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Abstract

Traffic prediction is of great importance to traffic manage-
ment and public safety, and very challenging as it is af-
fected by many complex factors, such as spatial dependency
of complicated road networks and temporal dynamics, and
many more. The factors make traffic prediction a challenging
task due to the uncertainty and complexity of traffic states.
In the literature, many research works have applied deep
learning methods on traffic prediction problems combining
convolutional neural networks (CNNs) with recurrent neural
networks (RNNs), which CNNs are utilized for spatial de-
pendency and RNNs for temporal dynamics. However, such
combinations cannot capture the connectivity and globality
of traffic networks. In this paper, we first propose to adopt
residual recurrent graph neural networks (Res-RGNN) that
can capture graph-based spatial dependencies and temporal
dynamics jointly. Due to gradient vanishing, RNNs are hard
to capture periodic temporal correlations. Hence, we further
propose a novel hop scheme into Res-RGNN to utilize the pe-
riodic temporal dependencies. Based on Res-RGNN and hop
Res-RGNN, we finally propose a novel end-to-end multiple
Res-RGNNs framework, referred to as “MRes-RGNN”, for
traffic prediction. Experimental results on two traffic datasets
have demonstrated that the proposed MRes-RGNN outper-
forms state-of-the-art methods significantly.

Introduction
Traffic prediction is one of the most challenging tasks in
Intelligent Transportation Systems (ITS) (Jabbarpour et al.
2018). This task is important and critical for many trans-
portation services, such as vehicle flow control, road trip
planning and navigation and so on. The goal of traffic predic-
tion is to predict future traffic states of road networks using
sequential traffic historical states. Three key complex factors
that can affect traffic conditions are investigated as follows.

• Factor 1: Spatial dependencies on a directed road net-
work. Spatial correlation such as geographic distance and
connectivity in directed road network can affect traffic
prediction performance. For example, given three roads
r1, r2 and r3 in the directed road network as depicted in
Figure 1, Roads r2 and r3 are obviously correlated, while
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Figure 1: Three roads in the directed road network

roads r2 and r1 are not. Even r2 is closer in the distance
to r1 than r3, traffic conditions of r2 have greater effect
on r3, rather than on r1.

• Factor 2: Multiple temporal dependencies. Traffic con-
ditions usually involve a mixture of the repeating time pat-
terns. For example, the traffic jam of a road occurring at 6
pm will affect the same road’s traffic condition in the fol-
lowing hour, i.e., 7 pm. We also utilize the patterns such
as on daily and weekly basis to predict traffic conditions
of the road, e.g., using peak hour patterns for traffic pre-
diction.

• Factor 3: External factor. Traffic conditions can be sig-
nificantly affected by external factors such as vehicle ac-
cidents, road maintenance, weather conditions, holidays
and other special events, and so on.

Many statistical approaches have been widely used in
predicting traffic conditions. In recent years, deep learn-
ing based methods outperform many traditional statistical
approaches (e.g., k-nearest neighbours and support vector
machines) in various prediction tasks, including traffic pre-
diction. Convolutional neural networks (CNN) (Zeng et al.
2018) have been proven be good spatial feature extractors.
Many methods (Zhang, Zheng, and Qi 2017; Du et al. 2018;
Yu et al. 2017; Yao et al. 2018b; Chen et al. 2018) that have
combined CNNs with long short-term memory (LSTM) net-
works to capture spatial-temporal features from traffic data
have outperformed many traditional machine learning meth-
ods (Hong 2011; Xia et al. 2016).

However, one of the main limitations of the above com-
bination is that normal convolutional operations can capture
the spatial features of regular grid structures existing in im-
ages or videos, rather than the features of general graph
forms. The traffic network is a non-Euclidean and direc-
tional topology that makes the convolution operation less
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effective. (Li et al. 2018; Yu, Yin, and Zhu 2017) have pro-
posed different networks to fully utilize spatial information
on the traffic networks. To the best of our knowledge, (Li
et al. 2018; Yu, Yin, and Zhu 2017) have combined GCNs
and some other neural networks to achieve the state-of-the-
art results on traffic prediction. However, some limitations
are still in these works, as described in the following: (i) It is
hard to train deep conventional RNNs well, due to the van-
ishing gradient and exploding gradient problems (He et al.
2016a; 2016b), which can cause serious training issues when
graph convolutions become complicated, (ii) The models are
less sensitive to large linear scale changes of inputs, due to
the non-linear nature of the convolutional and recurrent op-
erations and (iii) They only consider near past traffic condi-
tions, without capturing the existing periods and repeating
patterns.

