data from standard
datasets.

(2) Extensive experiments show that the proposed method
is simple yet powerful and achieves state-of-the-art classifi-
cation results on the Food-101 (Bossard, Guillaumin, and
Van Gool 2014), Stanford Dogs (Aditya et al. 2011) and
MIT Indoor 67 (Ariadna and Antonio 2009) datasets.

1It consists of 515 dog categories, and for experiments in our
work, we use its 43,342 images containing the same 120 classes as
the Stanford Dogs dataset.

Related Work

Deep Learning from Noisy Web Data

In the field of fine-grained classification, the training of
deep models requires a large amount of well-labeled data,
so the researchers pay more attention to collect a large scale
dataset. However, in the majority of the fine-grained tasks,
labeling datasets relies on expert knowledge, which is gen-
erally difficult and expensive to obtain.

To address this problem, recent works consider learn-
ing from web data, which is much cheaper to be obtained
in general. However, directly training on such automati-
cally harvested web data is usually difficult to get satisfac-
tory performance. To address this drawback, learning with
noisy labels has been extensively studied in the AI related
tasks. Recent works (Vo et al. 2017; Chen and Gupta 2015)
have achieved superior results in their tasks by using web
data. Chen et al. (Chen, Shrivastava, and Gupta 2013) use
a semi-supervised learning algorithm to find the relation-
ships between common sense and labeled images of given
categories. Schroff et al. (Schroff, Criminisi, and Zisser-
man 2011) propose an automatic method for gathering hun-
dreds of images for a given query class. These two works try
to build visual datasets with minimum human effort. How-
ever, such data contains many noisy labels. Nevertheless,
the introduction of web data improves the performance of
deep models, which is verified by recent work. Chen and
Gupta (Chen and Gupta 2015) present a two-stage approach
to train deep models by exploiting both noisy web data and
the transferability of CNNs. Xu et al. (Xu et al. 2015) pro-
pose a method that collects a great number of part patches
from inexhaustible and weakly supervised web images to
augment the training set, which generates more discrimi-
native CNNs feature representations and improves classifi-
cation accuracy. In order to transfer more knowledge from
existing datasets to weakly supervised web images, Xu et
al. (Xu et al. 2018) propose a semi-supervised method that
utilizes both standard image-level labels and detailed an-
notations (i.e., object bounding boxes and part landmarks).
Niu et al. (Niu, Veeraraghavan, and Sabharwal 2018) de-
sign a framework using both auxiliary labeled categories and
web images to predict the categories of test images which
have no connection with well-labeled training images. Al-
ternatively, Xiao et al. (Xiao et al. 2015) use a probabilistic
framework to model the relationships among images, clean
labels and noisy labels in an end-to-end structure. They
demonstrate the effectiveness of using noisy web data and
the benefits of performing extra operations on noisy data,
e.g., filtering. However, the results in (Joulin et al. 2016;
Krause et al. 2016) suggest that data cleaning cannot bring
noticeable improvements.

Although we take inspirations from the methods men-
tioned above, we take a fundamentally different view and
propose a multi-task strategy that learns both generalizable
and coherent feature representations between standard and
web data. The proposed method is simple, scalable and end-
to-end trainable.
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Adversarial Learning Methods
In recent years, some works (Gong, Grauman, and Sha 2013;
Ganin et al. 2015) employ joint learning to mitigate the neg-
ative influence of the gap when building the mapping be-
tween the source and target domains. In existing joint learn-
ing works, some approaches perform this by re-weighting
or selecting samples from the source domain (Gong, Grau-
man, and Sha 2013), and others match the feature repre-
sentations of the source and target tasks using adversarial
learning (Ganin et al. 2015; Tzeng et al. 2015; Tzeng et
al. 2017). While the loss formulation for adversarial learn-
ing stays consistent between most approaches, various ob-
jectives have been applied for the encoder, e.g., confusion
loss (Tzeng et al. 2015) and minimax formulation (Ganin et
al. 2015), etc.

To learn from web data, we also demand to reduce the
influence of the difference between web data and target
data. However, to the best of our knowledge, no previous
work considers learning with web data from the point of
bridging the gap between web and standard data. In ex-
isting joint learning works, some approaches perform this
by re-weighting or selecting samples from the source do-
main (Gong, Grauman, and Sha 2013), and others match the
feature representation of the source and target tasks. Other
methods (Tzeng et al. 2017) have chosen an adversarial loss
to minimize domain shift, learning a representation that is
simultaneously discriminative of source labels while not be-
ing able to distinguish between domains. In this paper, these
works motivate us to explore the feasibility of employing
adversarial learning to advocate feature coherence between
large-scale easily-obtained noisy web data and limited well-
annotated standard data for more generalizable performance.

