
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Data Augmentation Based on Adversarial Autoencoder
Handling Imbalance for Learning to Rank∗

Qian Yu, Wai Lam
Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong
{yuqian, wlam}@se.cuhk.edu.hk

Abstract

Data imbalance is a key limiting factor for Learning to Rank
(LTR) models in information retrieval. Resampling methods
and ensemble methods cannot handle the imbalance problem
well since none of them incorporate more informative data
into the training procedure of LTR models. We propose a data
generation model based on Adversarial Autoencoder (AAE)
for tackling the data imbalance in LTR via informative data
augmentation. This model can be utilized for handling two
types of data imbalance, namely, imbalance regarding rele-
vance levels for a particular query and imbalance regarding
the amount of relevance judgements in different queries. In
the proposed model, relevance information is disentangled
from the latent representations in this AAE-based model in
order to reconstruct data with specific relevance levels. The
semantic information of queries, derived from word embed-
dings, is incorporated in the adversarial training stage for reg-
ularizing the distribution of the latent representation. Two in-
formative data augmentation strategies suitable for LTR are
designed utilizing the proposed data generation model. Ex-
periments on benchmark LTR datasets demonstrate that our
proposed framework can significantly improve the perfor-
mance of LTR models.

Introduction
In information retrieval, the task of Learning to Rank (LTR)
(Liu and others 2009) refers to a category of methods where
machine learning models are trained to rank documents
based on the degree of relevance to the query. One challenge
for LTR is that the available training data is usually imbal-
anced (Verberne et al. 2011; Macdonald, Santos, and Ounis
2013; Agarwal et al. 2012). The imbalance problem for LTR
comes from two sources:

1. Imbalance regarding Relevance (R-imbalance)
Given a query, the documents judged with high relevance
level are much fewer than judged irrelevant documents.
The reason is that the relevant documents are typically

∗The work described in this paper is substantially supported by
grants from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Codes: 14203414) and the
Direct Grant of the Faculty of Engineering, CUHK (Project Code:
4055093).
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scarce in the whole collection and it is hard for an explicit
or implicit relevance judgement annotation procedure to
pick out all the documents with high relevance level.

2. Imbalance regarding Query (Q-imbalance)
Different queries typically have different amounts of rel-
evance judgements. Since relevance is always query-
based, the imbalance of available information associated
with different queries also influences the model training
in LTR. Specifically, if some queries have much larger
amount of judged documents than other queries, then
these queries tend to dominate the learning of LTR mod-
els.

The performances of LTR models are restricted by imbal-
anced training data, especially the pointwise LTR models.
The pairwise LTR models regard pairs of document with
different relevance levels as training samples, and pairwise
learning objectives are designed according to the relative
relevance level for eliminating R-imbalance problem. How-
ever, the pairwise objective function and training samples
still suffer from the scarcity of documents with high rele-
vance level. The pairwise training set lacks of diversity since
the ”highly relevance” part of the pairwise training samples
is still derived from the same small set of documents with
high relevance level. Therefore, if we can address the issue
of imbalanced data in LTR, the overall performance of pair-
wise methods can be improved.

Both resampling methods (Batuwita and Palade 2010;
Chawla et al. 2002) and ensemble methods (Dietterich 2000)
attempt to avoid learning a biased model with imbalanced
data, but none of them provide informative augmentation
for the training data. Instead of modeling complex decision
boundaries with alternative models as in ensemble methods,
we argue that a more proper solution for data imbalance in
LTR should incorporate informative data into the training
set. The data generation procedure should comply with two
criteria. The first criterion is that it should generate informa-
tive data that are not merely duplications of existing data.
The second criterion is that the generation procedure should
be controllable regarding relevance levels and query charac-
teristics. For data generation purpose, Generative Adversar-
ial Networks (GAN) (Goodfellow et al. 2014) and its vari-
ants (Zheng, Zheng, and Yang 2017; Shrivastava et al. 2017;
Mariani et al. 2018) have been proposed. These models try

411



to train a data generator and a discriminator to distinguish
the generated data and real data. However, GAN-based mod-
els capture the input data distribution, and will intrinsically
inherit the imbalance in the training set. GAN-based meth-
ods cannot address data imbalance since they cannot comply
with the two data generation criteria mentioned before.

We propose a data generation model based on Adversarial
Autoencoder (AAE) (Makhzani et al. 2015) to facilitate in-
formative data augmentation for LTR. Basically, we attempt
to generate latent representations which can be decoded to
informative synthetic data. The proposed data augmentation
has several characteristics for handling R-imbalance and Q-
imbalance. First, relevance information is disentangled from
the latent representation. Thus, the data reconstruction stage
facilitates the data generation for a given target relevance
levels for handling R-imbalance. We refer this data gener-
ation as informative since the generated data contains new
information via combining the target relevance level and the
relevance-independent latent representation. Second, with
the aid of word embeddings, query types containing queries
that are semantically close are discovered and incorporated
in the adversarial training stage for regularizing the distri-
bution of latent representations. For each query, sufficient
training data derived from the same query type can be ob-
tained via manipulating the generation of latent represen-
tation. This can eliminate the dominance of queries with
large amount of relevance judgements, therefore handling
Q-imbalance. Two informative data augmentation strategies
for LTR are designed exploiting the above mentioned model.
To the best of our knowledge, this is the first work for han-
dling both types of imbalance in LTR setting.

