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Abstract

Most neural Information Retrieval (Neu-IR) models de-
rive query-to-document ranking scores based on term-level
matching. Inspired by TileBars, a classical term distribution
visualization method, in this paper, we propose a novel Neu-
IR model that handles query-to-document matching at the
subtopic and higher levels. Our system first splits the docu-
ments into topical segments, “visualizes” the matchings be-
tween the query and the segments, and then feeds an interac-
tion matrix into a Neu-IR model, DeepTileBars, to obtain the
final ranking scores. DeepTileBars models the relevance sig-
nals occurring at different granularities in a document’s topic
hierarchy. It better captures the discourse structure of a docu-
ment and thus the matching patterns. Although its design and
implementation are light-weight, DeepTileBars outperforms
other state-of-the-art Neu-IR models on benchmark datasets
including the Text REtrieval Conference (TREC) 2010-2012
Web Tracks and LETOR 4.0.

Introduction
Numerous efforts have been devoted to advance Information
Retrieval (IR) with deep neural networks (Guo et al. 2016;
Pang et al. 2017; Hui et al. 2017; Fan et al. 2017; Pang et al.
2016b; Mitra, Diaz, and Craswell 2017; Xiong et al. 2017;
Huang et al. 2013; Shen et al. 2014). These neural Informa-
tion Retrieval (Neu-IR) models are often combined with a
learning-to-rank framework (Liu and others 2009) to derive
document relevance scores. Early experiments (Nguyen et
al. 2017; Pang et al. 2016a) reported only marginal gains or
even inferior performance to traditional IR methods such as
BM25 (Robertson, Zaragoza, and others 2009) and language
modeling (Zhai and Lafferty 2017). The more recent Neu-
IR models attempted to incorporate well-known information
retrieval principles and have started to show improvements
over traditional IR methods.

The state-of-the-art Neu-IR models can be grouped into
two categories (Guo et al. 2016). The first category is
representation-focused. These models map the texts into a
low-dimensional space and then compute document rele-
vance scores in that space. Models in this family include
DSSM (Huang et al. 2013) and CDSSM (Shen et al. 2014).
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The second category is interaction-focused. They first pro-
duce an interaction matrix, a.k.a. a matching matrix, be-
tween a query and a document. Each entry in the matrix is
usually a simple relevance measurement, such as the cosine
similarity, between the query term vector and the document
term vector. The matrix is then fed into a deep neural net-
work to learn the document relevance score. Models in this
family include PACRR (Hui et al. 2017), DeepRank (Pang
et al. 2017), DRMM (Guo et al. 2016), K-NRM (Xiong et
al. 2017), MatchPyramid (Pang et al. 2016b) and HiNT (Fan
et al. 2018). There are also hybrid models, such as DUET
(Mitra, Diaz, and Craswell 2017), that combine the scores
generated by the two categories.

The interaction-focused models are more popular. Partly,
it is because of their close connection to the widely used
learning-to-rank method. Also, they benefit from the inter-
action matrix’s ability to reveal relevance signals visually,
just like what a query highlighting function can do. For hu-
man readers, visualization could help accelerate the process-
ing of information (Byrd 1999; Hornbæk and Frøkjær 2001).
In real-world search engine development, there is also a high
demand for visualization functions, such as query term high-
lighting and thumbnail images (Hearst 2009). These visual-
izations offer efficient, direct, and informative feedback to a
search engine user. We think what makes visualization prac-
tically valuable to humans might also be valuable to a deep
neural network for its resemblance to human neurons.

In the history of IR, visualizing relevance signals is not
a new idea. In the 1990s, Hearst proposed TileBars (Hearst
1995) to help users better understand ad-hoc retrieval and
the role played by each query term. TileBars visualizes
how query terms distribute within a document and pro-
duce a compact image to explicitly show the relevance (the
matches) to the user. In TileBars, a document is segmented
with an algorithm called TextTiling (Hearst 1994). TextTil-
ing splits the document at positions where a change in topic
is detected. After that, query term hits are computed per
term per segment and the distribution is plotted on a two-
dimensional grid.

