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Abstract

Extracting valuable facts or informative summaries from
multi-dimensional tables, i.e. insight mining, is an impor-
tant task in data analysis and business intelligence. However,
ranking the importance of insights remains a challenging and
unexplored task. The main challenge is that explicitly scoring
an insight or giving it a rank requires a thorough understand-
ing of the tables and costs a lot of manual efforts, which leads
to the lack of available training data for the insight ranking
problem. In this paper, we propose an insight ranking model
that consists of two parts: A neural ranking model explores
the data characteristics, such as the header semantics and the
data statistical features, and a memory network model intro-
duces table structure and context information into the ranking
process. We also build a dataset with text assistance. Exper-
imental results show that our approach largely improves the
ranking precision as reported in multi evaluation metrics.

Introduction
Automatically extracting useful and appealing insights, i.e.
the data mining results, from a multi-dimensional table is a
challenging yet important task in the areas of Business In-
telligence (BI), Data Mining, Table-to-Text Generation, etc.
For example, we can derive the insight ”Sales of Brand A is
increasing year over year while sales of Brand B is decreas-
ing from 2015 to 2017 in China” from a multi-dimensional
car sales table. In this work, insight is defined as a data
structure that includes subspace, type, significance value,
and description. It can be described in any forms for dif-
ferent applications. In the whole process of automatic busi-
ness data analysis, generating abundant insights from multi-
dimensional structured data can be accomplished with elab-
orate predefined rules, while modeling their usefulness or
interestingness and ranking the top ones are much more dif-
ficult. Handcrafted ranking rules are less efficient and can-
not cover every possible situation, and therefore a learning
method for insight ranking is worth studying.
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Figure 1: Example of a table and its corresponding descrip-
tion text in an annual report.

Previously effort has been made to explore how to extract
insights according to its statistical significance score (Tang
et al. 2017). However, statistical significance has some lim-
itation in insight importance ranking. First, as its scoring
method suggests, it neglects the semantics of the data (such
as the horizontal and vertical headers in the bi-dimensional
table), which is proved to greatly contribute to the impor-
tance of data in our later experiments. As a result, insights
that have a higher preference in real-world data are possi-
ble to get less attention. For example, in financial reports a
statistically significant increase of “Operating Income” usu-
ally enjoys less popularity than that of a more common item
“Total Revenue”, as shown in Figure 1, but is possible to get
a higher statistical significance score. Besides, the signifi-
cance values of insights in different types are incomparable.
It is inaccurate to rank an insight of trend (shape insight)
and an insight of outliers (point insight) according to their
significant values since the two significant values have their
own statistical meanings under different statistical hypothe-
sis and measurements. Also, the statistical analysis method
is unsuited for small tables since it requires a minimum num-
ber of data points to calculate the statistical significance.

The main reason that the previous ranking methods are
usually rule-based is that there is a lack of available training
data for the insight ranking problem, as explicitly scoring an
insight or giving it a rank usually requires domain knowl-
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edge and a thorough understanding of the table and context
which is difficult and time-consuming. To address this prob-
lem, we take advantage of the human written table descrip-
tions and analytical text, and use the text as ”weak supervi-
sion” signals to learn an insight ranking model. Such texts
involve latent prior common knowledge and domain knowl-
edge and provide valuable information on what insights are
more important and are more likely to be mentioned. To our
best knowledge, this is the first work to explore the ranking
problem of the insights with the assistance of text.

The importance of an insight can be measured in many di-
mensions. We find that the semantics information of insights
contributes to its importance measuring. The advantage of
introducing it into the ranking model is that it provides the
meaning to a cell of number, and the context of the data ap-
plication. Moreover, it breaks the limitation to table struc-
ture, as tables in any form and of any size can be universally
represented as a list of labels and values. Inspired by this,
in this paper we focus on ranking the insights by capturing
both the semantic features and statistical characteristics of
the data. In addition, the global table context, such as table
structure and the relationship among all the insights, should
also be taken into consideration. For example, a year-over-
year decreasing insight is more valuable than an increasing
insight when all the other data are of increasing trends.