Related Work
A basic task for information retrieval is to rank a set of
documents given a query, based on the relevance between
a document and a query (Cao et al. 2006). Learning to rank
(LTR) methods (Liu and others 2009) solve this problem via
training a ranking model with samples labeled with rank-
ing information. There are three categories of LTR methods,
namely pointwise, pairwise, and listwise methods (Cao et al.
2007). For pointwise methods, the inputs are feature vectors
derived from the corresponding query and document. A in-
put vector contains features associated with the document,
such as document length, IDF of terms, etc., and features
associated with both query and document, such as TF*IDF,
BM25 score, etc. Each of the vector is labeled with the rele-
vance score of the document to the query. The learned model
is capable for relevance score prediction. In pairwise meth-
ods, each training sample is constructed by two feature vec-
tors. The two feature vectors in one pairwise sample is asso-
ciated with the same query and the relative relevance is the
label for the training sample. Listwise methods use docu-
ment lists as training samples. However, it is difficult to pre-
pare the training set for listwise methods and the algorithm
complexity tends to be high. Recently, features extracted
from texts via deep learning models are also utilized in LTR
methods (Wan et al. 2016; Severyn and Moschitti 2015;
Pang et al. 2017), but we only consider the traditional fea-
tures in LTR datasets in this paper.

Resampling (Good 2006) is an important technique for
handling data imbalance (He and Garcia 2009) in machine
learning. There are mainly two types of sampling meth-
ods, namely oversampling (Fernández-Navarro, Hervás-
Martı́nez, and Gutiérrez 2011) and undersampling (Chawla
2003). In oversampling (Chawla 2003), data are sampled
from the existing data set of minor classes and added into
the training set. In this way, the sizes of minor classes
are enlarged and the imbalance between major and mi-
nor classes is alleviated. However, the training data is aug-
mented with duplicated data without new information, and
these sampling methods make the learned machine learn-
ing model suffer from high risk of overfitting. One of the
well-known oversampling methods is SMOTE (Chawla et
al. 2002) and there are several variants (Han, Wang, and
Mao 2005) of SMOTE for specific settings. One the other
hand, undersampling methods (Liu, Wu, and Zhou 2009;
Yen and Lee 2009) reduce the number of data in major
classes to obtain similar amount of training data in dif-
ferent classes. The undersampling will result in informa-
tion loss during the reduction of training data via sampling.
Undersampling technique is usually utilized with ensem-
ble methods (Galar et al. 2013; Liu, An, and Huang 2006;
Wang, Minku, and Yao 2015), but the scarcity of data in mi-
nor classes is not directly handled in these methods. As we
mentioned before, informative data generation is more help-
ful than resampling technique.

Informative Data Generation Model
Each training sample vq,d for LTR is a feature vector de-
rived from a pair of query q and document d. Features
in vq,d are assigned with nonnegative values. Also, a rele-
vance judgement indicating the relevance degree is associ-
ated with a query-document pair. Let the relevance degree
be denoted as rq,d which is an integer value typically in the
range [0, nr − 1], where nr is the number of relevance lev-
els. The aim of the informative data generation model is to
generate pseudo feature vector v∗ given a target relevance
degree r∗. Fig. 1 depicts our proposed informative data gen-
eration model. The decoder is equipped with a relevance
level indicator in the reconstruction procedure to disentangle
relevance information from the latent representation. Each
data instance is reconstructed based on the target relevance
level and relevance-independent latent representation. This
method can incorporate new information into the training set
via combining the desired relevance level and the relevance-
independent latent representation. Query clusters containing
queries that are semantically close are discovered with the
aid of word embeddings. Each cluster can be regarded as a
query type labeled with a type ID. The query type informa-
tion is incorporated in the adversarial training stage for reg-
ularizing the distribution of latent representations. Thus, the
prior distribution of the latent representation can be utilized
for generating data via pseudo queries for a particular query
type. Such strategy can tackle the Q-imbalance problem.

Background of Adversarial Autoencoder
The basic Adversarial AutoEncoder (AAE) (Makhzani et al.
2015) equips the autoencoder with an adversarial compo-

412



Figure 1: Informative Data Generation Model.

nent. The adversarial learning is employed for imposing a
prior distribution p0(z) to the latent representation z. Sam-
pling from p0(z) will result in latent representations that can
be reconstructed to generate reasonable synthetic data. Com-
pared with Variational Autoencoder (VAE) (Kingma and
Welling 2013), AAE performs better when imposing com-
plicated prior distribution

There are three basic components in AAE:
Encoder. A feed forward neural network consists of sev-

eral layers with ReLU nonlinear activation function. The in-
put is the real data, namely the normalized feature vector v
and the output of encoder is the latent representation z.

Decoder. A neural network consists of similar structure
as the encoder but the input is the latent representation z. A
latent representation can run through the decoder resulting
in a reconstructed feature vector v′ with the same size as the
input for encoder.

