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Abstract
Recently, online matching problems have attracted much at-
tention due to its emerging applications in internet advertis-
ing. Most existing online matching methods have adopted ei-
ther adversarial or stochastic user arrival assumption, while
on both of them significant limitation exists. The adversar-
ial model does not exploit existing knowledge of the user
sequence, and thus can be pessimistic in practice. On other
hands, the stochastic model assumes that users are drawn
from a stationary distribution, which may not be true in
real applications. In this paper, we consider a novel user ar-
rival model where users are drawn from drifting distribution,
which is a hybrid case between the adversarial and stochas-
tic model, and propose a new approach RDLA to deal with
such assumption. Instead of maximizing empirical total rev-
enues on the revealed users, RDLA leverages distributionally
robust optimization techniques to learn dual variables via a
worst-case consideration over an ambiguity set on the under-
lying user distribution. Experiments on a real-world dataset
exhibit the superiority of our approach.

Introduction
Matching is a classic problem with a long history, which is
defined on graphs originally (Berge 1957; Gale and Shapley
1962). Given a bipartite graph G(U, V,E), a matching is a
set of edges M ⊂ E such that for every v ∈ V there is at
most one edge in M incident on v. Matching problems are
widely relevant to many applications, e.g., resource alloca-
tion, stable matching, network routing and so on. For ad al-
location problems, the vertices in U and V represent bidders
and users respectively, thus each edge can be seen as an allo-
cation from bidder to user with a predefined revenue. Since
there are supply and demand constraints on both bidders and
users, the goal is to find a matching with maximal revenues
satisfying the constraints. However, in real applications, it
is usual to see that the matching problem is inherently on-
line (Mehta 2013). In other words, the users often arrive in-
crementally, and we have to allocate a bidder to the incom-
ing user without complete information about the subsequent
users. An optimal online matching algorithm can reach the
same objective value as its offline version, which is diffi-
cult to achieve because the allocation results are irrevocable
while the user arrival information is unknown.
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To make the online problem more resoluble, researchers
introduce some assumptions regarding the user arrival fash-
ion. In general, there are two common user arrival mod-
els, i.e., adversarial model and stochastic model. They dif-
fer from each other in how much information the algorithm
knows in advance about the user distribution. The adver-
sarial user arrival model assumes that there is an adver-
sary who knows the strategy of the algorithm and gener-
ates the worst user sequence for the algorithm, which is
usually too pessimistic in practice (Aggarwal et al. 2011;
Kalyanasundaram and Pruhs 2000). The stochastic user ar-
rival model, by contrast, assumes that the users are drawn
from a stationary distribution or arrive at a random order
(Devanur and Hayes 2009; Feldman et al. 2010; Vee, Vas-
silvitskii, and Shanmugasundaram 2010). However, this as-
sumption can be too optimistic in real applications, because
a stationary distribution might not capture the real user ar-
rival fashion well. For example, in an ad allocation task, the
user crowd on weekends could be rather different from that
on weekdays because the former contains more office work-
ers. When the user distribution is changing, the algorithms
with stochastic assumption could suffer severely degener-
ated performance.

In order to design more practical algorithms, we con-
sider a hybrid case between the adversarial and stochas-
tic assumption in which users are drawn from a drift-
ing distribution, and propose the Robust Dynamic Learn-
ing Algorithm (RDLA) to address such issue. Specifically,
we assume that there is a drift between the user distribu-
tions of adjacent periods, which is much more realistic in
real tasks. Rather than maximizing the empirical total rev-
enues on the revealed users, RDLA leverages distribution-
ally robust optimization techniques (Goh and Sim 2010;
Wiesemann, Kuhn, and Sim 2014) to learn dual variables via
a worst-case approach over an uncertainty set on the under-
lying user distribution. Furthermore, we present a dynamic
learning framework to tackle user arrival distribution drifts
by updating dual variables at equal time intervals. Experi-
ments on a real-world dataset exhibit the impressive perfor-
mance of RDLA.