The challenges are three-fold. First, despite its prospect,
there is no existing available dataset and no annotated insight
importance labels for ranking models. Second, it is hard to
model the interestingness of insights as it can be measured
in many dimensions. Both the content relevance and the sta-
tistical significance of insight need exploration. Third, the
comparison or ranking process among insights should be
done in groups. For a fair comparison, insights within one ta-
ble should be compared in one group since they are closely
related inherently. Therefore, the table context needs to be
introduced as external information to enable the comparison
of relative interestingness values in a ranking model.

To overcome the above limitations, we present a text-
assisted ranking model with header semantics and a global
context-aware memory component. We estimate the impor-
tance of an insight according to its probability of being in-
terpreted in the description text and feed the score into the
ranking model. The ranking model consists of two parts.
The neural ranking model explores the data characteristics,
such as its semantics and statistics information simultane-
ously. The key-value memory network model introduces ta-
ble structure information into the ranking process. The ex-
periment results on two datasets demonstrate that our model
achieves significant progress compared with baselines.

In summary, our contributions are as follows:

• We formally formulate the problem of text assisted insight
ranking, which has not been fully investigated yet.

• We construct a new financial dataset, in which we labeled
the insight importance with text assistance.

• We propose a context-aware memory network to model
the importance of insights. The experimental results on
two datasets show that our approach significantly outper-
forms the baseline methods.

Related Work
Insight Ranking
Earlier works have explored the insight importance evalua-
tion problem. Notice that the insight has different names in
different studies. A broader definition of the interestingness
of insights, or data mining results, is conciseness, coverage,
reliability, peculiarity, diversity, novelty, surprisingness, util-
ity, and actionability (Geng and Hamilton 2006).

Tang et al. (2017) proposes that the insight score should
be applicable to and fair across different types of insight.
The insight score function in their paper measures the mar-
ket share and the p-value based uncommonness significance
score. In their work, different insights follow different dis-
tribution and have different null hypothesis. We argue that
such statistical methods do not satisfy the comparability re-
quirement of insight importance score.

Demiralp et al. (2017) also uses predefined strength met-
rics for each kind of insights, such as the Pearson corre-
lation coefficient for linear relationship insight, the num-
ber of outliers for outliers insight, and standardized skew-
ness coefficient for skew insight. More previous works in
data exploration and data mining areas measure the in-
sight importance by how surprising that value is different
from the expectation (Wu, Sismanis, and Reinwald 2007;
Sarawagi, Agrawal, and Megiddo 1998). User preference is
also taken into account in the area of interactive data explo-
ration (Wasay, Athanassoulis, and Idreos 2015; Dimitriadou,
Papaemmanouil, and Diao 2016; Çetintemel et al. 2013).
Different from their work, we introduce header semantics
and table context into the insight ranking process.

In the task of table-to-text generation in Natural Lan-
guage Processing (NLP), the generation process is divided
into three modules, content planning, sentence planning, and
surface realization (Sha et al. 2018; Lebret, Grangier, and
Auli 2016; Mei, Bansal, and Walter 2016; Liu et al. 2018).
Similar to our insight ranking problem, the content planning
module is required to decide which parts of the input table
should be paid attention to. The difference is that the selec-
tion process is not explicitly formulated as a ranking prob-
lem that assigns each candidate a significance score.

Learning to Rank
The aforementioned insight importance ranking methods are
mostly based on handcrafted rules, different from which our
approach applies the “learning to rank” method in machine
learning.

The ranking methods are usually classified into 3 cate-
gories, point-wise ranking, pair-wise ranking, and list-wise
ranking. The point-wise approach considers the ranking
problem as multi-class classification problem (Li, Burges,
and Wu 2007) or regression problem (Cossock and Zhang
2006). It considers the ranked candidates as independent,
and is regardless of the final ranked result. The pair-wise
approach considers the ranking problem as binary classifi-
cation problem and classifies the candidate pairs into two
categories, correctly or incorrectly ranked pairs (Burges et
al. 2005; Freund et al. 2003; Burges, Ragno, and Le 2006;
Tsai et al. 2007). There is a gap between its loss function and
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the evaluation metrics of the ranking results. The list-wise
method scores the candidates within a list together and di-
rectly optimizes the evaluation metrics (Pareek and Raviku-
mar 2014; Cao et al. 2007; Burges, Ragno, and Le 2006;
Xu and Li 2007; Taylor et al. 2008; Burges 2010).