Discriminator. A discriminative network makes use of a
sigmoid output layer. The input z∗ for the discriminator can
be a latent vector sampled from the prior distribution p0(z)
or a latent representation encoded from a real feature vector.
The output of the discriminator is the probability that the
input z∗ is generated from p0(z).

The learning of AAE is guided by two objective func-
tions, namely reconstruction loss function and adversarial
loss function, as shown in Eqn 1 and Eqn 2 respectively
given below.

min
Encode,Decode

∑
v∼pv

||v −Decode(Encode(v))||2 (1)

min
Encode

max
D

Ez∼p0(z) logD(z)− Ev∼pv logD(Encode(v))
(2)

where Encode(·) and Decode(·) stand for the data pro-
cess function of the Encoder and Decoder respectively, D(·)
stands for the discriminator, and pv is the distribution of real
data. The adversarial training (Lowd and Meek 2005) facil-
itates the AAE to embed the input in a space that is defined

by the prior distribution p0(z). Thus, latent representations
sampled from p0(z) can be reconstructed to reasonable syn-
thetic data. Note that different from general GAN model, the
latent representations generated from the prior distribution
in AAE are regarded as positive samples for the discrimina-
tor, while the outputs of the encoder are regarded as negative
samples. After the AAE is trained with a given prior distribu-
tion p0(z), we can sample the latent representation z∗ from
p0(z) and reconstruct the feature vector via the decoder.

Disentangling Relevance Information from Latent
Representation
To facilitate the support of generating feature vector with a
target relevance degree, the relevance information needs to
be captured. A relevance indicator vector is added as the in-
put for the decoder for disentangling the relevance informa-
tion. This disentanglement enforces the encoder to generate
relevance-independent latent representation. Then the recon-
struction procedure can be controlled via assigning a specific
target relevance degree to the latent representation for data
reconstruction. In adversarial learning, the prior distribution
is only imposed for the relevance-independent latent repre-
sentation.

Given a real data vq,d which passes through the encoder,
the latent representation obtained is written as:

zq,d = Encode(vq,d) (3)

where Encode is the data embedding process in Encoder.
We make use of a relevance degree indicator rq,d as shown
in Figure 1. rq,d is a one-hot vector denoting the relevance
degree of the current input vector. It participates in the re-
construction procedure together with the latent representa-
tion. Thus, the decoding process takes the concatenation of
rq,d and zq,d as input for obtaining the reconstruction v′

q,d:

v′
q,d = Decode([rq,d, zq,d]) (4)

where Decode is the data reconstruction process in Decoder.
The learned latent representation is relevance-

independent. In this way, the learned decoder becomes
relevance-aware and the relevance degree of the generated
data can be controlled.

Regularizing Latent Representation Distribution
based on Query Type
Now if we sample a latent representation from the prior dis-
tribution p0(z), we can provide a target relevance degree to
the decoder and reconstruct a feature vector. But the sam-
pling may be influenced by dominant queries in the training
data, namely queries with large amounts of document rele-
vance judgements. To solve this Q-imbalance issue, we fur-
ther regularize the latent representation with query content
information and multi-mode prior distribution.

We discover some query clusters which contain queries
that are semantically close. Each cluster can be regarded as
a query type labeled with a type ID. The query type informa-
tion is incorporated into the adversarial learning for the reg-
ularization of latent distribution. The particular query type

413



discovery model will be presented below. Denoting the num-
ber of query types as nt which is an assigned parameter, we
design a prior distribution that is a mixture of nt Gaussian
distributions. p0(z) =

∑nt

k=1 p
k
0(z), where pk0(z) is a normal

distribution for latent representation. Different pk0(z) is as-
signed with different means but sharing the same variance.
In our implementation, we random select nt points as the
means and variance is set to 1.

Each normal distribution pk0(z) is responsible for generat-
ing queries from one query type. This is achieved by feeding
a query type indicator into the discriminator together with
the original input, namely the latent representation. When
sampling a latent representation z from the prior distribution,
we use only one normal distribution and record the query
type with an indicator vector tz. If the latent representation
zq,d is encoded from a real data vq,d, then the query type for
the corresponding query will be denoted with the indicator
vector tzq,d . The discriminative process takes the concate-
nation of latent representation and the query type indicator
vector as shown below:

p(z∗ ∼ p0(z)) = D([z∗, tz∗ ]) (5)

where p(z ∼ p0(z)) is the predicted probability that the in-
put z is generated from p0(z), and z∗ can be a latent repre-
sentation coming from the encoder or a latent representation
sampled from p0(z). This query type indicator will influence
the discriminator for using different decision boundaries for
different query types. Positive samples for each query type
are generated from the corresponding Gaussian distribution.
In this way, the latent representation will be guided for fit-
ting in the mixture prior distribution according to the query
type.

One advantage of our design is that we can generate the
latent representation for a particular query type and recon-
struct synthetic data with a specific target relevance degree.