The rest of this paper is organized as follows. Section 2
introduces related works and Section 3 gives some prelimi-
naries. Section 4 proposes the RDLA approach and Section
5 reports our experiments. Section 6 concludes the paper.
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Related Works

Online Matching In the past decades, many efforts have
been devoted to online matching problems (Mehta 2013)
due to the increasing demand of internet advertising ap-
plications. In general, there are two kinds of different as-
sumptions on user arrival models, i.e., adversarial model and
stochastic model, thus existing online matching methods fall
naturally into two categories accordingly.

The adversarial user arrival model assumes that there is
an adversary who knows the strategy of the algorithm and
generates the worst user sequence for the algorithm, which
is reasonable when we have no knowledge of the user se-
quences. It has been proved that the optimal competitive
ratio of algorithms designed for the adversarial setting is
1 − 1/e (Karp, Vazirani, and Vazirani 1990), and several
algorithms, e.g., Perturbed Greedy (Aggarwal et al. 2011)
and Balance Algorithm (Kalyanasundaram and Pruhs 2000)
have been proposed to achieve the optimal value. However,
in reality we often have some priors about the user sequence,
leading to the fact that the adversarial user arrival model is
usually too pessimistic. It is shown that even under some
mild assumptions such as the random order setting, the com-
petitive ratio of the adversarial algorithms can only be im-
proved to 0.76, which is far from the near-optimal perfor-
mance (Mirrokni, Gharan, and Zadimoghaddam 2012).

The stochastic user arrival model assumes that users are
drawn from a stationary distribution or arrive at a random
order. The online primal-dual scheme is a classic frame-
work with the stochastic assumption, in which dual vari-
ables are learned by solving a fractional online matching
problem on the revealed users and used for the allocation
of subsequent online users. This approach was first pre-
sented for AdWords problem (Buchbinder and Naor 2009;
Devanur and Hayes 2009), and then extended to other gen-
eral matching problems (Feldman et al. 2010; Vee, Vassilvit-
skii, and Shanmugasundaram 2010). For the stochastic user
arrival model, these algorithms can achieve a near-optimal
competitive ratio of 1 − ϵ. Moreover, under the assump-
tion of random order of arrival users, (Agrawal, Wang, and
Ye 2014) proposed a Dynamic Learning Algorithm (DLA)
that updates dual variables at geometric time intervals and
achieves a competitive ratio of 1−O(

√
M log T/B) where

M and T are the numbers of bidders and users respectively
and B is the minimum budget among all bidders.

Though the best algorithms for the stochastic setting are
near-optimal when users arrive stochastically as expected,
it is notable that they could have a degenerated competi-
tive ratio close to zero when the real users are adversarial
selected (Esfandiari, Korula, and Mirrokni 2015). In other
words, algorithms designed for stochastic setting are not as
robust as that for the adversarial setting. Recently, to capture
the presence of user traffic spike caused by unpredictable
events such as breaking news, (Esfandiari, Korula, and Mir-
rokni 2015) proposed a robust online stochastic model to
capture the nature of traffic spikes in online advertising, but
it is still different from our consideration that the user arrival
distribution is drifting all the time.

Distributionally Robust Optimization (DRO) Optimiza-
tion models are used in statistical learning and other de-
cision making problems, where there are some parameters
to be specificated or estimated. It is known that the opti-
mal solution of an optimization model depends heavily on
these uncertain parameters. However, due to the slackness
of data and other useful information, it is difficult to esti-
mate these parameters precisely. To cope with such issues,
Robust Optimization approaches have been proposed aiming
at finding an optimal solution that is tolerant to the ambigu-
ous parameters (Ben-Tal, El Ghaoui, and Nemirovski 2009;
Bertsimas, Brown, and Caramanis 2011).

It is typical to model the ambiguity by using an uncer-
tainty set of parameters and to optimize with the worst
case of the parameters in this set (Ben-Tal and Nemirovski
1998; Ghaoui, Oustry, and Lebret 1998). However, such ap-
proaches may ignore the stochastic nature of parameters.
Therefore, Distributionally Robust Optimization (DRO) was
proposed, which introduces a distribution P on the parame-
ter set and models the uncertainty by introducing ambiguity
set specified by distribution P . Finally, we aim at optimiz-
ing the worst case of the distribution in the set (Goh and Sim
2010; Wiesemann, Kuhn, and Sim 2014).