Method
Figure 2 shows the pipeline of our proposed architecture.
Given a target learning task with standard dataset Ds =
{(xs

ns
, ysns

)}Ns
ns=1, the representation of ns-th image xs

ns
has

the tag ysns
∈ {1, ..., C}, where C is the number of classes

and Ns is the number of images, which has limited training
data. The web datasetDw = {(xw

nw
, ywnw

)}Nw
nw=1 is collected

from web and used to help train the CNN model, where Nw

is the number of images, the representation xw
nw

of nw-th
image has the tag ywnw

. Our method takes a standard dataset
Ds (green box in Figure 2) and web dataDw (red box in Fig-
ure 2) as input. We also denote the images in the combined
dataset D = {(xn, yn)}Nn=1 with a label dn, n = 1, ..., N ,
N = Ns +Nw. dn is a binary variable indicating where xn

comes from dn = 1 if the image is from the standard dataset
and dn = 0 for web images. Our goal is to transfer rich in-
formation from abounding and easily obtained Dw ∈ D for
better performance on Ds.

Standard Classification The proposed method is generic
and independent of the convolutional network backbone
structure. More specifically, consider a CNN with parame-
ters θ = {θf,θc}, where θf stands for the parameters for
feature learning (e.g., convolutional layers), and θc repre-
sents the parameters of a C-way classifier, where C is the

number of categories. For the classification part, we use the
standard softmax loss as follows:

Lc(x, y;θf,θc) = −

[
C∑

j=1

1(y = j) log
e{θf,θc}⊤j x∑C
k=1 e

{θf,θc}⊤k x

]
,

(1)
where x is the representation of an image with the label y.
The indicator function 1(a) = 1 if a is true, and 1(a) = 0
otherwise.

We use both the standard data and web data to train θf
and θc. All the parameters can be well-optimized with both
the standard dataset and the additional rich web data. Us-
ing a large amount of web data for training can improve the
classification performance of the standard dataset. However,
they may also fit better with a large amount of web data than
standard data due to the gap between the two kinds of data.
The inevitable noise data in the web dataset will also affect
the model during the training process, and interfere with the
classification effect of the standard dataset. We will jointly
optimize the source classification task in the later section to
minimize the negative influence mentioned above.

Source Classification To bridge the gap between web and
standard data, we add a domain classifier to optimize the
representation θf by maximizing the loss Ld of source clas-
sification. We first define a logistic function for the domain
classifier as follows:

g(x,θd,θf) =
1

1 + e−{θd,θf}⊤x
, (2)

where θd represents the parameters of the source recogni-
tion. Then, the corresponding log-likelihood loss function
for domain classification is defined as:

Ld(d; g(x,θd,θf)) =

Mb∑
i=1

−di log(g(x,θd,θf))

− (1− di) log(1− g(x,θd,θf)),

(3)

where di = 1 when the input image comes from the target
dataset, and di = 0 when it is from the web dataset. M b

is the mini-batch size. When the model accurately identifies
the source of an image, the value of the source classification
loss Ld will decline. Otherwise, when the model is difficult
to distinguish the source of the image, i.e., the gap between
the web dataset and the standard dataset is narrowed, the loss
will increase.

Multi-task Learning In a nutshell, the goal of our method
then becomes seeking the parameters θf,θc,θd that mini-
mize the joint loss function as shown in Figure 2:

L(θf,θc,θd) = Lc − λLd, (4)

The parameter λ controls the trade-off between the two
losses which will be discussed in the experiment section. On
one hand, both parameters θf and θc can be well optimized
with both the standard dataset and the rich web data. On the
other hand, the source classification task which corresponds
to the second part in Eq. 4, seeks for representation coher-
ent (i.e., the feature representations are not distinguished be-
tween standard and web datasets) and essentially regularize
the learning of θf towards more generalizable performance.
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(a) Web and Target Training Data (b) Convolutional Neural Networks (c) Joint Optimization 
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Figure 2: Overview of the proposed method. (a) web and target training data is the input to (b) convolutional neural networks.
(c) joint optimization for label prediction and source classification. Lc is the loss for label prediction and Ld is the loss for
source classification. L(θf,θc,θd) is the joint loss, which influences the parameters by back propagation. Ld is preceded by a
minus sign, so θf aims to maximize Ld, which means that the feature from the shared convolutional layers becomes more and
more consistent for web and target data.