Query Type Discovery Given the query set, we discover
the query types in an unsupervised manner. Since word em-
bedding methods can capture semantic information for ev-
ery individual term, we adopt word embedding and con-
duct query clustering. Specifically, we embed each query
with the average of its term embeddings from GloVe (Pen-
nington, Socher, and Manning 2014), and then the K-Means
method with Euclidean distance is applied for discovering
query types. The parameter k in the K-Means method is set
to nc. After such discovery process, given a query, we can
determine the query type it belongs.

Training Procedure
The learning procedure for the proposed model consists of
three stages described below. These training stages will be
conducted iteratively until a stable model is obtained. The
learned model is capable of reconstructing data with disen-
tanglement of relevance information. The query type-based
prior distribution will be used for regularizing the distribu-
tion of latent representation.

Update Encoder and Decoder for Reconstruction First
of all, the encoder and decode should have the basic ability

for data reconstruction. In this stage, the reconstruction loss
is used for training. We assume that the values in input fea-
ture vector are normalized to be in the range [0, 1]. Then we
adopt the cross-entropy loss for reconstruction:

Lrecon(v, v′) = −vk log(v
′
k)− (1− vk) log(1− v′k) (6)

where v′ is the reconstructed vector based on the real data v,
and both of them are associated with a pair of query q and
document d:

v′q,d = Decode(Encode(vq,d), rq,d) (7)

For training data without normalization, the reconstruction
loss can be replaced by other suitable functions, such as the
squared error between input and output.

Update Discriminator Next, a good discriminator is
needed for distinguishing the latent representations encoded
from the real data and the latent representations sampled
from the prior distribution. Recall that both kinds of latent
representation are associated with a query type. The input
for the discriminator are latent representation z and its cor-
responding query type indicator tz. The discriminator output
D(z) is the probability that the input is generated from the
prior distribution, namely p(z∗ ∼ p0(z)). Then the learning
objective function for the discriminator is formulated as:

LD = − logD(z∗, tz∗) + log(1−D(zq,d, tzq,d)) (8)

where z∗ is the latent representation sampled from the prior
distribution p0(z), and zq,d is the latent representation en-
coded from the real data. This loss function will guide the
model to assign 1 to the latent representation that generated
from the prior distribution, whereas 0 for latent representa-
tion encoded from the real data. The learned discriminator is
used for distinguishing these two kinds of latent vectors.

Update Encoder for Generation After the discriminator
is updated, it will perform better in distinguishing two kinds
of latent representations. The next step is to further adjust
the encoder to generate latent representations that can con-
fuse the discriminator. The target is to train the encoder to
output latent representations that can be predicted to be gen-
erated from the prior distribution by the discriminator. Thus,
the prediction probability of discriminator is used as the loss
function for training the encoder as a generator.

LG = − logD(zq,d, tzq,d) (9)

where zq,d is the latent representation generated from en-
coder based on real data.

Data Augmentation for Learning to Rank
After the above proposed model is trained, it is capable of
generating data with desired characteristics. In this section,
we first illustrate how this model can be used for data gen-
eration with a target relevance degree and query type. Then
two strategies are proposed to augment the training set in
LTR for alleviating R-imbalance and Q-imbalance.

414



Basic Data Generation
Typically, there are much more irrelevant documents for a
query than relevant ones. Our proposed model can gener-
ate feature vectors associated with high relevance degree.
In general, a generated data instance with a specific tar-
get relevance degree can be regarded as representation for a
pseudo-pair of query and document. Given a real data v and
its latent representation z encoded by Encoder. According
to the disentanglement ability of our model, z is relevance-
independent and it can be used for generating data given a
particular target relevance degree. First the target relevance
degree is represented by the relevance indicator vector r∗,
the data generation is formulated as:

v∗ = Decode([z, r∗]) (10)

Different queries have different amounts of relevance
judgements. Some queries with large amounts of judge-
ments tend to dominate the learned ranking model, while
some queries have just a few available judgements. Since our
model can generate latent representation for each query type,
we can enlarge the training set for those query types with
small amount of judgements. The prior distribution of latent
representation is a mixture of normal distributions, and each
of them is responsible for one query type. Thus, we select the
specific normal distribution to sample latent representation
for data generation, and the output will possess the query
characteristic of the corresponding query type. Assume that
a latent representation z∗ is sampled from the normal dis-
tribution associated with the query type tz∗ , then z∗ can be
decoded to generate.

Data Augmentation Strategy I: Augment(R)
The first data augmentation strategy intends to generate pair-
wise training data with different relevance levels but sharing
the same relevance-independent latent representation. This
kind of pairwise training data will help the LTR model to
focus only on the relevance-related features.

Let us consider a training data v with relevance degree r
as an example. We obtain its latent representation z and use
it to reconstruct the data with relevance degree r − 1 and
r + 1, denoted as vr−1 and vr+1 respectively. Two pairwise
training samples are constructed: (v, vr−1) and (vr+1, v).