In this paper, we propose a novel framework for traffic
prediction, referred to as “MRes-RGNN”, based on multi-
ple residual recurrent graph neural networks. Through rig-
orous experiments, we have demonstrated the performance
of MRes-RGNN and proven the advantages of the proposed
MRes-RGNN over other state-of-the-art methods in traffic
prediction. Our contributions can be summarized as follows.
• We propose to utilize residual recurrent graph neural net-

works (Res-RGNN) to capture the graph-based spatial de-
pendencies and temporal dynamics jointly. Res-RGNN
can properly extract spatio-temporal features for traffic
networks, and make the models more sensitive to unex-
pected changes.

• We design a novel hop Res-RGNN to improve the perfor-
mance of traffic prediction that can discover the periodic
patterns among the time series signals.

• By combining the outputs of Res-RGNN and hop Res-
RGNN branches with dynamic weights, we propose a
novel end-to-end framework, named as MRes-RGNN,
that considers spatial and multiple temporal dependencies
with external factors for traffic prediction.

Related Work
In this section, we discuss some deep learning methods ap-
plied in traffic forecasting that outperform many traditional
statistical methods (Hong 2011; Xia et al. 2016). CNN or its
related convolutional-based residual network can extract the
spatial dependencies of the traffic networks by converting
the dynamic traffic data into images (Ma et al. 2017). This
neural network architecture only capture spatial-temporal
information or correlation of the traffic flow data, sepa-
rately. (Zhang et al. 2018; Zhang, Zheng, and Qi 2017;
Yao et al. 2018b; 2018a) proposed to combine of both RNN
and CNN networks that can learn spatio-temporal infor-
mation simultaneously to overcome the limitation as dis-
cussed previously. To further improve accuracy performance
in traffic forecasting, (Yu et al. 2017; Yao et al. 2018b;
Du et al. 2018) proposed different networks as discussed in
the following.

(Yu et al. 2017) proposed a deep LSTM model using the
normal traffic hours and a mixture of deep LSTM model us-
ing the incident traffic period. (Yao et al. 2018b) proposed

a multi-view spatio-temporal network that combines local
CNN, LSTM and semantic network to predict short-term
traffic conditions. Lastly, (Du et al. 2018) proposed a hy-
brid multi-modal deep learning framework based on multi-
ple CNN-GRU algorithms, which can effectively extract lo-
cal spatial features and long dependency features together
with spatio-temporal correlations from the multi-modal traf-
fic data. However, the discussed approaches cannot capture
the spatial features of traffic networks.

To overcome the limitations above, (Defferrard, Bresson,
and Vandergheynst 2016; Yu, Yin, and Zhu 2017; Li et
al. 2018) proposed different networks in traffic forecasting.
(Defferrard, Bresson, and Vandergheynst 2016) proposed
the graph convolutional neural networks (GCN) to capture
the non-Euclidean spatial features of traffic data. (Yu, Yin,
and Zhu 2017) proposed a traffic forecasting framework that
uses GCN to learn spatio-temporal features of traffic data
applicable only to undirected graph. (Li et al. 2018) also
proposed a traffic forecasting framework to combine both of
the diffusion convolutional and recurrent neural network to-
gether in forecasting traffic conditions. These above the two
frameworks even can capture the spatial dependency of the
traffic data using bidirectional random walks on the graph,
and the temporal dependency of the traffic data using the
encoder-decoder network. However, they do not use more
complex traffic features such as the multiple temporal de-
pendencies and external factors.