For the objective function, we give the clarification as fol-
lows: Our goal is to optimize the parameters (θ′

f,θ
′
c,θ

′
d) that

deliver a saddle point of the objective function in Eq. 4:
(θ′

f,θ
′
c) = argminLfcd(θf,θc,θ

′
d), (5)

and
θ′

d = argmaxLfcd(θ
′
f,θ

′
c,θd). (6)

The saddle point (Eqs. 5 and 6) will be found as a stationary
point of the following stochastic updates:

θf ← θf − lr(
∂Lc

∂θc
− λ

∂Ld

∂θf
), (7)

where lr is the learning rate.

θc ← θc − lr
∂Lc

∂θc
, (8)

θd ← θd − lr
∂Ld

∂θd
. (9)

During the training, for θf, the partial derivatives are down-
stream Ld in Eq. 7, and the layer parameters that are up-
stream θf get multiplied by −λ, i.e., ∂Ld

∂θf
is effectively re-

placed by −λ∂Ld
∂θf

. So, running stochastic gradient descent
(SGD) on the model will implement the updates (Eq. 7 and
Eq. 9) and can converge to a saddle point of the objective
function. Note that, mathematically, we can formally pro-
cess −λ∂Ld

∂θf
by a “pseudo function” F (x) defined by two

functions to realize the forward-backpropagation:

F (x) = −λx and
dF

dx
= −λ. (10)

We can take the item −λLd(d, g(x,θd,θf)) in Eq. 4 as
Ld(d, g(F (x,θf),θd)), so Eqs. 7 and 9 can be updated by
SGD. At the saddle point (Eqs. 5 and 6), the parameters θd
of Ld minimize the domain classification loss (with the mi-
nus sign) to maximize the Lfcd. The feature mapping param-
eters θf minimize the label prediction loss (the features are
discriminative), while maximizing the source classification
loss (the features are domain-invariant).

Experiments
We first investigate the feasibility of the proposed method
across various classification tasks (including dogs, food and
indoor scenes) and different network structures (such as Caf-
feNet, AlexNet, VggNet, ResNet). Then, we compare our
approach with other state-of-the-art methods.

Experiment Setup
Datasets We experiment on three well-labeled datasets to
evaluate the performance of our method, involving vari-
ous representative fine-grained classification tasks, i.e., dog,
food, and indoor scene. Stanford Dogs (Aditya et al. 2011)
consists of 20,580 images of 120 breeds of dogs, in which
the training set has 12,000 images and the test set has 8,580
images. The Food-101 (Bossard, Guillaumin, and Van Gool
2014) dataset collects 101,000 food images with 101 cate-
gories, one quarter of which is the test set, and the rest is
the training set. MIT Indoor 67 (Ariadna and Antonio 2009)
contains 67 indoor scenes with a total of 15,620 images. Fol-
lowing existing evaluating protocol (Ariadna and Antonio
2009), we use a subset of the dataset with 5,360 training im-
ages and 1,340 test images.

Furthermore, we use three large-scale web datasets in
training that proposed by Yang et al. (Yang et al. 2018). They
download images from Google, Flickr and Twitter, by con-
ducting a keyword search, where keywords correspond to
the category labels in the public datasets. Then, they select
images from search results as web data for the given class.
According to three original standard fine-grained classifica-
tion datasets, they collect 52,115 dog images, 240,096 food
images, and 76,907 indoor scene images separately. Note
that in our experiments the test datasets are the same from
the original standard datasets.

Models The method we proposed in the paper has good
portability, and it can be easily applied to different CNN
models. The major pre-trained models used in our ex-
periments are AlexNet, CaffeNet, VggNet, and ResNet50,
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Figure 3: Trade-off parameter λ. We set λ to different val-
ues and conduct experiments on Food-101, Dog-120 (Stan-
ford Dogs) and Indoor-67 datasets. As shown, big λ is likely
to lead to low object classification accuracies, because the
model tends to fit the source classification task.