Since the data, vr−1, v and vr+1 are all reconstructed
from the same relevance-independent latent representation
z, the main information that can be obtained from the rank-
ing difference is the relevance information, without interfer-
ence from the content information. In this way, this strategy
Augment(R) utilizes the disentanglement ability of the data
generation model to directly embed the relative relevance in-
formation in the training pairs. Since the training pairs share
the same latent representation, it reduces the burden of the
ranking model to distinguish relevance information and con-
tent information. Note that only R-imbalance is handled in
this strategy. The augmented pairwise data set is added to
the original pairwise training set.

Data Augmentation Strategy II: Augment(R+Q)
This data augmentation strategy aims at alleviating the two
types of data imbalance. Given a training data, we generate

new data associated with the next higher relevance level to
incorporate more data with high relevance. For example, as-
suming that the range of the relevance degree is [0, 2]. For
a query q, we sample training data from the training subset
with relevance degree 1, denoted as V q

1 . Then a new data set
with target relevance degree 2 is generated based on V q

1 via
the above proposed data generation model, denoted as V ′q

2.
Similarly, based on the training subset with relevance degree
0, denoted as V q

0 , we can generate a data set with relevance
degree 1, denoted as V ′q

1. A ratio rR ∈ (0, 1) is introduced
to provide the stopping threshold for the generation proce-
dure:

rR < Sq
2/S

q
1 , rR < Sq

1/S
q
0 (11)

where Sq
n = |V q

n |+ |V ′q
n| is the number of original data and

generated data with relevance degree n.
Then we use the data generation to generate data for query

types with small amount of relevance judgement via sam-
pling from the prior distribution based on specific query
types. We sum all the available training data for each query
type to find out the query types with small amount of judge-
ments. More training data is generated for these query types
via a ratio rQ used similar as rR:

rQ < Sq
min/S

q
i (12)

where Sq
min is the number of the training data associated

with the query type with fewest judgements, and Sq
i is the

number of the training data for any other query type. We
repeatedly find the query type with the minimum training set
for data generation, until the stopping threshold expressed in
Eqn 12 is reached.

Experiments
Datasets
Three benchmark LTR datasets are used in our experi-
ments to test the proposed data augmentation methods. The
datasets are MQ2007 and MQ2008 from the LETOR 4.0
package, and MSLR-WEB10K. The queries for MQ2007

Table 1: Statistics of Datasets.
Dataset MQ2007 MQ2008 MSLR-WEB10K
query (Q) 1,692 784 10,000
document (D) 65,323 14,384 -
Q-D pair 69,623 15,211 1,200,192
Q-D pair with r = 4 0 0 8,881
Q-D pair with r = 3 0 0 21,317
Q-D pair with r = 2 3,863 931 159,451
Q-D pair with r = 1 14,628 2,001 386,280
Q-D pair with r = 0 51,632 12,279 624,263
max Q-D pair per query 147 121 908
min Q-D pair per query 6 6 1

and MQ2008 are from Million Query track of TREC 2007
(1692 queries) and TREC 2008 (784 queries) respectively.
For each query in these two datasets, retrieved documents
from the Gov2 web page collections (about 25 million
pages) are labeled with relevance judgements ranging from
0 standing for irrelevance to 2 standing for high relevance.

415



Table 2: Performance (P@5/NDCG@5/MAP) of Learning to Rank Models. * indicates a statistically significant improvement
over the SMOTE resampling method, at level 0.05.

Model RankSVM RankNet ListNet AdaRank LambdaMart
MQ2007

Original 0.414 / 0.414 / 0.464 0.392 / 0.397 / 0.450 0.393 / 0.397 / 0.446 0.407 / 0.413 / 0.460 0.419 / 0.419 / 0.466
Undersampling 0.379 / 0.368 / 0.387 0.376 / 0.378 / 0.365 0.376 / 0.378 / 0.375 0.381 / 0.383 / 0.394 0.392 / 0.391 / 0.414
Oversampling 0.415 / 0.416 / 0.465 0.392 / 0.399 / 0.452 0.396 / 0.398 / 0.450 0.409 / 0.413 / 0.463 0.421 / 0.412 / 0.459
SMOTE 0.418 / 0.418 / 0.466 0.391 / 0.398 / 0.450 0.395 / 0.399 / 0.452 0.411 / 0.415 / 0.463 0.424 / 0.420 / 0.465
Augment(R) 0.429∗/0.427∗/0.473∗ 0.429∗/0.429∗/0.475∗ 0.433∗/0.435∗/0.475∗ 0.438∗/0.436∗/0.478∗ 0.439∗/0.434∗/0.476∗

Augment(R+Q) 0.431∗/0.430∗/0.473∗ 0.430∗/0.431∗/0.475∗ 0.434∗/0.435∗/0.477∗ 0.439∗/0.437∗/0.478∗ 0.441∗/0.439∗/0.481∗