Given a query, TileBars attempts to capture the relevance
patterns in the discourse structure of a document. Com-
mon patterns include chained, ringed, monolith, piecewise
and hierarchical (Skorochod’ko 1971; Hearst 1994). Tile-
Bars focuses on the coarse patterns, especially the piece-
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Figure 1: Word-to-segment vs. Word-to-word matching. Query terms are aligned vertically and document words/segments are
aligned horizontally. The top two documents are relevant and the bottom two are irrelevant for TREC 2011 Web Track query
116 “California franchise tax board”.

wise pattern. Other work in empirical discourse processing,
for instance the Rhetorical Structure Theory, uses hierarchi-
cal models (Mann and Thompson 1988). Nonetheless, most
work employs segments or subtopics as the analysis unit in
their discourse models.

Unlike the discourse models, most Neu-IR models use
words as the analysis units. In this research, we decide to
learn from the discourse models. Inspired by TileBars, this
paper studies the query-to-document matching at the seg-
ment or higher levels. We propose DeepTileBars, a new deep
neural network architecture that leverages TileBars visual-
izations for ad-hoc text retrieval. By employing semantically
more meaningful matching units, i.e. the segments, Deep-
TileBars is a step forward towards explainable artificial in-
telligence (XAI).

Figures 1 illustrate four TileBars visualizations for the
query ‘California franchise tax board’. The top two docu-
ments are relevant and the bottom two are irrelevant. The
darker the cell, the more matches in the cell. With word-level
query-to-document matching, we can see that the matched
words are scattered around. In this example, an irrelevant
document also has many dark cells because ‘franchise’ ap-
pears frequently in a long spam passage. It is quite diffi-
cult to tell the relevant matching patterns from the irrelevant
ones. On the contrary, with word-to-segment matching, the
words that belong to the same segment collapse into a single
cell. Since the spam passage only contributes to one cell in
the visualization, it is less likely for an irrelevant document
to demonstrate patterns that are expected in a relevant one –
for instance, continuous matched segments.

The piecewise discourse pattern used in the original Tile-
Bars paper already seems to be quite effective. We adopt it
in this paper. In addition, we go beyond TileBars and in-
clude the hierarchical patterns in this work. To do so, we
utilize a bag of Convocational Neural Networks (CNNs)
(Krizhevsky, Sutskever, and Hinton 2012), each of which
makes use of a kernel with a different size, to model the top-
ical structure at various granularities. Practically, our model
provides a hierarchical matching for a query-document pair.
A relevance pattern could appear at any granularity in the
hierarchy and our model aims to capture it at any level.

Our work focuses on text retrieval. Even though it is a
visualization-based approach, image retrieval is not within
our scope. Experiments on the Text REtrieval Conference
(TREC) 2010-2012 Web Tracks (Clarke, Craswell, and
Voorhees 2012) and LETOR 4.0 (Qin and Liu 2013) show
that our model outperforms the state-of-the-art text-based
Neu-IR models.

In the remainder of this paper, we first present our version
of document segmentation and term distribution visualiza-
tion. Note that this process belongs to the indexing phase of a
search engine and will only be performed once for the entire
corpus. Next, we describe an end-to-end Neu-IR model that
makes use of these visualizations to retrieve documents. We
then report the experiments, followed by the related work
and the conclusion.

Visualizing Matched Text at the Segment Level
The construction of TileBars include three parts: segmenta-
tion, dimension standardization and coloring. The segmen-
tation is done by TextTiling. We then prepare the interaction
matrix into fixed dimensions and ‘color’ each cell.

Segmentation by TextTiling
TextTiling is a query-independent segmentation algorithm.
It assumes that each document is composed of a linear se-
quence of segments, each of which represents a coherent
topic. TextTiling inputs a document and outputs a list of top-
ical segments. Figure 2 shows an excerpt from a long doc-
ument that is used as a walking example to illustrate the al-
gorithm. The algorithm takes three steps: Token Sequence
Generation, Similarity Computation, and Boundary Deter-
mination.

1. Token Sequence Generation: We start with splitting a
document into token sequences. A token sequence is like
a pseudo-sentence, which contains a fixed number of
words. After removing the stopwords, every α (set to 20
as recommended by Hearst) words are grouped into a to-
ken sequence.1 These non-overlapping token sequences

1In our implementation, to preserve the natural paragraph
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Figure 2: TextTiling (α = 20, β = 3, stopwords are kept to
preserve readability).

are the basic units to form a segment. In Figure 2, each
line is a token sequence, denoted as Ti, with i indexes the
sequences starting from 1.