which have good performance on many classification tasks.
Since the pre-trained CNN model on ImageNet has shown
state-of-the-art performance in many works, and fine-tuning
a CNN model on a new dataset can often obtain better re-
sults, we fine-tune the initial models on both standard and
the web datasets in experiments. As shown in Figure 2, the
extra layer is similar to the basic architecture and consists
of three additional fully connected (fc) layers using ReLU:
4096-4096-2 hidden units for Alexnet, Caffenet, VggNet-16
(one additional fc layer with 2 hidden units for Resnet50).
The framework in our experiments is Caffe, and our models
are trained on NVIDIA TITAN X GPUs. We set the mini-
batch size to 64 for CaffeNet and AlexNet, 32 for VggNet
and 12 for ResNet50, and initialize the learning rate to 0.001
for food and dog classification, and 0.0001 for indoor scene
classification task. The learning rate is reduced after 20K it-
erations. The parameter λ will be discussed in the later sec-
tion. We keep training the model until convergence and set
the max iteration number to 200K.

The Parameter λ

In this section, we discuss the value of the parameter λ that
controls the trade-off between the two tasks. The value in-
fluences the parameters of convolutional layers and further
shapes the features from these layers. By setting λ to dif-
ferent values, we obtain the experimental results in three
classification tasks. The classification accuracies on valida-
tion datasets (10% of training datasets) for different tasks are
shown in Figure 3.

We can easily observe an opposite “U” trend in the results.
On one hand, setting λ = 0 ignores the dataset discrepancy
and suffers from large intra-class variations. It is equivalent
to the general classification model that discards the part of
the source classification. The gap between standard and web
datasets limits the effectiveness of using large-scale network
data, and may even be worse than the performance that only

A

Ratio of training set

Figure 4: CNN plays “Name That Dataset”, performing a
2-way classification to recognize image source. The ratio
of training set indicates the proportion of images in each
dataset used for training. Food-101, Dog-120, and Indoor-67
denote that only the images in the standard datasets are used.
“-web” means both standard and web data are employed. “-
jointed” uses the proposed jointly optimization strategy to
learn consistent feature on both kinds of datasets.

using standard datasets. On the other hand, employing a rel-
atively larger value for λ = 0 could bias the network to-
wards a trivial solution where nearly the same representation
is achieved for both datasets. Since the parameter λ is used
to weigh the two classification tasks, a larger value causes
the task of this paper to be more inclined to focus on the
source of the image. Therefore, it can be expected that exper-
iments using a larger λ will affect the effect of fine-grained
classification. As shown in the Figure 3, when λ = 0, the
experimental result is lower than the classification accuracy
using other values in the Food-101 dataset and the Dog-120
dataset. Similar to the Indoor-67 dataset, when the value of λ
is between 0.1 and 0.3, the experimental result is obviously
better than the result of λ = 0. In addition, as the value
increases, when the λ exceeds 0.3, the performance of the
model generally decreases. In particular, there is a signifi-
cant downward trend in the Indoor-67 dataset. Indeed, we
empirically find that setting λ = 0.1 leads to satisfactory
results in all the three classification tasks. According to the
results, we set λ = 0.1 in our experiments.

Representation Coherence
To further prove the existence of the gap between web and
standard datasets, we conduct experiments on all three tasks.
We choose the same amount of data from each class to avoid
imbalanced data distribution. For example, images from the
Food-101 training set are labeled as 0 and web data are la-
beled as 1 to train a 2-way model and the ratio between
training and test sets is 3:1. That is called the “Name That
Dataset” experiment. As shown in Figure 4, with increas-
ing training data, the web and standard data are easier to be
separated and there is no evidence of saturation. For com-
parison, we also conduct the experiment on Food-101 by la-
beling half of the sampled images as 0 and the rest as 1, and
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Figure 5: Effect of adaptation on the distribution of the extracted features. The figure shows t-SNE visualizations of the CNN’s
activations (a) in the case when no joint optimization is performed and (b) in the case when our joint loss is incorporated into
training. Blue points correspond to the examples from web dataset, while yellow ones correspond to the standard dataset. For
all tasks, the two distributions of features derived by our method are closer than others.

Table 1: Accuracies (%) on four datasets with different
methods. Dclean and Dmix represent clean data and mixed
data (including clean and web images). Dfilter denotes that
the web data is filtered from Dmix. The “ft” means the
fine-tuning process. L-Dogs refers to the web dataset from
Goldfince is used for boosting the performance of Stanford
Dogs.