MQ2008
Original 0.327 / 0.450 / 0.450 0.328 / 0.448 / 0.451 0.334 / 0.455 / 0.456 0.343 / 0.476 / 0.478 0.341 / 0.469 / 0.475
Undersampling 0.227 / 0.345 / 0.331 0.236 / 0.359 / 0.362 0.233 / 0.349 / 0.371 0.263 / 0.383 / 0.390 0.313 / 0.397 / 0.432
Oversampling 0.329 / 0.450 / 0.452 0.327 / 0.451 / 0.454 0.346 / 0.456 / 0.456 0.345 / 0.475 / 0.476 0.343 / 0.475 / 0.478
SMOTE 0.331 / 0.451 / 0.452 0.327 / 0.453 / 0.454 0.347 / 0.456 / 0.458 0.346 / 0.477 / 0.477 0.345 / 0.476 / 0.477
Augment(R) 0.342∗/0.463∗/0.466∗ 0.350∗/0.478∗/0.477∗ 0.352∗/0.482∗/0.484∗ 0.352∗/0.482∗/0.484∗ 0.353∗/0.485∗/0.487∗

Augment(R+Q) 0.345∗/0.465∗/0.467∗ 0.351∗/0.480∗/0.481∗ 0.353∗/0.485∗/0.486∗ 0.353∗/0.484∗/0.485∗ 0.354∗/0.488∗/0.487∗

MSLR-WEB10K
Original 0.412 / 0.438 / 0.345 0.420 / 0.452 / 0.360 0.425 / 0.457 / 0.362 0.423 / 0.453 / 0.360 0.429 / 0.461 / 0.365
Undersampling 0.266 / 0.303 / 0.213 0.297 / 0.332 / 0.245 0.305 / 0.361 / 0.386 0.300 / 0.346 / 0.370 0.319 / 0.366 / 0.391
Oversampling 0.415 / 0.440 / 0.349 0.422 / 0.452 / 0.361 0.428 / 0.463 / 0.366 0.427 / 0.458 / 0.362 0.439 / 0.467 / 0.367
SMOTE 0.423 / 0.446 / 0.375 0.428 / 0.459 / 0.363 0.433 / 0.472 / 0.371 0.434 / 0.467 / 0.371 0.452 / 0.479 / 0.378
Augment(R) 0.445∗/0.468∗/0.380∗ 0.450∗/0.471∗/0.382∗ 0.452∗/0.474∗/0.385∗ 0.450∗/0.472∗/0.381∗ 0.469∗/0.489∗/0.393∗

Augment(R+Q) 0.448∗/0.470∗/0.380∗ 0.453∗/0.475∗/0.386∗ 0.460∗/0.487∗/0.392∗ 0.458∗/0.482∗/0.392∗ 0.473∗/0.496∗/0.401∗

For each query-document pair, a 46-dimentional feature vec-
tor is prepared in the datasets. A query level normalization
is conducted on the feature vectors. The description for each
feature and normalization can be found in (Qin and Liu
2013). For the dataset MSLR-WEB10K, 10000 queries are
collected from a commercial search engine, and documents
for each query are annotated with 5 different relevance level,
namely from 0 for irrelevance to 4 for high relevance level.
There are 136 features extracted for each pair of query and
document.

The statistics of the three datasets are presented in Table 1.
We can observe that relevant query-document pairs are rela-
tively scarce in the training set, especially the ones with high
relevance degree. In addition, the large range of the number
of query-document pairs for a query indicates the data im-
balance regarding queries.

Experiment Settings
We apply our proposed two data augmentation strategies to
several state-of-the-art LTR models. Given a set of training
data and corresponding query set, we first conduct unsuper-
vised learning via the query type discovery model described
above for labeling each query with a particular query type.
As a result, each training data is associated with a query type
ID and a relevance degree. Then the informative data gener-
ation model as described above can be trained. After that,
the two data generation strategies are applied for augment-
ing the training set. Then the LTR models are learned based
on the augmented training set. We apply the data augmenta-
tion methods on the following state-of-the-art LTR models.
RankSVM (Joachims 2002) is a variant of SVM model for
LTR task. RankNet (Burges et al. 2005) is a classic pair-
wise ranking algorithm making use of a neural network with
a natural probabilistic loss function on pairs of training data.

ListNet (Cao et al. 2007) uses lists of document as train-
ing instances employing listwise loss function. AdaRank
(Xu and Li 2007) trains one ranking model at each itera-
tion followed with re-weighting document pairs, and com-
bines these weak rankers for the final ranking output. Lamb-
daMART (Burges, Ragno, and Le 2007) incorporates tree-
based boosting methods into LambdaRank for LTR, and di-
rectly optimizes the evaluation metric such as NDCG.

To demonstrate the effectiveness of the proposed data
augmentation methods for improving LTR performance, we
compare with the different resampling methods including
random oversampling, random undersampling, and one
of the state-of-the-art oversampling method called SMOTE
(Chawla et al. 2002). We denote our proposed two data aug-
mentation methods as Augment(R) and Augment(R+Q).
Each dataset is partitioned to five subsets with roughly equal
size, and 5-fold cross validation is adopted for all the LTR
models. Specifically, in each fold, there are 3 subsets utilized
as training set, one subset as validation set and one as test
set. Data augmentation will be conducted on each training
set and the improved model will be evaluated on the corre-
sponding test set. The average performance on test sets of
5 folds is recorded for each method. We use the Wilcoxon
significance test to examine the statistical significance of the
improvements over the SMOTE resampling method.