Problem Formulation
Insight
DEFINITION 1 (MULTI-DIMENSIONAL TABLE). A multi
dimensional table is defined as the set of data cells, i.e.
T = ⟨C1, · · · , Cc⟩. Each data cell Ci is represented as
Ci =

⟨
Dim1, · · · , Dimd, V al

⟩
, where Dimi is one dimen-

sion in a table, d is the total number of dimensions in a table,
and V al is the value.

For example, table 1 is a bi-dimensional table with di-
mension Brand and Year. For the cell in the up left corner,
C1 =

⟨
Dim1 = A, Dim2 = 2015, V al = 13

⟩
.

Table 1: Car Sales Table (Brand, Year, Sales)
Brand, Year 2015 2016 2017

A 13 14 20
B 51 49 60
C 13 20 23

DEFINITION 2 (SUBSPACE). A subspace is defined as
a set of cells that S = ⟨C1, · · · , Cn⟩, in which at least one
dimension of the cells in the subset is the same:

∀S = ⟨C1, · · · , Cn⟩ ,∃k s.t. Dimk
1 = · · · = Dimk

n, (1)

where n is the number of cells in the subspace, and Dimk
i is

the k-th dimension in each cell Ci.
In table 1, a subspace S = ⟨C1, C2, C3⟩ consists of:

C1 =
⟨
Dim1 = A, Dim2 = 2015, V al = 13

⟩
C2 =

⟨
Dim1 = A, Dim2 = 2016, V al = 14

⟩
C3 =

⟨
Dim1 = A, Dim2 = 2017, V al = 20

⟩ (2)

where the cells share the same dimension Dim1 = A. The
subspace is usually formed when we fixed some dimensions
of the table and enumerate the combination of other chosen
dimensions. The subspace usually has a particular meaning
when selected. In the example, the subspace S represents the
sales of Brand A over years.

For each subspace, we can perform statistical test with
specific hypothesis. The hypothesis is defined by insight
type T which includes summary statistics, correlations, out-
liers, empirical distributions, density functions, clusters, and
so on (Demiralp et al. 2017). Under the statistical hypoth-
esis of insight type T , we can calculate the statistical sig-
nificance value V . If the significance value exceeds a pre-
defined threshold, it is considered as an informative obser-
vation from the table, and we can generate a description D
from the header semantics for each dimension using some
predefined templates, such as “Sales of A is increasing from
2015 to 2017.” in the example subspace we give in table 1.

Formally, we define the above elements as the insight:

Table 2: Example of an insight
Subspace <A,2015>, <A,2016>, <A,2017>
Insight Type Tread Increasing
Significance Value 0.5
Description Sales of A is increasing year over year.

DEFINITION 3 (INSIGHT). An insight Ii is defined as
four parts Ii = (Si, Ti, Vi, Di), where Si is the subspace, Ti

is the insight type, Vi is the significance value, and Di is the
corresponding description.

Table 2 is an example of an insight extracted from Table 1.

Text-Assisted Insight Ranking
From a multi-dimensional table, we can derive a great many
insights as informative observations especially when the ta-
ble has many dimensions. However, people will only pay at-
tention to several important insights, which requires insight
ranking. As introduced, it is difficult to explicitly calculate
the importance of an insight directly. And human written ta-
ble description and analysis text provide valuable informa-
tion about what insights are more likely to be worth analyz-
ing and which are not.

In this study, we use the assistance of the description text
corresponding to a table. Suppose the description is a set
of sentences ⟨s1, s2, · · · , sm⟩. For each insight Ii, we can
calculate the similarity between the description Di from the
insight and each sentence in the text by a similarity func-
tion Sim(Di, sj), and find the most similar sentence sk.
When the similarity score is higher than a certain thresh-
old, we can assume that human writer does mention that
insight in the text, and correspondingly, the similar human
written sentence is an expression of the insight. As a re-
sult, the semantic similarity score Sim(Di, sk) represents
the possibility of an insight’s being mentioned in the text,
which further represents its importance or interestingness.
The similarity Sim(Di, sk) can be seen as a ”week super-
vision” of how likely the insight will be interpreted by peo-
ple in the corresponding text. Therefore, given an insight set
I = ⟨I1, I2, · · · , In⟩, we can get the rank of those insights
by the similarity score as ⟨R1, R2, · · · , Rn⟩.