2. Similarity Computation: Once obtaining the token se-
quences, the topical boundaries would be determined
based on the similarity between the sequences as well as
its contexts. The context for a token sequence is a sliding
window of size β. β is set to 6 as recommended by Hearst.
The similarity for two neighboring sequences is calcu-
lated over the two windows to which they each belong.
Formally, given n token sequences, T1, T2..., Ti, ..., Tn,
the similarity between Ti and Ti+1 is calculated as the
cosine similarity of term counts (tf ) in the two windows
[Ti−β+1, ..., Ti] and [Ti+1, ..., Ti+β ]:

sim(i, i + 1) =

∑
wj

tf(wj , i − β + 1, i) · tf(wj , i + 1, i + β)

||tf(w∗, i − β + 1, i)|| · ||tf(w∗, i + 1, i + β)||
(1)

where wj is the jth word in the vocabulary, tf
(
wj , i −

β+1, i
)

is the term frequency of wj in a window holding
sequences Ti−β+1, ..., Ti, and tf

(
wj , i+ 1, i+ β

)
is the

term frequency of wj in a window holding Ti+1, ..., Ti+β ,
||tf(w∗, i−β+1, i)|| = sqrt(

∑
wj

tf(wj , i−β+1, i)2),
||tf(w∗, i+1, i+β)|| = sqrt(

∑
wj

tf(wj , i+1, i+β)2).

Figure 2 illustrates an example to compute sim(4, 5) with
β = 3. The similarity between token sequences T4 and T5

is computed based on the window upto and including T4,
i.e. [T2, T3, T4], and the window after T4, i.e. [T5, T6, T7].
We obtain a similarity score for every neighboring pairs
of token sequences.

3. Boundary Determination: The previous steps result in
a series of similarity scores, each of which is created
for a pair of token sequences. When plotting the similar-
ity scores, we can observe “peaks” and “valleys” in this
curve. When there is a dramatic drop in the curve, we say
there is a possible topic change. A depth score is com-
puted for each neighboring pairs of token sequences. It is
defined as the sum of the absolute differences to its clos-
est neighboring “peaks”. The depth score between Ti and

boundaries, rarely some token sequences are permitted to have
sizes slightly different from 20.

Ti+1 is

depth(i, i+ 1) =| sim(LeftPeak(i, i+ 1))

− sim(i, i+ 1) |
+ | sim(RightPeak(i, i+ 1))

− sim(i, i+ 1) |

(2)

where LeftPeak computes the position of the closest
“peak” on the left side and RightPeak computes that
on the right side. Boundaries are discovered at positions
where the depth score is greater than µ − δ/2, where µ
is the mean depth in the document and δ is the standard
deviation. The threshold adjusts to different documents.
In Figure 2, a boundary is found between T5 and T6. Two
topical segments B1 (containing T1, T2, ...) and B2 (con-
taining T6, T7, T8 and the rest) are generated for the doc-
ument. When examining the actual content of these seg-
ments, we find that the two segments represent distinct
topics: one is the overview of an investigation and another
is about the jury’s opinion.

TextTiling was a pioneering work in the 1990s for
text segmentation. Unlike segmentation by a fixed passage
length or by natural paragraphs, TextTiling’s segments are
based on term distributions and are expected to be topic-
coherent. More sophisticated text segmentation methods
have been proposed since. Examples include probabilis-
tic models that use language modeling and language cues
(Beeferman, Berger, and Lafferty 1999), clustering-based al-
gorithms (Kazantseva and Szpakowicz 2011), topic model-
ing (Misra et al. 2009), and the recently proposed deep learn-
ing methods (Badjatiya et al. 2018). Compared with Text-
Tiling, most successor approaches still hold the assumption
that topics are laid sequentially in a document. Without loss
of generality, we use TextTiling for its simplicity and effec-
tiveness and focus on how a segment-based visualization can
aid neural information retrieval.

Standardizing Dimensions
Each segment Bi would contain a different number of token
sequences; and the total number of segments in a document
would also vary from document to document. Note that this
number is not only decided by the choices of token-sequence
length (α) and window size (β) but also determined by the
content of a document. In our experiments, there are docu-
ments consisting only of a title, which yield only one seg-
ment; whereas other longer documents split into hundreds
of segments. As a result, for different query and document
pairs, the dimensions of their TileBars visualizations vary.
However, a neural network requires all its input vectors to
be of equal size. We therefore need a mechanism to stan-
dardize the TileBars visualizations.