Implementation Details In the data generation model for
MQ2007 and MQ2008, the encoder is a fully connected neu-
ral network with the layer size as 46-50-50-10, whereas the
structure for the decoder is 10-50-50-46. As for MSLR-
WEB10K, the network structures are 136-100-50-20 and
20-50-100-136 for encoder and decoder, respectively. The
discriminator is a softmax prediction model with two hid-
den layers, and each of which is 50-dimension. Since both

416



datasets MQ2007 and MQ2008 contain only three levels of
relevance degree, i.e., 0, 1, and 2, the relevance indicator
vector in the model is 3-dimension. This dimension is 5 for
MSLR-WEB10K. The query cluster number is set to 10 for
MQ2007, 5 for MQ2008, and 10 for MSLR-WEB10K. The
analysis for this hyper-parameter can be found in Section .
rR and rQ is set to 1. The framework is implemented via Py-
torch 0.4.0 and Python 3.6, and all AAE based models are
run with a single NVIDIA Tesla K80 GPU.

Performance Improvement on LTR Models
The performance of LTR models with different data aug-
mentation methods on MQ2007, MQ2008 and MSLR-
WEB10k are presented in Table 2. We can observe that our
proposed two data augmentation strategies can significantly
improve the LTR performance of all the LTR models. Lamb-
daMART method with Augment(R+Q) achieves the best
performance regarding all evaluation metrics. Specifically,
Augment(R+Q) can improve the NDCG@5 performance
of LambdaMART by more than 3% on both MQ2007 and
MQ2008. Augment(R+Q) generally improves LTR perfor-
mance a little more than Augment(R), which indicates that
handling data imbalance regarding queries (Q-imbalance)
can also help LTR models as well as imbalance regard-
ing relevance levels (R-imbalance). According to the re-
sults, all the other tested resampling methods cannot in-
fluence the performance of LTR models significantly. Un-
dersampling achieves worse performance than the base-
line methods, which reveals that irrelevant query-document
pairs are also valuable. The random oversampling and the
SMOTE method obtain similar performance as the original
LTR model since these resampling methods cannot add in-
formative data into the training set for LTR. Our framework
achieves significant improvement due to the ability of in-
formative data generation considering both relevance degree
and query characteristics.

Table 3: Number of queries with improved/reduced MAP via
data augmentation on LambdaMART.

augment method MQ2007 MQ2008 MSLR-WEB10k
Undersampling 327 / 842 143 / 467 1474 / 8035
Oversampling 641 / 684 329 / 352 4902 / 4864
SMOTE 653 / 674 346 / 331 4964 / 4795
Augment(R) 956 / 504 475 / 240 5625 / 3792
Augment(R+Q) 1035 / 495 493 / 213 5871 / 3675

Apart from the overall performance, we further look into
the effect of data augmentation for individual queries. In Ta-
ble 3, the number of queries whose MAP can be improved or
reduced via a specific data augmentation method is recorded.
The base model is LambdaMART and similar trends are
observed for other LTR models. We can observe that our
proposed two augmentation methods can improve the per-
formance of most queries. Specifically, the MAP perfor-
mance of 1035 out of 1692 queries can be improved by Aug-
ment(R+Q). As for other resampling methods, such dom-
inance of queries with improved MAP performance can-
not be observed. This demonstrate the proposed informative
data augmentation can benefit most individual queries.

Investigation of Hyper-parameters
We present some analysis on some important hyper-
parameters in our framework. The P@1 evaluation metric is
used for comparison of different parameter settings. Lamb-
daMART is adopted as the base model for this analysis.

Figure 2: Investigation of Latent Representation Dimension.
Solid lines represent the performance of Augment(R+Q)
and dash lines for Augment(R).

Figure 2 shows the investigation of the dimension of the
relevance-independent latent representation z, with regard to
the LTR performance of Augment(R) and Augment(R+Q)
on MQ2007 and MQ2008. We can observe that the perfor-
mances are stable as long as the dimension of latent repre-
sentation is set in a specific range. Too small or too large
dimension reversely affect the performance.

Figure 3: Investigation of Number of Query Types.

Figure 3 shows the investigation of the number of clus-
ters in the query type discovery component of the frame-
work, with regard to the performance of Augment(R+Q) on
MQ2007 and MQ2008. It can be observed that a larger num-
ber of query clusters generally yield better performance. The
performance improvement is negligible when the number of
query clusters exceeds a certain value.

Conclusions
We propose to handle the data imbalance issue in learning
to rank via a data augmentation framework. An informa-
tive data generation model is designed based on adversarial
autoencoder. In this model, relevance information is disen-
tangled from the latent representation and query informa-
tion is exploited for regularizing the prior latent distribu-
tion. Two data augmentation strategies are proposed. Exper-
iments on benchmark datasets with state-of-the-art models
demonstrate that the proposed data augmentation is effective
in improving the LTR performance. Data imbalance prob-
lem in LTR is alleviated via the proposed informative data
augmentation.