Now the key question is how to choose the ambiguity dis-
tribution set. Many approaches were proposed to work with
an ambiguity set constructed by the moments of the distri-
bution (Delage and Ye 2010; Goh and Sim 2010). In addi-
tion, a statistical estimation of the distribution called nomi-
nal distribution can be available, containing valuable knowl-
edge of the underlying distribution. We restrict the ambigu-
ity set such that the distribution in the set is within a cer-
tain distance from the nominal distribution. Different dis-
tances such as KL divergence (Hu and Hong 2013), Wasser-
stein metric (Esfahani and Kuhn 2018; Gao and Kley-
wegt 2017) and φ-divergence (Namkoong and Duchi 2016;
Namkoong and Duchi 2017) has been considered. Recently,
(Namkoong and Duchi 2017) builds off of techniques for
DRO and empirical risk minimization.

Preliminaries
Online Matching Problem
To make notation more precise, we take the ad allocation
task as an example of matching problem. Suppose that there
are M bidders and T users to take part in the bidding. When
allocating the i-th bidder to the t-th user, the bidder wins a
revenue of Rit and pays a cost of ci. The total costs paid
by the i-th bidder can not exceed its predetermined budget
bi. The goal is to find an optimal matching with maximal
total revenues satisfying all budget constraints, which can
be formulated as,

max
X∈Ω

T∑
t=1

M∑
i=1

RitXit

s.t.
T∑

t=1

ciXit ≤ bi, i ∈ [M ]

(1)

where Ω = {X ∈ RM×T
+ :

∑M
i=1 Xit = 1,∀t ∈ [T ]}.

Xit ∈ {0, 1} is the decision variable indicating whether the

460



algorithm allocates the i-th bidder to the t-th user. Note that∑M
i=1 Xit = 1, meaning that only one bidder can be allo-

cated to the t-th user.
It is easy to see (1) is a special case of linear program-

ming, and can be solved efficiently in polynomial time.
However, in reality the users arrive in a sequence, which
means that R:t is revealed incrementally. Therefore it is
of great importance to develop online matching algorithms
making sequential decisions X:t’s such that the final to-
tal revenues

∑T
t=1

∑M
i=1 RitXit is maximized. Specifically,

given the previous decisions {X:j}t−1
j=1 and users {R:j}tj=1,

the t-th variable X:t has to be decided, subject to the budget
constraints

∑t
j=1 ciXij ≤ bi, i ∈ [M ]. We can measure an

online matching algorithm by Competitive Ratio.
Defination 1. Competitive Ratio (C.R.)

C.R. =
∑T

t=1

∑M
i=1 RitXit

OPT
(2)

where OPT is the optimal objective value for the corre-
sponding offline problem.

Remark 1. For offline algorithms, all users are revealed in
advance, thus OPT is an upper bound of the optimal total
revenues for online algorithms. When C.R. of an online al-
gorithm approaches to 1, we call it a near-optimal algorithm.

The Primal-Dual Framework
The Online Primal-Dual is a classic framework working for
the stochastic user arrival model. Suppose the total num-
ber of users T is known as a priori and we have collected
S = ϵT users till now. A fractional matching problem can
be formulated as

max
X∈Ω

S∑
t=1

M∑
i=1

RitXit

s.t.
S∑

t=1

ciXit ≤ ϵbi, i ∈ [M ]

(3)

where Ω = {X ∈ RM×S
+ :

∑M
i=1 Xit = 1,∀t ∈ [S]}, and

the budgets are also rescaled in proportion to the number of
revealed users.