Suppose the original dimension of an image is x × y,
where x is the query length and y is the number of segments.
Our task is to resize all visualizations to a chosen dimension
nq × nb.

Generally speaking, for visualizations with fewer than nq

query terms or nb segments, we pad the grid with empty
cells. This is equivalent to the zero padding technique widely
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used in computer vision (Szeliski 2010). For query q, its ith
word wi is transformed into

w′
i =

{
wi i ≤ x

⟨empty word⟩ x < i ≤ nq
(3)

where x is the length of original query and nq is the length of
the transformed query and set to the maximum query length
in the query collection.

Similarly to the query dimension, if y ≤ nb, i.e. the orig-
inal document is relatively short, then, zero padding is done
and each segment is transformed by:

B′
i =

{
Bi i ≤ y

⟨empty segment⟩ y < i ≤ nb
(4)

where B′
i is the segment after transformation and Bi is the

original segment. y is the original number of segments.
For documents with more than nb segments, we ‘squeeze’

the content after (and including) the nb
th segment into the

nb
th segment, which makes the nb

th segment the last in a
document. This would preserve all the original content while
only affect “resolution” of the last segment. Thus, if y > nb,
i.e., the original document is relatively long, then

B′
i =

{
Bi i < nb

concatenate(Bnb
, Bnb+1, ...By) i = nb

(5)

After resizing, the visualization dimensions are fixed as
nq × nb for all query-document pairs. From now on, we de-
note query words as w and segments as B after the standard-
ization for the sake of notation simplicity.

Coloring
The original TileBars dyes the grids based only term fre-
quency. The darker the color, the larger the intensity. In our
work, we propose to incorporate multiple relevant features,
similar to canonical colors in a color space, to “paint” the
cells. Following the convention in multimedia research, we
call each relevance feature a channel.

In theory, features indicating query-document relevance
that are effective in existing learning-to-rank models can all
be used here. However, to avoid interfering with the neural
network’s ability to select the best feature combinations, we
propose to only employ features that are independent of each
other. It is similar to only use a few scalar valued colors as
the canonical colors in a color space, and leave the feature
aggregation to the network itself.

Three features are used in this work. They are all proven
to be essential in ad-hoc retrieval. They are term frequency,
inverse document frequency, and word similarity based on
distributional hypothesis. The (i, j)th cell in the matching
visualization I for query w and segment Bj is ‘painted’ by:⎛⎝ tf(wi, Bj)

idf(wi)× IBj
(wi)

maxt∈Bj
e−(vwi

−vt)
2

⎞⎠ (6)

where wi is the ith query term, Bj is the jth text seg-
ment in a document, tf(wi, Bj) is the term frequency of
wi in Bj , and idf(wi) is the inverse document frequency

of wi. IBj (wi) is an indicator function to show whether
wi is present in Bj . vt is the embedded word vector of
word t, which comes from a pre-trained word2vec model
(Mikolov et al. 2013). We use Gaussian kernels as suggested
by (Xiong et al. 2017; Pang et al. 2016a). The max operator
is used to select the most similar word.

DeepTileBar: Deep Learning with TileBars
We propose a novel deep neural network, DeepTileBars, to
evaluate document relevance. It consists of three layers of
networks. It starts with detecting relevance signals with a
layer of CNNs, followed by a layer of Long Short Term
Memories (LSTMs) (Hochreiter and Schmidhuber 1997) to
aggregate the signals. And then it decides the final relevance
with a Multiple Layer Perceptron (MLP). Figure 4 illustrates
the architecture of DeepTileBars. The input to the network
is an nq × nb interaction matrix.

Word-to-Segment Matching
Following TileBars, DeepTileBars builds an interaction ma-
trix by comparing a word and a topical segment. Each seg-
ment presumably corresponds to a topic. Per word informa-
tion within the same segment is absorbed into a single cell
and the word-level matching is no longer supported.

Using the proposed word-to-segment matching, we are
able to produce relevance signals at the topic level and focus
on the presence of query terms in consecutive topics. Match-
ing queries to documents at the topic level, rather than at the
word level, is perhaps easier to detect the stronger relevance
signals with a bigger chunk of coherent text.