417



References
Agarwal, A.; Raghavan, H.; Subbian, K.; Melville, P.;
Lawrence, R. D.; Gondek, D. C.; and Fan, J. 2012. Learning
to rank for robust question answering. In CIKM, 833–842.
Batuwita, R., and Palade, V. 2010. Efficient resampling
methods for training support vector machines with imbal-
anced datasets. In IJCNN, 1–8. IEEE.
Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.;
Hamilton, N.; and Hullender, G. 2005. Learning to rank
using gradient descent. In ICML, 89–96. ACM.
Burges, C. J.; Ragno, R.; and Le, Q. V. 2007. Learning to
rank with nonsmooth cost functions. In NIPS, 193–200.
Cao, Y.; Xu, J.; Liu, T.-Y.; Li, H.; Huang, Y.; and Hon, H.-
W. 2006. Adapting ranking svm to document retrieval. In
SIGIR, 186–193. ACM.
Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007.
Learning to rank: from pairwise approach to listwise ap-
proach. In ICML, 129–136. ACM.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. Smote: synthetic minority over-sampling tech-
nique. Journal of Artificial Intelligence Research 16:321–
357.
Chawla, N. V. 2003. C4. 5 and imbalanced data sets: investi-
gating the effect of sampling method, probabilistic estimate,
and decision tree structure. In ICML, volume 3, 66.
Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In International Workshop on Multiple Classifier Sys-
tems, 1–15. Springer.
Fernández-Navarro, F.; Hervás-Martı́nez, C.; and Gutiérrez,
P. A. 2011. A dynamic over-sampling procedure based
on sensitivity for multi-class problems. Pattern Recognition
44(8):1821–1833.
Galar, M.; Fernández, A.; Barrenechea, E.; and Herrera,
F. 2013. Eusboost: Enhancing ensembles for highly im-
balanced data-sets by evolutionary undersampling. Pattern
Recognition 46(12):3460–3471.
Good, P. I. 2006. Resampling methods. Springer.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NIPS, 2672–2680.
Han, H.; Wang, W.-Y.; and Mao, B.-H. 2005. Borderline-
smote: a new over-sampling method in imbalanced data sets
learning. In International Conference on Intelligent Com-
puting (ICIC), 878–887. Springer.
He, H., and Garcia, E. A. 2009. Learning from imbalanced
data. TKDE 21(9):1263–1284.
Joachims, T. 2002. Optimizing search engines using click-
through data. In SIGKDD, 133–142. ACM.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Liu, Y.; An, A.; and Huang, X. 2006. Boosting prediction
accuracy on imbalanced datasets with svm ensembles. In
PAKDD, 107–118. Springer.

Liu, T.-Y., et al. 2009. Learning to rank for information re-
trieval. Foundations and Trends R⃝ in Information Retrieval
3(3):225–331.
Liu, X.-Y.; Wu, J.; and Zhou, Z.-H. 2009. Exploratory un-
dersampling for class-imbalance learning. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics) 39(2):539–550.
Lowd, D., and Meek, C. 2005. Adversarial learning. In
SIGKDD, 641–647. ACM.
Macdonald, C.; Santos, R. L.; and Ounis, I. 2013. The whens
and hows of learning to rank for web search. Information
Retrieval 16(5):584–628.
Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and
Frey, B. 2015. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644.
Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; and Mal-
ossi, C. 2018. Bagan: Data augmentation with balancing
gan. arXiv preprint arXiv:1803.09655.
Pang, L.; Lan, Y.; Guo, J.; Xu, J.; Xu, J.; and Cheng, X.
2017. Deeprank: A new deep architecture for relevance
ranking in information retrieval. In CIKM, 257–266. ACM.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP, 1532–
1543.
Qin, T., and Liu, T.-Y. 2013. Introducing letor 4.0 datasets.
arXiv preprint arXiv:1306.2597.
Severyn, A., and Moschitti, A. 2015. Learning to rank short
text pairs with convolutional deep neural networks. In SI-
GIR, 373–382. ACM.
Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang,
W.; and Webb, R. 2017. Learning from simulated and un-
supervised images through adversarial training. In CVPR,
2107–2116.
Verberne, S.; van Halteren, H.; Theijssen, D.; Raaijmakers,
S.; and Boves, L. 2011. Learning to rank for why-question
answering. Information Retrieval 14(2):107–132.
Wan, S.; Lan, Y.; Xu, J.; Guo, J.; Pang, L.; and Cheng, X.
2016. Match-srnn: modeling the recursive matching struc-
ture with spatial rnn. In IJCAI, 2922–2928.
Wang, S.; Minku, L. L.; and Yao, X. 2015. Resampling-
based ensemble methods for online class imbalance learn-
ing. TKDE 27(5):1356–1368.
Xu, J., and Li, H. 2007. Adarank: a boosting algorithm for
information retrieval. In SIGIR, 391–398. ACM.
Yen, S.-J., and Lee, Y.-S. 2009. Cluster-based under-
sampling approaches for imbalanced data distributions. Ex-
pert Systems with Applications 36(3):5718–5727.
Zheng, Z.; Zheng, L.; and Yang, Y. 2017. Unlabeled sam-
ples generated by gan improve the person re-identification
baseline in vitro. In CVPR, 3754–3762.

418