DEFINITION 4 (INSIGHT RANKING). Given a set of in-
sights I from a table, we learn a ranking function F

F : Ii → R̂i

s.t.min

n∑
i=1

L(Ri − R̂i)
(3)

where R̂i is the rank of insight i from the ranking function,
and L is a list-wise loss function.

In order to compare all the insights from the same table
together, we build our ranking function according to the list-
wise ranking method in (Cao et al. 2007).

Model
As shown in Figure 2, our proposed model consists of two
parts. The neural ranking model explores the data charac-
teristics, including its semantic information, insight type,
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Figure 2: Framework of the proposed ranking model.

statistic information and subspace, and assigns importance
scores to each insight. Additionally, the key-value memory
network model introduces other insights within one group,
namely the table context, into the ranking process.

Insight Representation
We represent the insight with a vector of fixed size d. Four
kinds of insight features are encoded in different ways into
vectors with the same vector length d.

Significance value fsig: The significant score is embed-
ded into a vector with a fully-connected layer.

Insight Type ftype: We treat each insight type as a spe-
cial word token and encode them using the same embedding
matrix A used in header semantics representation.

Subspace fsubspace: The cells in a subspace is consid-
ered as a sequence of continuous cell values along with their
shared dimension. The sequence C is then processed by a
single-layer CNN to form the subspace representation. The
CNN regards C as an input channel, and alternates convolu-
tion operation.

Suppose that z(f) denotes the output of feature maps of
channel-f . On the convolution layer, we employ a 1D con-
volution operation with a window size r, and define z(f) as:

z(f) = σ(

r∑
t=0

W
(f)
t · Ct + b(f)), (4)

where σ(·) is a tanh, W (f) ∈ ℜr and b(f) are parameters.
The output of the feature maps are projected to a vector
fsubspace of dimension d with a linear transformation.

Semantics fsemantics: The semantics of an insight is ex-
pressed as the concatenation of all headers of the cells in a
insight subspace, which produces a sequence of word tokens

x = [w1, · · · , wh], (5)

where h is the length of the headers. Then the distributed se-
mantics representation s is defined as a bag-of-words using
the embedding matrix A:

fsemantics = AΦ(x), (6)
where Φ(·) maps the tokens to a bag of dimension V (the
vocabulary size), and A is a d× V matrix.

Finally, the feature of an insight is represented by sum-
ming up the four features:

I = fsig + ftype + fsubspace + fsemantics. (7)

Key-Value Memory Network
Our intuition is to introduce the table context such as table
structure and the relations between insights in the same table
into the ranking model. We represent the table as a set of
insights extracted from the table.

Since the insights are not naturally expressed as sorted se-
quence, a memory-like framework is more appropriate than
structure-sensitive models such as RNN and CNN. Assum-
ing that relation between insights can be revealed by their
header semantics, we apply a key-value memory network
(KV-MemNN) (Miller et al. 2016) to search semantically
similar insights for each insight candidate.

We define the memory slots as a vector of pairs
m = [(s1, I1), · · · , (sM , IM )], (8)

where there are M related insights, Ik is the k-th insight
and sk is the semantic vector of insight Ik. We denote the
semantic of current insight as query q. The key addressing
and reading of the memory involves the following two steps.

Key Addressing: During addressing, we perform a self-
attention operation by computing the inner product between
q and the memory keys followed by a softmax:

αi = Softmax(q⊤si), (9)
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which yields a vector of attention weights over the semantics
of related insights.

Value Reading: In the reading step, the values of the
memories (insight representations) are read by taking their
weighted sum using the addressing attentions, and the mem-
ory output vector o is returned as:

o =
∑
k

αkIk, (10)

The final insight representation o will be an input of the
ranking model described in the next section.