Our design is especially beneficial for proximity queries
within a large window size. Most existing Neu-IR mod-
els would be sufficient for proximity queries within a tight
window, e.g. 2 or 3 words apart (Hui et al. 2017; Pang
et al. 2016a). However, when the required window size is
large, scanning a word-to-word matching with CNNs might
miss the true relevant. A word-to-segment matching, in-
stead, could resolve this issue by merging topically coherent
words into a single segment and obtain a stronger relevance
signal. In addition, as demonstrated in Figure 1, segment-
based matching would eliminate high hits in spam passages
thus avoid false positives.

Bagging with Different Kernel Sizes
TextTiling partitions a document into segments and the seg-
ments are laid out sequentially without any further organiza-
tion. However, topics in documents are often organized hier-
archically. We can imagine that the segments form sections,
and section form chapters, etc. If we could put several topi-
cal segments together, they might actually form a super topic
– a topic that is at a higher level. It would thus be desirable if
the topics and super topics can be handled at different gran-
ularities so that their hierarchical nature can be preserved.

Figure 3 shows the word-to-segment matching at different
granularity levels. We combine k adjacent non-overlapping
topical segments to show the term distribution at at different
levels. k is the CNN kernel size. The bigger k is, the larger
the CNN kernel, and the higher the topic level. We can see
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Figure 3: Word-to-segment matching at different granularity
levels. Document enwp00-69-13554 for TREC 2011 Web
Track query 116: California franchise tax board.

that each granularity level provides different relevance pat-
terns for the same document. A relevant pattern can appear
at any level. Looking at the relevance patterns at all levels
would thus increase our chances of finding the true relevant.

We thus propose to employ multiple CNNs (Krizhevsky,
Sutskever, and Hinton 2012) with various kernel sizes to de-
tect the relevance signals. Here we assume the kernel sizes
vary from 1 to l, where l is the maximum number of seg-
ments the CNNs can handle. Practically, our model provides
a hierarchical organization: token sequences are built from
terms, segments (topics) are built from token sequences, and
super topics are built by grouping adjacent topics with larger
kernel sizes.

The Network
Figure 4 illustrates the network architecture.
In the first CNN layer, there are l CNNs,
[CNN1, CNN2, ..., CNNk, ..., CNNl]. Each CNN’s
kernel size differs. For the kth CNN, its kernel size is
nq × k. When each CNN scans through the input visual-
ization, it produces a “tape”-like output. As k increases, the
CNNs are able to capture the relevance signals at k adjacent
text segments. We call these k adjacent text segments
‘k-segment’. The l number of CNNs produce l outputs. The
output from the kth CNN denotes the relevance detected
from all k-segments in the document. The shape of the
kth output is not a square, but a thin tape with dimension
1× (nb − k + 1).

Note that Figure 3 is not the outputs of the CNNs. In-
stead, it shows the relevance signals per query term when
combining adjacent topical segments. The CNN outputs are
the third column of thin-tapes in Figure 4.

The CNN layer is denoted as z0. The computation of z0k
with kernel size k is defined as

z0k = CNNk(I), k = 1, 2, 3, ..., l (7)

More specifically,

z0k[i] = act

⎛⎝|channels|∑
ch=1

nq−1∑
u=0

k−1∑
v=0

θ0k,ch[u, v]

∗I[u, i+ v, ch] + b0k

⎞⎠ (8)

Figure 4: DeepTileBars Architecture.

where act is the ReLU activation function, ch is the channel
index, θ is the kernel coefficient, and b is the bias.

At the second LTSM layer, in order to minimize the loss
of information, we use the same l number of LSTMs to ac-
cumulate the relevance signals. The output of the kth CNN
is fed into the kth LSTM. An LSTM scans through its in-
put step by step from the beginning to the end. The kth

LSTM then outputs its evaluation of the entire document at
the granularity of k. For instances, the first LSTM, LSTM1,
accumulates relevance signals from all the 1-segments; the
second LSTM, LSTM2, accumulates those from all 2-
segments. Thus, the LSTMs layer is able to output multiple
relevance estimations at different granularities.