Preliminaries
Traffic Prediction on Graphs
Traffic prediction is to perform prediction on future traffic
states (i.e., traffic speed and traffic flow), as given historical
traffic states from a series of road segments or observation
sensors. In this section, we first define the traffic prediction
problems in Definition 1.

Definition 1 (Traffic Prediction): Formally, given a se-
ries of fully observed time series signals X = x1, x2, ..., xt
of all the road segments or sensors, the predicted future sig-
nals can be defined as Y = yt+1. Since roads contain di-
rectional information, traffic networks can be modelled as
directed graphs with structured time-series data.

In the following, we shall present the key definitions that
are used for directed graph based traffic prediction.

Definition 2 (Directed Graph for Traffic Network): A
traffic network can be modeled as a weighted directed graph,
G = (V,E,W ), where V is a set of nodes, e.g., sensors,
that can monitor road segments in the traffic network, E is
the connectivity among the nodes, e.g., ε(i,j) = 1 if υi and
υj are connected, and ε(i,j) = 0 if not, and W ∈ RN×N is
the weighted adjacency matrix of G representing the nodes’
proximities, e.g., the distance between any pair of nodes, N
is the number of nodes. Specifically, w(i, j) can be defined
as the edge weight from υi to υj .

Definition 3 (Traffic Prediction on Graphs): Given a
G, let xt ∈ RN×P be a graph signal observed at time t,
where P is the number of features observed by the node,
e.g., vehicle speed, flow, etc. The prediction of yt+1 can be
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formulated as follows:

yt+1 = f
(
[xt−h̃+1, ..., xt], G

)
. (1)

Convolutions on Graphs
Conventional 2D CNNs that are used well for regular
grids, such as images, cannot be applied directly to learn
features from general graphs, as indicated in (Niepert,
Ahmed, and Kutzkov 2016; Defferrard, Bresson, and Van-
dergheynst 2016; Bruna et al. 2013). In the literature, two
main approaches have been proposed to generalize CNNs
for graphs. The first one is to transfer the data into spec-
tral domain using graph Fourier transforms (Bruna et al.
2013). Thus, the performance of graph convolution has been
improved significantly, i.e., the computational complexity
is reduced from O(n2) to linear (Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2016). However,
this approach can only extract spatial features of undirected
graphs. The other one is to extend CNNs to support general
directed graph-structured data by using diffusion convolu-
tion operation (Atwood and Towsley 2016; Li et al. 2018;
Teng 2016), as defined in the following:

Definition 4 (Diffusion Convolution): Diffusion convo-
lution operation over a graph signal x ∈ RN×P and a filter
Θ is defined as:

x ?Θ =

K−1∑
k=0

(
θk,1(D−1O W )

k
+ θk,2(D−1I WT )

k
)
x, (2)

where ? denotes the diffusion convolution, K is the number
of diffusion steps, θ ∈ RK×2 are the learned parameters
of Θ for two directions of the graph; DO = diag(W1) are
the out-degree diagonal matrix, and 1 ∈ RN denotes the
all one vector; DI = diag(WT ) is the in-degree diagnose;
and D−1O W , D−1I WT represent the transition matrices of
the diffusion process and the reverse one, respectively.

In the case of the undirected graphs, (Li et al. 2018) has
shown that many existing graph structured convolutional op-
erations, including the spectral graph convolution (Bruna et
al. 2013), are special cases of diffusion convolution.

Proposed MRes-RGNN Framework
The network architecture of the proposed MRes-RGNN is
shown in Figure 2, where the inputs of MRes-RGNN are
the historical traffic states and external features, while the
outputs are the predictions on the future traffic states. Mul-
tiple temporal dependencies contain near and periodic, e.g.,
daily, weekly, and monthly, dependencies. Our framework
consists of several MRES-RGNN modules with different
hops. Obviously, Res-RGNN is a special case of MRES-
RGNN with hop 1. The Res-RGNN branch is utilized to
learn spatial information on graphs with the near depen-
dency together, and multiple hop Res-RGNN branches are
for spatial information with multiple periodic dependencies
respectively. The extracted spatial and multiple temporal
features are further fused with a weighted scheme and then,
integrated by an output layer to achieve a final prediction.
The entire end-to-end framework is trained by maximiz-
ing the likelihood of a graph signal using back-propagation

t

Time

 Res-RGNN

 Hop 

Res-RGNN

t+1

Weighted feature fusion

Fully connected layer Loss

RGNN

Graph signals

and

external factors

s

Multiple 

branches

Figure 2: Network Architecture of MRes-RGNN.

through time (BPTT) (Werbos 1990; Sutskever, Vinyals, and
Le 2014).