Solving (3) directly leads to the optimal allocations, i.e.,
{X∗

it}i∈[S] for the revealed users. However, this solution has
little contribution to future arrivals. To tackle this problem,
online primal-dual algorithms were proposed to learn dual
variables for each bidder, which can be seen as an allocation
strategy for future users. Formally, the dual problem of the
primal fractional matching problem (3) can be derived via
Lagrange Multiplier as

min
α≥0

M∑
i=1

ϵbiαi +

S∑
t=1

max
i∈[M ]

[Rit − ciαi]+ (4)

Denote α∗ as the optimal solution of (4), then with the help
of K.K.T conditions we can obtain the allocation rule,

X∗
it =

{
1, i = argmax{Rit − ciα

∗
i }

0, other
(5)

Algorithm 1 One-Time Online Primal-Dual Algorithm

Input: T : length of user sequence; M : number of bid-
ders; ϵ: fraction of users used for training dual variables;
{ci, bi}Mi=1: costs and budgets of bidders; {R:t}Tt=1: rev-
enues stream.
Compute S = ϵT , and initialize X:t = 0, for all t ∈ [T ];
Solve the dual problem (4) and obtain α̂;
for t = S + 1 to T do
maxi = −1; maxv = −INF;
for i = 1 to M do

if ci ≤ bi −
∑t−1

j=1 ciXij and Rit − ciαi > maxv
then

maxi = i; maxv = Rit − ciαi;
end if

end for
if maxi <> −1 then

Xmaxi,t = 1
end if

end for
Output: Predicted allocations X:t, where t = S + 1, ..., T

Remark 2. Note that α∗ has the nature role of price for
each bidder, which means that when allocating, we display
the bidder with the maximal value of bid minus correspond-
ing price.

Based on the the dual formulation and the allocation rule,
an online primal-dual algorithm was presented as in Algo-
rithm 1. Firstly we collect ϵT users, with which a group of
optimal dual variables could be learned by solving (4). Then
under the budget constraints, we allocate bidders to the unre-
vealed users according to (5). (Agrawal, Wang, and Ye 2014)
showed that under the assumption of random order of arrival,
the online primal-dual algorithm is near-optimal. Moreover,
since only one group of dual variables is trained for the fu-
ture allocation in Algorithm 1, we call it One-Time online
Primal-Dual algorithm (OT-PD).

The Proposed Algorithm
The online primal-dual framework is based on the stochas-
tic assumption that the coefficient R:t is drawn i.i.d. from
an unknown distribution or arrives in a random order. How-
ever, the user distribution may not be stationary in real ap-
plications. In such cases, the online primal-dual algorithms
encounter failure to some extent, because dual variables
learned with observed users could suffer bias when applied
to the future users from a changing distribution.

In order to design more practical algorithms, we deal with
a hybrid case between the adversarial and stochastic assump-
tion: there is a drift between the distributions of adjacent pe-
riods. In other words, the distributions of the adjacent peri-
ods are similar, but not the same. If we take the drift of distri-
butions into consideration on the learning stage, the learned
dual variables can perform better on the subsequent users.

Formulation
Note that the objective (3) tries to train dual variables by
maximizing the total revenues on the revealed users, which
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can be seen as an optimization problem on empirical distri-
bution. When the user distribution is changing, it is feasible
to introduce a new distribution on revealed users that is tol-
erant of the distribution drifts. For this purpose, we borrow
the idea from covarite shift learning problem that associates
a weight pt with each user. The user with larger weight is
supposed to be more likely to arrive in the unrevealed se-
quence.

Now the key is how to learn reasonable weights for the
revealed users. In this paper, we leverage techniques from
distributionally robust optimization. Specifically, we define
an ambiguity distribution set with KL-divergence around the
empirical uniform distribution, then optimize for the worst
case of distributions in the uncertainty set via a max-min
objective to win a robust performance. Formally, denote L =
{l + 1, ..., l + S}, consider the following robust matching
problem defined on the user set L,

max
X∈Ω

min
p∈∆

∑
t∈L

pt

M∑
i=1

RitXit + λ
∑
t∈L

ptH(X∗t)

s.t.
∑
t∈L

ptciXit ≤
ϵbi
S

, ∀i ∈ [M ]

(6)

where p = {pt}t∈L is the weight associated with each user,
∆ = {p ∈ RS : KL(p||1/S) ≤ δ,

∑
t∈L pt = 1} is

the ambiguity distribution set and δ is the maximal uncer-
tainty. Moreover, we introduce an entropy regularizer item∑

t∈L H(X∗t) for controlling the stability of solutions and
obtaining benefits of optimizing convenience.