# Method Model Test Accuracy (%)
Food Indoor Dogs L-Dogs

1 Dclean+ft

A
le

xN
et

65.93 65.53 63.57 63.57
2 Dmix +ft 69.71 69.60 65.63 64.84
3 Dfilter+ft 69.89 66.25 67.95 66.16
4 Bottom-up 70.29 66.79 72.17 71.59
5 Pseudo-label 69.36 67.35 70.32 71.01
6 Weakly 71.10 67.82 73.88 73.64
7 Ours 73.78 71.21 75.26 74.58
8 Dclean+ft

C
af

fe
N

et

66.61 65.24 63.19 63.19
9 Dmix +ft 69.25 68.00 66.08 65.34
10 Dfilter+ft 68.48 63.53 69.56 65.90
11 Boosting 72.53 65.56 73.49 73.28
12 PGM 73.14 65.29 72.63 71.83
13 WSL 73.21 65.58 73.52 73.79
14 Ours 74.78 68.40 74.93 75.25
15 Dclean+ft

V
gg

N
et

74.32 71.81 78.29 78.68
16 Dmix +ft 76.98 72.00 81.03 77.54
17 Dfilter+ft 78.24 72.04 79.70 79.57
18 Harnessing 79.02 72.48 78.45 79.92
19 Ours 82.94 76.12 84.92 82.55
20 Dclean+ft

R
es

N
et

50

84.31 79.63 80.51 80.51
21 Dmix +ft 85.21 82.35 81.43 82.07
22 Dfilter+ft 86.10 81.32 82.62 83.61
23 Goldfince 86.75 83.47 85.90 85.48
24 Ours 89.35 84.59 87.38 86.64

the classification accuracy is reasonably stable. The results
illustrate that the trained model can recognize the datasets
from different sources, even though their nature is similar
for food classification, which is consistent with the results
in Figure 1 (the poor cross dataset generalization). Inspired
by these results, we set our goal to mitigate the gap between
web and target datasets. The proposed approach bridges the
gap between the web and the target datasets by advocat-
ing representation coherence between both standard and web
datasets. In this way, the parameter learning of the convolu-

tional layers can also be enhanced. For a human, it is hard to
distinguish the two sources, but for the CNN model trained
on the web and target datasets, these domains could be dis-
tinct, which has been illustrated in Figure 4. Employing joint
learning approaches can learn better parameters of convolu-
tional layers, i.e., a more robust representation of data.

We extract features from the fc7 layer using a non-joint
model and visualize the feature embedding, where the blue
points in Figure 5 correspond to the web examples, while
yellow ones correspond to the target data. The proposed ap-
proach with joint learning effectively leads to more coher-
ent representation, as we expected. As shown in Figure 5
(a), through a non-joint model (i.e., basic model), images
from different domains are separated. As can be seen in Fig-
ure 5 (b), our method leads to similar distributions for both
dataset, indicating that the top layers of the CNN model are
trained with source invariance. Our representation coherence
is accomplished through standard back propagation training
for web data and target data, which is also scalable and can
be incorporated into other deep learning models. Figure 4
shows that the classification accuracies of “data-web” and
standard data tend to rise. On the contrary, after joint learn-
ing, the relative dataset gap becomes lower for “data-joint”
and standard data. With added training data, the classifica-
tion accuracies keep leveling around the chance 50% for
“data-joint”, which are similar with the accuracy on the orig-
inal standard datasets, i.e., Food-101, Dog-120, and Indoor-
67. The results illustrate that, after joint learning, the repre-
sentations for web and standard data become similar.

Analysis of Results for Different Tasks
In this section, we discuss the classification results on dif-
ferent tasks. With the setup and the parameters discussed
above, we conduct experiments on three datasets, and the
results are shown in Table 1. For the basic models, includ-
ing models fine-tuned with clean data (standard training set)
and web data, the results using mixed data outperform using
clean data alone, e.g., #1 and #2. We also show the results
after filtering (by removing web data, which has a tag differ-
ent from the predicted label by the basic model, referred to
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Table 2: Classification performance comparison with state-of-the-art methods on three public datasets. Bold values correspond
to the best accuracy (%) per dataset. As shown, the proposed method outperforms the state-of-the-art approaches on all the
tasks.