Graph CNNs for Extracting Spatial Features
A traffic network can be modelled as a graph mathemat-
ically. However, in the previous studies (Yu et al. 2017;
Yao et al. 2018b), which utilized CNNs to extract the spa-
tial features without considering spatial attributes of traf-
fic networks; as a result, the connectivity and globality of
the networks were overlooked as roads were split into mul-
tiple segments or grids. In the paper, the traffic network
is firstly modeled as a directed graph, and then the diffu-
sion convolution (Atwood and Towsley 2016; Li et al. 2018;
Teng 2016) is applied directly on graph-structured data to
extract patterns and features in space domain. Based on the
definition of the convolution operation, we have a new neu-
ral network layer, diffusion convolutional layer, that is de-
fined in Definition 4 as follows.

Definition 5 (Diffusion Convolutional Layer): Based on
the diffusion convolution defined in Definition 1, a diffu-
sion convolutional layer that maps P -dimensional features
to Q-dimensional outputs can be defined as follows. Let
the parameter tensor be Θ ∈ RQ×P×K×2 = [θ]q,p, where
Θq,p,:,: ∈ RK×2 parameterizes the convolutional filter for
the p-th input and the q-th output. Hence, the diffusion con-
volutional layer is:

H:,q = σ

(
P∑
p=1

x:,p ?Θq,p,:,:

)
, q ∈ 1, ..., Q, (3)

where x ∈ RN×P is the input, H ∈ RN×Q is the output,
Θq,p,:,: are the filters and σ is an activation function (e.g.,
ReLU and Sigmoid functions).

This diffusion convolutional layer can be used to learn
the representations of the graph structured data, which can
be trained by using stochastic gradient descent (SGD).

Residual Recurrent Graph Neural Networks
(Res-RGNN) for Extracting Spatio-Temporal
Features
In MRes-RGNN, we utilize graph convolutional, recurrent,
and residual neural networks together to extract the spatial-
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Figure 3: (a) Recurrent graph neural networks (RGNN) which combine diffusion convolution operation (a type of graph convo-
lution operation); (b) RGNN with residual shortcuts (Res-RGNN); (c) RGNN with gated residual learning (Gated Res-RGNN).

temporal features with the external features under consider-
ation.

RGNN + External Features Gated Recurrent Unit (GRU)
is a simple, yet powerful variant of RNNs for time series
prediction due to the gating mechanism (Chung et al. 2014).
GRUs are carefully designed to memorize historical infor-
mation, e.g., long-term dependencies. Inspired by (Chung
et al. 2014), we combine graph convolution and GRU to-
gether, denoted as RGNN, to discover the spatial-temporal
dynamics jointly as depicted in Figure 3(a). The matrix mul-
tiplications in GRU can be replaced with the graph convolu-
tions that is similar to the methods used in (Seo et al. 2016;
Li et al. 2018). This method combines the traditional fea-
ture engineering methods with deep learning based meth-
ods. The external factor attributes are first embedded and
concatenated with graph signals and then, used as the input
of RGNN model as shown in Figure 3. Thus, the process of
a RGNN unit at time t can be formulated as:

rt = σ(Θr ? [xt, et, st−1] + br),

ut = σ(Θu ? [xt, et, st−1] + bu),

ct = tanh(Θc ? [xt, et, (rt � st−1)] + bc),

st = ut � st−1 + (1− ut)� ct,
yt+1 = Wost,

(4)

where xt, et and st are the graph signal, external feature and
the hidden state output at time t, rt and ut denote the reset
gate and update gate at the time t, respectively, ? denotes
the graph convolution, Θr,Θu and Θc are the learned pa-
rameters of filters, yt+1 is the output at t + 1 and lastly Wo

denotes the learned parameters of the output layer.
RGNN unit is similar to the diffusion convolutional layer.