Remark 3. In (6), we consider the ambiguity set near uni-
form distribution, i.e., the distribution in the set is at most δ
KL-divergence far from the uniform distribution. From this
ambiguity set, we can see that two distributions from ad-
jacent time intervals change not much and remain similar,
which tends to the stochastic assumption. In the meanwhile,
the worst-case distribution in the ambiguity set is learned
to be optimized via the max-min formulation, which acts as
the consideration in adversarial setting. Therefore, (6) deals
with the hybrid case between the adversarial and stochastic
assumption indeed.

Remark 4. It is critical to set the size of KL divergence
radius δ, which is ralated to the number of the revealed users
and the assumption about how much the user distribution
changes. In practice, we could set this hyper-parameter via
cross-validation.

Optimization
The max-min objective in (6) can be solved by alternating
optimization. Introducing the dual variable αi for each con-
straint, we can obtain

min
α≥0

max
X∈Ω

min
p∈∆

∑
t∈L

pt

M∑
i=1

RitXit + λ
∑
t∈L

ptH(X∗t)

+

M∑
i=1

αi(
ϵbi
S

−
∑
t∈L

ptciXit)

(7)

Since the strong max-min property holds, we can swap the
inner min and max, which leads to

min
α≥0

min
p∈∆

max
X∈Ω

∑
t∈L

pt

M∑
i=1

RitXit + λ
∑
t∈L

ptH(X∗t)

+

M∑
i=1

αi(
ϵbi
S

−
∑
t∈L

ptciXit)

(8)

By fixing α and p, we consider the max problem, i.e.,

max
X∈Ω

∑
t∈L

pt

M∑
i=1

RitXit + λ
∑
t∈L

ptH(X∗t)

+

M∑
i=1

αi(
ϵbi
S

−
∑
t∈L

ptciXit)

(9)

Then we set the partial derivations of X in (9) to zero and
obtain the solution

Xit =
1

Zt
exp(

1

λ
(Rit − αici)), (10)

where Zt =
∑M

i=1 exp(
1
λ (Rit − αici)) is a normalization

factor. By substituting (10) into (9), the dual of (6) can be
cast as

min
α≥0,p∈∆

λ

S∑
t=1

pt log
( M∑
i=1

exp(
1

λ
(Rit − αici))

)
+

M∑
i=1

αiϵbi

S

(11)
This dual can be solved by alternating optimization.

Fix p and update α The following proposition presents
an closed form solution for α.
Proposition 1. The closed form solution for α in (11) can
be presented as

αi = max
(
0, α̂i −

λ

ci
log

ϵbi
Swi

)
(12)

Proof. Proposition 1 can be proved with a bound optimiza-
tion approach. Specifically, by exploiting the first order con-
cavity property of the log-function, we have

log(z) ≤ βz − log(β)− 1, ∀β > 0 (13)

Let α̂ be the current solution and 1
β =

∑M
i=1 exp(

1
λ (Rit −

α̂i)), then

log
( M∑

i=1

exp(
1

λ
(Rit − αici))

)
≤ log

( M∑
i=1

exp(
1

λ
(Rit − α̂ici))

)
+

M∑
i=1

X̂it exp(
1

λ
(α̂i − αici))

≤
M∑
i=1

X̂it exp(
1

λ
(α̂i − αi)ci)

(14)

where X̂it is the primal solution (10) computed with α̂.
Since p is fixed, according to 14 the optimization problem
for α can be approximated by

min
α≥0

M∑
i=1

(
λwi exp(

1

λ
(α̂i − αi)ci) +

αiϵbi
S

)
(15)
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where wi =
∑

t∈L ptX̂it. It is obvious that (15) can be de-
composed into a set of small problems, i.e., for each αi,

min
αi≥0

λwi exp(
1

λ
(α̂i − αi)ci) +

αiϵbi
S

(16)

We can see that (16) is convex optimization, thus αi can be
solved in a closed form solution as

αi = max
(
0, α̂i −

λ

ci
log

ϵbi
Swi

)
(17)