When scanning at the tth timestep, where t =
1, 2, ..., nb − k + 1, the kth LSTM works as the following:

fk
t = σ(W k

f [z
0
k[t], ht−1] + bkf )

ikt = σ(W k
i [z

0
k[t], ht−1] + bki )

okt = σ(W k
o [z

0
k[t], ht−1] + bko)

ckt = fk
t ∗ ckt−1 + ikt ∗ tanh(W k

c [z
0
k[t], h

k
t−1] + bkc )

hk
t = okt ∗ tanh(ckt )

(9)

where σ() is the hard sigmoid activation function,fk
t , ikt , and

okt are the values of the forget gate, input gate, and output
gate. ckt is the state. W k

f ,W
k
i ,W

k
o ,W

k
c and bkf , b

k
i , b

k
o , b

k
c are

the weights and biases for the corresponding gates, hk
t is the

output, and [] is the concatenation operator. The computation
of the second layer z1 is thus

z1k = LSTMk(z
0
k) = hk

nb−k+1, k = 1, 2, 3, ..., l (10)

At the third layer of MLP, all outputs of LTSMs are con-
catenated together and fed into the layer to generate the final
relevance decision. The computation of the third layer s is
s = MLP ([z11 , ...z

1
l ]).

To summarize, the overall architecture (see Figure 4) of
DeepTileBars is:

z0k = CNNk(I), k = 1, 2, 3, ..., l (11)

z1k = LSTMk(z
0
k), k = 1, 2, 3, ..., l (12)

s = MLP ([z11 , z
1
2 , ..., z

1
k, ..., z

1
l ]) (13)
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We use a state-of-the-art Stochastic Gradient Descent
(SGD) optimizer, Adam (Kingma and Ba 2015), to op-
timize the network. We also adopt the L2 regulariza-
tion (at the first layer) and early stopping to avoid over-
fitting. The document ranking scores are obtained by a
pairwise ranking loss function as in RankNet (Burges et
al. 2005). It maximizes the difference between the rele-
vant documents and the irrelevant documents: J(Θ) =∑

(q,d+,d−) − log 1

1+e−(s(d+,Θ)−s(d−,Θ))
, where s is neural

network output (Eq. 13), Θ are the network parameters, and
q, d+, and d− are query, relevant document and irrelevant
document, respectively.

Experiment
We evaluate DeepTileBars’ effectiveness on standard
testbeds, including TREC Web Tracks and LETOR 4.0. We
compare the performance of DeepTileBars with both tradi-
tional IR approaches and the state-of-the-art Neu-IR models.

Dataset and Metrics
We conduct experiments on the TREC 2010-2012 Web
Track Ad-hoc tasks (Clarke, Craswell, and Voorhees 2012).2
There are 50 queries each year. We combine the three years’
data as a single dataset because the annotated data from any
single year is not enough to train a deep model. In total,
there are 150 queries and 38,948 judged documents. Our
experiment is conducted on ClueWeb09 Category B, which
contains more than 50 million English webpages (231 Gi-
gabytes in size).3 We implement a 10-fold cross-validation
for fair evaluation. The official metrics used in TREC 2010-
2012 Web Track ad-hoc tasks include Expected Recipro-
cal Rank (ERR)@20 (Chapelle et al. 2009), normalized
Discounted Cumulative Gain (nDCG)@20 (Järvelin and
Kekäläinen 2002) and Precision (P)@20. ERR and nDCG
handle graded relevance judgments and Precision handles
binary relevance judgements.

We also test our full model on the most recent MQ2008
dataset for LETOR 4.0. LETOR 4.0 is a common bench-
mark used by Neu-IR models. LETOR MQ2008 contains
784 queries and 15,211 annotated documents. The official
metrics used in LETOR includes nDCG and Precision at dif-
ferent cutoff positions. We report results on queries that have
at least one relevant documents in the judgment set.

Systems to Compare
• Traditional IR models: BM25 (Robertson, Zaragoza, and

others 2009) and LM (Zhai and Lafferty 2017). Both are
highly effective IR models.

• TREC Best Runs: TREC Best is not a single system. In-
stead, it is a combination of best systems per year per
metric, including the best systems in 2010 (Elsayed et
al. 2010; Dinçer, Kocabas, and Karaoglan 2010), 2011
(Boytsov and Belova 2011) and 2012 (Al-akashi and

2TREC 2009 also had the Web Track. However, it used rele-
vance scales and metrics quite different from the other years. For
fairness and consistency, our experiments exclude year 2009.