Since the representation of the insight itself is also con-
tained in the memory, it will definitely produce very high
attention to address the insight self. We do not concatenate
the output of the memory with other feature vectors as the
other memory network often does.

Ranking Model
The model is implemented as a multi-layer perceptron
(MLP) which receives insight representations and outputs
the ranking scores of the insights.

The model is trained by minimizing the L2 loss J(γ) of
the output scores and the similarity scores of the insights:

scorem = MLP(o),

J(γ) =
1

2
∥scorem − scores∥22,

(11)

where scorem and scores are the model outputs and
ground-truth scores, respectively. We apply the list-wise ap-
proach and sums up the total losses of the insights in the
same table, as the total loss relies on the table context. For
the baseline models without the memory network, we apply
the point-wise approach and calculate the L2 loss for each
insight as a training sample.

Dataset
Financial Report Dataset
The financial report dataset is built upon the public annual
and quarterly reports from United States Securities and Ex-
change Commission1. The dataset contains in total 5,670 re-
ports and 49,129 tables from 2,762 companies. Table 3 sum-
marizes the data statistics. In the experiment, we randomly
split the dataset into training, validation, and test sets con-
sisting of 60%, 20%, and 20% summaries, respectively.

We filtered the sentences out that are less than 50 charac-
ters or 10 words, and those do not include any numbers or
keywords. Year information is substituted with “this year”,
“last year”, and so on. More detailed date information is
deleted as we only consider annual report. Special tokens
are also processed to avoid noise.

SBNation Dataset
To validate the generality of our model, we also evaluate
the effectiveness of our model on SBNation Dataset from
(Wiseman, Shieber, and Rush 2017). This dataset consists

1https://www.sec.gov/edgar/searchedgar/companysearch.html

Table 3: Financial Report Dataset statistics.
Mean Percentile

5% 95%
# tokens per cell 5.29 1 12
# tokens per sentence 32.36 15 64
# sentences per report 774.98 282 1434

of 10,903 human-written NBA basketball game summaries
aligned with their corresponding box-scores and line-scores.
We randomly split the dataset into training, validation, and
test sets consisting of 60%, 20%, and 20% summaries.

Insight Extraction
We defined two representative types of insight in this work:
• Point insight: we measure how outstanding the data point

is among all the data points in the subspace.
• Shape insight (trend): we detect the rising or falling

trend among a series of data points.
In the financial dataset, the “point” is defined as the

change ratio of one item from the current year to last year
in the point insight. The “trend” is defined as the increasing
or decreasing trend year-over-year in the shape insight.

In the SBNation dataset, we only extract the point insight.
The “point” is defined as the one of the game statistic such
as scores, rebounds and assistants of a player.

The significance score of each insight type is calculated
with the same approach described in (Tang et al. 2017).

Similarity Function
We propose two similarity functions here, Sims and
Sims+h, and select the better one by human evaluation.

First, we count same words in the insight description di
and the human written sentence sj :

Sims(di, sj) =
Count2(di, sj)

|di| · |sj |
(12)

where Count(di, sj) is the count of same words, | ∗ | repre-
sents the length of ∗.

To assign more weights to the words in the headers, we
calculate the similarity of a header hi and a sentence sj :

Simh(hi, sj) =
Count(hi, sj)

|hi|
· Count(hi, sj)

maxnk=1{Count(hk, sj)}
(13)

where Count(hi,sj)
|hi| represents the percentage of the number

of words matched in the header, and Count(hi,sj)
maxn

i=1{Count(hk,sj)} is
the normalization factor.

We add the similarity of headers to the similarity of sen-
tences to construct the second similarity function:

Sims+h(·) = α1Simsent(·) + α2Simh(·) (14)
where α1 and α2 are the weights. In this paper, we set them
both to 0.5.

Finally, the maximum similarity score among the insight
description and all the candidate sentences in the text repre-
sents the probability of the insight’s being interpreted in the
report, which is further used as the guideline for ranking.
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Figure 3: Accuracy of the text assistance method.