Fix α and update p Let At = log
(∑M

i=1 exp(
1
λ (Rit −

αici))
)

and C = ϵ− log(T ), the optimization problem of p
can be rewritten as

min
p

λ
∑
t∈L

ptAt

s.t.
∑
t∈L

pt log(pt) ≤ C,
∑
t∈L

pt = 1
(18)

Then introduce dual variable γ for the inequality constrain,
we can obtain the Lagrange function

L(p, γ) = λ
∑
t∈L

ptAt + γ
(∑
t∈L

pt log(pt)− C
)

(19)

Set the partial derivations of p in (19) to zero, we have the
solution

pt =
1

Z
exp(−λAt

γ
) (20)

where Z =
∑T

t=1 exp(−
λAt

γ ) is a normalization factor. By
substituting (20) into (19), the dual of (18) can be formulated
as

min
γ>0

γC + γ log(
∑
t∈L

exp(−λAt

γ
)) (21)

The dual variable γ can be updated as

γk+1 = γk−η
(
C+log

(∑
t∈L

exp(−λAt

γk
)+

λ

γk

∑
t∈L

pktAt

))
(22)

where η is the step size and pk can be calculated with γk

according to (20). Therefore, we alternate between these two
steps until convergence.

Algorithm
For the online matching problems with user arrival distri-
bution drifts, we have introduced a robust formulation and
presented an efficient optimization method for it. Moreover,
given the assumption that there is a drift between the dis-
tributions of adjacent periods, it is necessary to maintain
a dynamic updating scheme when designing the algorithm
framework. In this section, we propose a Robust Dynamic
Learning Algorithm (RDLA), where the dual variables are
updated with the latest revealed users at equal time inter-
vals. The details are stated in Algorithm 2. As can be seen,
RDLA splits the whole users into 1

ϵ time intervals with equal
length, and trains a group of dual variables by solving the ro-
bust matching objective (6) at each time interval, then use it
to determine the sequential decisions in the next period.

Algorithm 2 Robust Dynamic Learning Algorithm

Input: T : length of user sequence; M : number of bid-
ders; ϵ: fraction of users used for training dual variables;
{ci, bi}Mi=1: costs and budgets of bidders; {R:t}Tt=1: rev-
enues stream.
Compute S = ϵT , and initialize X:t = 0, for all t ∈ [T ];
for t = S + 1 to T do

if mod (t, ϵT ) == 1 then
Let L = {t− S, ..., t− 1};
while IS NOT CONVERGE do

Fix p, solve (11) by Proposition 1 and obtain α;
Compute At = log

(∑M
i=1 exp(

1
λ (Rit − αici))

)
;

Fix α, solve (18) by GD and obtain p;
end while

end if
Compute X:t with α according to (10);
maxi = −1; maxv = −INF;
for i = 1 to M do

if ci ≤ bi −
∑t−1

j=1 ciXij and Xit > maxv then
maxi = i; maxv = Xit;

end if
end for
Set X:t = 0
if maxi <> −1 then

Xmaxi,t = 1
end if

end for
Output: Predicted allocations X:t, where t = 1, ..., T

The Equal Period Updating Scheme It is important to
adopt a dynamic updating scheme when facing distribution
drifts. According to (Agrawal, Wang, and Ye 2014), OT-
PD achieves near-optimal competitive ratio under the ran-
dom order assumption. However, when the user arrival dis-
tribution is drifting constantly, the dual variables trained
some time ago can be outdated such that OT-PD will suffer
severely degenerated performance. Therefore, it is necessary
to design an algorithm that can update the dual variables dy-
namically. (Agrawal, Wang, and Ye 2014) proposed a Dy-
namic Learning Algorithm (DLA) that updates dual vari-
ables at geometric time intervals under the assumption of the
random order of arrival. The dual variables learned from all
revealed users are used to determine the sequential decisions
in the current period.

However, the DLA framework has also several disadvan-
tages when facing our consideration. Firstly, since the user
arrival distribution is drifting all the time, it is more reason-
able to keep the rate of updating stable, while the geometric
period updating leads to the lag of model in last half of al-
location. On the other hand, when the user arrival distribu-
tion is changing, it is unnecessary to involve all the revealed
users for updating dual variables because the early revealed
users can also be outdated, which may even lead to a poor
performance. Based on these considerations, we adopt the
equal period updating scheme and train dual variable with
only users in the latest period as shown in Algorithm 2.
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Figure 1: The mean of top-3 bids and count the number of candidating bidders in each query. Each bar shows one of the statistics
averaged over users from the same time interval.