3http://lemurproject.org/clueweb09/.

Run err@20 ndcg@20 p@20

TREC-Best 0.188 0.236 0.382
BM25 0.102 0.137 0.253

LM 0.118 0.166 0.297
DRMM 0.127 0.184 0.346

MatchPyramid 0.113 0.125 0.228
DeepRank 0.127 0.134 0.224

HiNT 0.157 0.205 0.322
DeepTileBars ( nq × 1) 0.140 0.207 0.368
DeepTileBars (nq × 3) 0.150 0.212 0.369
DeepTileBars (nq × 5) 0.146 0.211 0.371
DeepTileBars (nq × 7) 0.142 0.207 0.366
DeepTileBars (nq × 9) 0.147 0.213 0.372

DeepTileBars (w2w, all kernels) 0.110 0.123 0.248
DeepTileBars (w2s, all kernels) 0.168 0.229 0.384

Table 1: TREC 2010-2012 Web Track Ad-hoc Tasks.

Inkpen 2012). We believe they represent the best perfor-
mance of TREC submissions from 2010 to 2012.

• Neu-IR models: DRMM, MatchPyramid, DeepRank,
HiNT, DUET.4

• Variations of the proposed model: DeepTileBars (nq×x)
that uses a CNN with a single kernel size nq × x; Deep-
TileBars (w2w, all kernels), which uses all kernels with
word-to-word matching; and DeepTileBars(w2s, all ker-
nels), our full model, using word-to-segment matching
and all kernels.

Parameter Settings
For the TextTiling algorithm, we set α to 20 and β to 6,
as recommended by Hearst. For the query-document inter-
action matrix, the parameters are slight differences between
the two datasets. In TREC Web, nq = 5 and In LETOR
nq = 9. nq is decided by the longest query after removing
stopwords. For both datasets, nb = 30. This is because more
than 90% documents in TREC Web and more than 80% doc-
uments in LETOR contain no more than 30 segments.

For the DeepTileBars algorithm, we set l = 10 for both
datasets. In TREC Web Track dataset, the number of filters
of CNN with same kernel size and the number of units in
each LSTM are both set to 3; while in LETOR, this number
is set to 9. The MLP contains two hidden layers, with 32 and
16 units for TREC Web, and 128 and 16 units for LETOR.

On the TREC Web dataset, we re-implement DRMM,
MatchPyramid, DeepRank, HiNT by following the config-
urations in their original papers. On LETOR, we include the
reported results in their publications in Table 2 without re-
peating the experiments.

Results
Tables 1 and 2 report our experimental results for the TREC
Web Tracks and the LETOR MQ2008 datasets. Official met-
rics are reported here.

4We did not run DUET on TREC Web Tracks because the
dataset is too small to train a very deep model like DUET that re-
quires a large amount of training data.
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Run p@5 p@10 ndcg@5 ndcg@10 Reported by

BM25 0.337 0.245 0.461 0.220 (Qin and Liu 2013)
LM 0.323 0.236 0.441 0.206 (Qin and Liu 2013)

DRMM 0.337 0.242 0.466 0.219 (Pang et al. 2017)
MatchPyramid 0.329 0.239 0.442 0.211 (Pang et al. 2017)

DeepRank 0.359 0.252 0.496 0.240 (Pang et al. 2017)
Duet 0.341 0.240 0.471 0.216 (Fan et al. 2018)
HiNT 0.367 0.255 0.501 0.244 (Fan et al. 2018)

DeepTileBars 0.427 0.320 0.553 0.256

Table 2: LETOR-MQ2008.

It can be found that in the TREC Web Track dataset,
DRMM, HiNT and our model DeepTileBars outperform tra-
ditional IR approaches. While other neural IR approaches,
MatchPyramid, DeepRank do not perform as well on certain
metrics. On the LETOR dataset, all the Neu-IR approaches
achieve better performance than traditional methods. It indi-
cates that properly designed deep neural networks could im-
prove upon traditional approaches. We also notice that with
different network architectures and different input formula-
tions, the Neu-IR models achieve varied gains. It would be
worthwhile exploring which architecture is a better fit for
ad-hoc retrieval.