Text Assistance
To test the effectiveness of the text assistance method, we
randomly sample 4,000 pairs of insights and their most sim-
ilar sentences in the reports, and ask 10 human annotators
who are familiar with financial reports to label whether the
pairs are of the same meaning. The evaluation data is equally
split into three groups according to their similarity scores.

As shown in figure 3, for both similarity functions, the
higher similarity is the higher accuracy of their having the
same meaning is. Therefore we can use the similarity score
as the ground truth of the insight importance.

In addition, we find that Sims+h performs better than
Sims. It obtains nearly 90% accuracy for the high similar-
ity group. The reason is that Sims+h emphasizes the head-
ers explicitly compared to the Sims. For the low similarity
group, the accuracy of the similarity function with headers
is lower than that with sentences, which indicates that the
similarity function with headers is more distinguishable.

According to the human evaluation, in the later experi-
ments we will use Sims+h as the similarity function.

Experiment
Experiment Settings
Based on the performance on the validation set, we set the
embedding size to 64 for the baseline methods and the pro-
posed model. The vocabulary sizes in the financial report
dataset and the SBNation dataset are 8,409 and 900, respec-
tively.

The parameters are updated by Adam algorithm (Kingma
and Ba 2014) on a single 1080 Ti GPU and initialized by
sampling from the uniform distribution ([−0.1, 0.1]). The
initial learning rate is 0.0003. The model is trained in mini-
batches with a batch size of 1.

Evaluation Metrics
We report the ranking accuracy in three evaluation metrics:
Mean Average Precision(mAP)@k, Normalized Discounted
Cumulative Gain(NDCG)@k, and Precision@k.

Comparing Methods
We first compare three significant score calculation meth-
ods. The detailed calculation methods follow the definition

of point insight and shape insight in (Tang et al. 2017).

• Sigtable calculates the significance from the data distri-
butions in one table. It represents the insight importance
when the insights are compared to other insights in the
same table.

• Sigdataset calculates the significance from the data dis-
tributions in all tables. We assume that all tables are in-
herently related to each other.

• Sigcluster first clusters the subspaces of all the insights
in the dataset using the word embedding of the headers,
then calculate the significance score of the data distribu-
tions in one cluster. We employ the K-Means method for
clustering, and k is set to 7 for the best performance.

We also implement the Text Assisted Ranking (TAR)
model with different components.

• TARcnn adds the CNN to capture more statistical fea-
tures in addition to the basic insight significance and in-
sight type features.

• TARsemantics adds the table header as semantics in-
formation to the input in addition to the TARcnn.

• TARmemory adds the memory component to the
TARsemantics to introduce the table context and rela-
tions among the insights.

Experiment Results and Analysis
Financial Report Dataset Evaluation results on financial
report dataset are shown in Table 4. In general, our pro-
posed method achieves the best overall performance, which
demonstrates its ability to fully explore the insight charac-
teristics and modeling the insight importance.

We first compare the three baseline methods, Sigtable,
Sigdataset and Sigcluster, which calculate the significance
scores in different ways. The performance of Sigdataset is
slightly better than that of Sigtable, as the former method
calculate the significance with a much larger space of data
points. The comparison result also supports our assump-
tion that the statistical significance score method does not
suit for small tables, as the significance score is unreliable
while there are only very few insights from a table. The
cluster method Sigcluster achieves the best result, which
demonstrates the importance of the header semantics since
it is the clustering rule. According to the result, we use the
Sigcluster as significance score in the TAR models.

A series of incremental experiments are conducted to
evaluate the contributions of the key components in our pro-
posed model. Three versions of TAR model in incremen-
tal sequence, TARcnn, TARsemantics and TARmemory ,
are provided. TARcnn is a basic version that explores
the insight type, the significance score and the subspace
of insights. By introducing the subspace information, the
TARcnn model is exposed to more available information
on the statistical data distribution instead of a single signifi-
cance score, and slightly improves the ranking performance.