Experiments
Settings
In this section, we evaluate the effectiveness of the RDLA
approach on a real displaying ads dataset. Online advertise-
ments have been the main revenue source for many internet
companies, therefore it is of great importance to improve
the performance of displaying ads. The formulation of such
problem is the same as (6) setting ci = 1,∀i ∈ [M ]. To
be more precise, there are M bidders each daily displaying
capacities bi and T bid search users arriving incrementally.
Based on the relevance of each search keyword, the i-th bid-
der could expect a revenue value of Rit on t-th query. For
the t-th query, the allocation system has to choose a vector
xt = {xit}Mi=1, where xit ∈ {0, 1} indicates whether the
t-th query is allocated to the i-th bidder. The goal is to max-
imize the total revenues over all bidders and queries under
the displaying capacity constraints.

Dataset The dataset used here consists of 245 bidders and
millions of search queries from 7 days. Here we take queries
in one day as an offline matching programming, thus 7 dis-
playing ads problems are evaluated. The query numbers of
these problems are in order of millions. Due to the consider-
ation of trade secrets, all of the reported information about
the dataset has been masked.

In order to see whether the distribution of X:t is changing,
we calculate the mean of top-3 bids and count the number
of candidating bidders in each X:t, which reflect the bid-
ding level and bidding depth respectively. These two statis-
tics could give some expression to the user arrival distribu-
tion, and are shown in Figure 1. Each bar shows one of the
statistics averaged over users from the same time interval. It
can be observed that the distribution of queries are drifting
all the time, which is natural because the features of arrival
queries and the bidding strategies of bidders on the platform
are not stationary. Therefore, we expect an improved perfor-
mance when our proposed RDLA is adopted in this task.

Baselines We compare the proposed RDLA with the fol-
lowing approaches: i) DLA with geometric period updating
(DLA-geometric); ii) a variant of DLA with equal period

updating (DLA-equal); iii) OT-PD; iv) Greedy. Parameters ϵ
in RDLA, DLA-geometric, DLA-equal, and OT-PD are all
fixed as 0.1, and λ in RDLA is set as 10. Furthermore, in
order to see the influence of the choice of δ, we evaluate the
proposed RDLA method with several δ setting, i.e., 1e − 2,
1e− 3, 1e− 4. Finally, the total revenues are used for eval-
uating the compared methods.

Results
The results of RDLA and its compared methods are shown
in Table 1. As we can see, over all bid allocation problems,
DLA-equal performs better than DLA-geometric. This re-
sult shows the superiority of the equal period and local up-
dating for cases that distribution drifts. Moreover, despite
that both RDLA and DLA-equal adopt the equal period and
local updating scheme, the former is better than the latter,
which shows the necessity of robustness consideration for
online matching problems with drifting user distribution. In
particular, it can be calculated that RDLA is able to increase
5.5% more total revenue than the classical OT-PD method.

Besides the dual variables, we also learn a weight for
each revealed user by optimizing (6), which can be seen that
search queries have different importance when training the
dual variables. It is necessary to see the role of the learned
weights in improving performance. For this purpose, we an-
alyze the learned weights and some results are shown in Fig-
ure 2, where figures are grouped by columns. The red lines
of the first row show the sorted ratio of the learned weights
of each queries to the uniform distribution, i.e., wt

1/ϵT . We
note that a few queries received significantly lower weights,
while most of the rest hold a bit more weights than 1

ϵT . We
further correspondingly plot the mean of top-3 bids and the
number of candidating bidders, which are shown as the or-
ange and blue lines of the second row respectively. As we
see, all of the queries with significantly lower weights have
relatively higher top-3 bids and more candidating bidders,
which is an outcome of the max-min formulation of (6).

The contribution of this observation to the performance
improvement can be explained from two views. For brief-
ness, we call the queries with significantly higher top-3 bids
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Table 1: The results (Total Revenues) of RDLA and its compared methods. Boldface highlights the largest revenues.