It is exciting to see that our model, DeepTileBars, outper-
forms other state-of-the-art neural IR systems in TREC Web
Tracks and MQ2008. We think the gains come from the top-
ical segmentation of the texts and the bagging of multiple
CNNs with different kernel sizes. Word-to-segment match-
ing provides relevance signals at the topic level. CNNs with
different kernel sizes allow to evaluate document relevance
at all granularities.

To investigate how DeepTileBars works internally, we ex-
periment with a few variants of DeepTileBars with only one
kernel. It can be found that adjusting the kernel size can only
bring marginal improvement while the combination of all
kernels boosts the retrieval performance.

When changing word-to-segment matching back to word-
to-word matching, we observe a huge performance decrease.
This confirms our claim that word-to-word matching is less
desirable than word-to-segment matching in terms of finding
relevance patterns.

However, we are still left behind by the TREC Best runs
in some metrics. Some TREC Best runs used sophisticated
term weighting methods without any deep learning (Dinçer,
Kocabas, and Karaoglan 2010; Al-akashi and Inkpen 2012).
Others used shallow neural networks or linear regression
but with abundant feature engineering (Elsayed et al. 2010;
Boytsov and Belova 2011). We look forward to the day when
Neu-IR could catch up with the TREC best systems.

Related Work
There are only a few pieces of research that share similar
intention with ours, i.e. visualizing the relevance signals in
a document for deep learning. Works that are the closest to
ours are MatchPyramid, HiNT, and ViP (Fan et al. 2017).

MatchPyramid was proposed for text matching tasks, in-
cluding paraphrase identification and paper citation match-
ing. By plotting the similarity between two sentences in an
n × m matrix, where n and m are the lengths of two sen-
tences respectively, deep neural networks were used to find

the matching patterns between sentences with this image-
like visualization. In MatchPyramid, the matching is done at
the word level and experiments show it is less effective.

The more recent Neu-IR model, HiNT, adopted a simi-
lar idea to ours to perform passage-level retrieval. One ma-
jor difference between HiNT and DeepTileBars is how they
split the documents. HiNT splits documents by fixed sized
passages whereas DeepTileBars splits them based on topic
changes. The passages in HiNT are in fact more similar to
our token sequences, which do not represent topical struc-
ture. As a result, the highest semantic level that HiNT is
able to examine is similar to our segments. Levels higher
than segments are not modeled in HiNT. In this sense, HiNT
is not a true hierarchical Neu-IR model; instead, it is a
segment-level only model. Meanwhile, although HiNT used
a much more complex neural method, with a light-weighted
architecture, DeepTileBars achieves better retrieval effec-
tiveness in our experiments.

ViP also proposed to take advantage of visual features in
a document. Instead of using the interaction matrix as the
input image, ViP directly used a webpage’s snapshot as so.
ViP’s experiments showed that even query-independent vi-
sual features would be able to improve the retrieval effec-
tiveness. ViP’s semantic units, such as the webpage sections
and multimedia components, are similar to our hierarchical
topics higher than the segments. In this sense, they are the
most similar work to ours. However, we did not compare to
their work in this paper due to our focus on texts.

Research from the field of Natural Language Processing
has adopted similar designs of using multiple CNN kernel
sizes. For example, (Kim 2014) used that for sentence clas-
sification. Their input was a d×m interaction matrix, where
d was the dimension of the term vectors and m was the num-
ber of words in a sentence. They encoded a sentence using
multiple CNNs with kernel sizes d × n, where n was the
size of an n-gram and obviously could vary. While our use
of multiple kernel sizes is driven by the attempt to fuse rel-
evance signals at multiple topical granularities, their mod-
ern way of representing n-grams (with different n) yielded a
similar design to ours.

Conclusion

In this paper, we propose DeepTileBars, a Neu-IR model in-
spired by classical work in search engine visualization. The
main contribution includes (1) word-to-segment matching
and (2) bagging of different sized CNNs. Experiments show
that our approach outperforms the state-of-the-art Neu-IR
models. One exciting property about our work is that it seg-
ments a document roughly by topics. We think these topical
segments are more meaningful units than segments of fixed
lengths and natural paragraphs (which do not necessarily re-
spect topical boundaries). Moreover, with multiple different
sized kernels, a hierarchical modeling of document structure
is practically enabled and probably contributes to the effec-
tiveness of our approach.
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