Comparing to the gap between TARcnn and Sigcluster,
the improvement between TARcnn and TARsemantics is
much more obvious. The result suggests that the semantics is
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Table 4: Evaluation results on financial report dataset.
Precision@1 Precision@3 Precision@5 mAP@3 mAP@5 NDCG@3 NDCG@5

Sigtable 0.098 0.246 0.399 0.474 0.624 0.646 0.688
Sigdataset 0.107 0.249 0.408 0.473 0.621 0.649 0.692
Sigcluster 0.110 0.261 0.416 0.481 0.632 0.658 0.703
TARcnn 0.118 0.278 0.444 0.525 0.686 0.738 0.757
TARsemantics 0.162 0.411 0.605 0.668 0.756 0.799 0.815
TARmemory 0.170 0.425 0.626 0.684 0.772 0.812 0.829

Table 5: Human evaluation of top-k Precision.
Precision@1 Precision@3 Precision@5

Sigcluster 0.727 0.629 0.540
TARmemory 0.886 0.813 0.745

Table 6: Top-k Precision on SBNation dataset.
Precision@1 Precision@3

Sigcluster 0.503 0.513
TARsemantics 0.788 0.754
TARmemory 0.797 0.759

an important factor when we determine the importance value
of an insight. Explicitly introducing the semantics largely
enriches the insight representation space and improve the
ranking performance significantly.

The TARmemory model, the complete version of our pro-
posed model, achieves the best performance in all evaluation
metrics. Compared with TARsemantics, the TARmemory

introduces the related insight information within one group
for comparison. The result supports our assumption that
global table context and grouped insight relationship make a
contribution to the process of insight ranking.

Human Evaluation We randomly sample 400 tables and
ask the human experts to determine if the top-k insights and
their most similar descriptions in the report are of the same
meanings. The result in Table 5 implies that the recommen-
dations of the insights according to our ranking model are of
high accuracy and reliability.

SBNation Dataset The experimental result on SBNation
dataset is shown in Table 6. Different from the annual fi-
nancial report dataset, the description in SBNation is much
more rigid and lacks variation. Therefore we consider la-
bel matched sentences as the target, and mark insight im-
portance as 0-or-1, either relevant or irrelevant, rather than
continuous 0-to-1 values. NDCG and mAP cannot adapt to
such labels in ranking problems. The value k in Precision@k
is set to 1 and 3, as the tables in SBNation are relatively
smaller and most of them contain only 3 to 4 insights. Simi-
lar to the results in financial report dataset, the TARmemory

achieves the best performance.

Case Study
We present a ranking result example in Table 7. It consists
of the top 5 insights in 10 insight candidates from one table.

Table 7: Case Study
Insight Descriptions Gold TAR
Collaboration and license revenue was 71.7 1 2
million for the year ended, an increase of
58.7 million compared to the year ended.
General and administrative expenses were 2 4
27.8 million for the year ended, an increase
of 18.8 million compared to the year ended.
Research and development expenses were 3 1
58.6 million for the year ended, an increase
of 35.1 million compared to the year ended.
We had 111 full-time employees including 4 9
82 employees engaged in development.
The net valuation allowance increased by 5 3
4.9 million and 0.6 million respectively.

The Precision@5 is 0.8, a relatively high accuracy. The
more detailed relative position of the top 5 insights is of less
usefulness. Because the target ranking results only represent
the probability of the insight’s being in the text, and the im-
portance of the top 5 insights are of little distinction.

The reason why the fourth insight is wrongly labeled is
that the similarity score is incorrectly calculated and the
gold standard is in fact inaccurate. We analyzed the in-
sight description and found that the sentence is coincidently
matched with a wrong insight because it contains some key-
words in the headers and similar numbers. This serves as an
example of the optimization direction of the text assisted ap-
proach. We would like to solve this problem by introducing
the position of the sentence to the text assistance to derive
more accurate similarity function.

Conclusion
In this paper, we propose a context-aware memory network
to rank the insight importance. The model explores the data
characteristics and introduces table structure and semantics
information into the ranking process. We construct a finan-
cial report dataset, in which the insight interestingness in-
ferred from the human written description is used as anno-
tated training data. Experimental results show that our ap-
proach largely improves the ranking precision.

In the future, we would like to investigate a more reli-
able similarity function to take the sentence position into ac-
count. Also, instead of text assistance, we can explore more
methods such as figure assistance and meta-data assistance
to estimate the approximate score of the insight importance.
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