×104 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Mean±Std.
Greedy 8053.5 7820.6 9840.1 9759.5 7945.1 8136.7 8783.7 8619.9±798.5
OT-PD 8101.5 7960.6 9894.6 10309.8 9011.6 8260.1 8826.6 8909.3±838.7

DLA-geometric 8551.7 8224.6 10143.9 10621.5 9034.7 8403.8 9021.3 9143.0±841.3
DLA-euqal 8652.4 8467.4 10273.7 10376.0 9179.9 8393.9 9172.1 9216.5±758.0

RDLA (δ = 1e− 2) 8825.7 8550.6 10303.5 10626.0 9258.1 8505.6 9395.1 9352.1±772.3
RDLA (δ = 1e− 3) 8902.9 8626.5 10388.5 10683.2 9221.3 8487.2 9463.6 9396.2±787.2
RDLA (δ = 1e− 4) 8790.5 8552.3 10367.2 10483.0 9272.8 8509.0 9313.2 9326.9±753.9

0 2000 4000 6000 8000 10000 12000 14000 16000
0.0

0.2

0.4

0.6

0.8

1.0

w
ei

gh
t

weight

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25000

50000

75000

100000

125000

150000

175000

m
ea

n 
of

 to
p-

3 
bi

ds

mean of top-3 bids

0

5

10

15

20

25
candidating bidders number

0 2000 4000 6000 8000 10000 12000 14000 16000

0.2

0.4

0.6

0.8

1.0

weight

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10000

20000

30000

40000

50000
mean of top-3 bids

5

10

15

20
candidating bidders number

0 2000 4000 6000 8000 10000 12000 14000 16000

0.2

0.4

0.6

0.8

1.0

weight

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10000

20000

30000

40000

50000

60000 mean of top-3 bids

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

ca
nd

id
at

in
g 

bi
dd

er
s n

um
be

rcandidating bidders number

Figure 2: These figures are grouped by columns. The red lines in the first row show the sorted ratio of the learned weights
of each queries to the uniform distribution, the orange and blue lines in the second row show the mean of top-3 bids and the
number of candidating bidders, correspondingly.

and more candidating bidders Fall Samples. From robust op-
timization aspect, the Fall Sample can be seen as some noise,
which could be a large component in the empirical total rev-
enue but actually has no help for improving the dual vari-
ables. From distribution drifting aspect, the Fall Samples in
previous time interval can be disappeared in the next one
with high probability. For both of the above consideration,
it can be impactful to reduce the weights of Fall Samples,
which has been validated by the empirical results.

Moreover, it is notable that RDLA training with δ =
1e − 3 performs better than that with δ = 1e − 2 and
δ = 1e − 4. This phenomenon is reasonable: when δ is set
too small, the distribution in the ambiguity set is too close
to the nominal distribution, thus there is not enough space
for RDLA to capture the user distribution drifts; when δ is
set too large, the ambiguity set will contain overmuch dis-
tributions that are far from the nominal distribution, lead-
ing to a large variance of the algorithm performance. There-
fore, the hyper-parameter δ should be chosen carefully such
that the learned models can capture the real user arrival fash-
ion. In practice, we could set this hyper-parameter via cross-
validation.

Conclusion
Most existing online matching methods have adopted either
adversarial or stochastic user arrival assumption, while on
both of them significant limitation exists. In this paper, we
consider a novel user arrival model where users are drawn

from drifting distribution, which is a hybrid case between
the adversarial and stochastic model, and propose a new
approach RDLA to deal with such assumption. Instead of
maximizing empirical total revenues on the revealed users,
RDLA leverages distributionally robust optimization tech-
niques to learn dual variables via a worst-case considera-
tion over an ambiguity set on the underlying user distribu-
tion. Furthermore, we present a dynamic learning scheme
to tackle the drifting distribution by updating dual variables
at equal time intervals. Experiments on a real internet ad-
vertising task exhibit the impressive performance of RDLA,
showing the necessity of the robustness consideration and
the superiority of equal period updating scheme.
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