Food-101 Stanford Dogs MIT Indoor 67

Method Acc (%) Method Acc (%) Method Acc (%)

(Bossard, Guillaumin, and Van Gool 2014) 50.76 (Huang et al. 2017) 78.30 (Milad and Subhasis 2016) 72.20
(Bossard, Guillaumin, and Van Gool 2014) 56.40 (Wei et al. 2017) 78.86 (Dixit et al. 2015) 72.86
(Meyers et al. 2015) 79.00 (Chen and Zhang 2016) 79.50 (Lin, RoyChowdhury, and Maji 2018) 79.00
(Li et al. 2018) 82.60 (Zhang et al. 2016) 80.43 (Zhou et al. 2018) 79.76
(Wei et al. 2018) 85.70 (Dubey et al. 2018) 83.75 (Yoo et al. 2015) 80.78
(Guo et al. 2018) 87.30 (Niu, Veeraraghavan, and Sabharwal 2018) 85.16 (Herranz, Jiang, and Li 2016) 80.97
(Hassannejad et al. 2016) 88.28 (Krause et al. 2016) 85.90 (Guo et al. 2017) 83.75
Ours (Resnet50) 89.35 Ours (Resnet50) 87.07 Ours (Resnet50) 84.59

as Dclean+ft), and previous works: Bottom-up (Sukhbaatar
and Fergus 2014), Pseudo-label (Lee 2013), Weakly (Joulin
et al. 2016), Boosting (Sukhbaatar et al. 2014), PGM (Xiao
et al. 2015), WSL (Chen and Gupta 2015), Harnessing (Vo
et al. 2017), Goldfince (Krause et al. 2016) that also employ
and process web data for training CNN models.

Different from the above methods which focus on data
pre-processing, we optimize the model to learn from the web
and standard data by reducing the influence of dataset gap.
For our method, the improvement of accuracy against the
baseline (Dclean + ft) for different tasks varies, e.g., the
improvement on CaffeNet of the indoor scene is around 3%,
and for food classification, it is about 8%. Meanwhile, the
experimental results on food and dog conform to our expec-
tation. For different models, just adding web images can im-
prove the performance of the model (#2, #9, #16, and #21 of
food and dog). However, after simple filtering (Sukhbaatar
and Fergus 2014; Lee 2013), the accuracy may drop (e.g., #3
and #10 of food and indoor, #17 of dog) because some use-
ful images are wrongly removed. For the dog dataset, the
filtering removes almost 40% web images, while the size is
still larger than the original Stanford Dogs dataset.

Furthermore, in contrast to dog images which have spe-
cific objects, indoor scene images have a wide variety of
content which often contain salient people and other ob-
structions in the center of the images, so it is difficult to im-
prove the performance of recognition with typical filtering
strategies (Sukhbaatar and Fergus 2014; Lee 2013). How-
ever, our proposed algorithm can boost the classification ac-
curacy on the indoor scene dataset. As shown in Table 1,
our method achieves 84.59% accuracy, outperforming other
methods. Finally, to verify the robustness of our method, we
also conduct experiments on the L-Dog dataset, which is a
publicly available noisy dataset for dog recognition. The re-
sults are consistent with those of web data. Moreover, we
can find that the proposed method is generic and indepen-
dent of the network structure backbone.

Comparison with State of the Art
In Table 2, we compare our method with other state-of-the-
art approaches on different datasets. As can be seen, our
method performs favorably against other methods for differ-
ent tasks. For example, in dog classification task, (Krause

et al. 2016) employs multiple crops and a larger web
dataset with additional categories. Our method does not
require additional categories while improving accuracy by
1.17% comparing with the method proposed by Krause et
al. (Krause et al. 2016) (from 85.90% to 87.07%). Therefore,
these results indicate that the proposed joint learning method
is effective at bridging the gap between web and standard
datasets to improve the performance of CNN models. Mean-
while, simplicity is central to our design and the strategies
adopted in the proposed method are almost complementary
to many other advanced approaches, such as employing mul-
tiple crops as done in (Krause et al. 2016), using additional
categories for extras regularization adopted in (Krause et al.
2016) and leveraging additional annotations such as bound-
ing boxes used in (Zhang et al. 2016).

Conclusion

In this paper, we firstly show that there exists a gap be-
tween the web and the standard datasets, which will inhibit
the training of parameters in convolutional layers when both
of them are utilized. To address this problem, we present a
novel multi-task learning framework that effectively exploits
web images for various fine-grained classification tasks. An
adversarial discriminative loss is proposed to advocate rep-
resentation coherence between standard and web data. To
evaluate the effectiveness and generalization capability of
our approach, we experiment on three public datasets, in-
volving food, dog, and indoor scene classification tasks. In
the experiment, we use large-scale web images and standard
datasets to conduct experiments on different CNN models.
Extensive experiments demonstrate that our approach per-
forms favorably against the state-of-the-art methods.
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