The RGNN unit can be used to build recurrent neural net-
work layers and also trained by using BPTT. Like the deep
RNN methods in (Pascanu et al. 2013; Du, Wang, and Wang
2015), hierarchical RGNN layers can be stacked to form the
deep RGNN model.

Res-RGNN Residual neural network is used with a refer-
ence to the direct hidden state, instead of an unreferenced
function. In (He et al. 2016a; 2016b), the authors introduced
the residual-shortcut structures to build deep networks with
a depth of 152 layers. The networks have achieved good per-
formance on COCO and ImageNet object detection datasets
(He et al. 2016a). The residual learning and linear shortcut
connections can help to solve the exploding and vanishing
gradient problems in the long-term back-propagation (He
et al. 2016a; 2016b), especially in the networks with deep
structures.

With the benefits of (He et al. 2016a; 2016b), we intro-
duce the residual error into RGNN. A RGNN cell is consid-
ered as a computation block where the residual information
is passed by shortcut of the blocks so as to speed up a con-
vergence rate, as illustrated in Figure 3(b). Hence, the hid-
den state of t after adding the residual shortcut path can be
formulated as follows:

s̃t = φ(s̃t−1, xt, et,Θr,Θu,Θc) +Wlinear s̃t−1, (5)

where φ denotes the function of GRU cell, s̃t denotes the
state of t after the residual shortcut path added and Wlinear

is the linear projection weight.
Equation 5 is composed of a shortcut connection and an

element-wise addition. Importantly, the shortcut connection
has not added extra parameters and increased computation
complexity. This reconstruction can make the loss function
approximate to an identity mapping. Thus, the training er-
rors are not increasing since the recurrent connections are
formulated as the identity mapping.

It is obvious that the previous hidden states of RGNN
units are added to the hidden states of the next RGNN units
without non-linear activation in Equation 5. This linear ad-
ditive nature makes RGNN more sensitive and robust to sud-
den changes in traffic historical states.

Gated Res-RGNN Motivated by the gate function in GRU
(Chung et al. 2014), we also add a gate function to control
the flow of residual information as depicted in Figure 3(c) in
the proposed MRes-RGNN. This gating mechanism helps to
make decision on the threshold that how much the previous
residual information can affect next time segments. The hid-
den state at time t with the gated residual shortcut path can
be formulated as follows:

s̃t = gφ(s̃t−1, xt, et,Θr,Θu,Θc) +Wlinear s̃t−1,

g = σWg[xt, et] + Ugst−1,
(6)

where Wg is the linear projection weight, Ug is the state-to-
state weight matrix and σ is the activation function.

Hop Res-RGNN for Very Long-term Dependencies
One of the common ways to predict near future traffic con-
dition is to use latest time segments. Besides, the periodic
patterns can also be utilized to improve the traffic prediction
performance. In Figure 4(a), we describe the speed value
during each time interval in 7 days plotting by a sensor
in METR-LA dataset. The plotting curves show a certain
repeatability pattern. Therefore, we can easily identify the
daily patterns in the given dataset. Moreover, we plot Figure
4(b) to illustrate the weekly periodic patterns of the traffic
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(a) (b)

Figure 4: Periodic temporal dependencies for METR-LA.
(a) daily; (b) weekly.

data. The two figures have clearly shown that the temporal
dependencies of periods give significant impacts on the traf-
fic state; e.g., near time, daily, and weekly periodic patterns
regardless of the degrees of influences which are not com-
pletely the same.

As the recurrent layers with GRU and LSTM units are
carefully designed to memorize the historical information,
relatively long-term dependencies is aware by the layers.
Both GRU and LSTM cannot capture very long-term (daily,
weekly) correlation in practice due to the notorious gradi-
ent vanishing problem (He et al. 2016a). To solve this issue,
we propose a novel hop scheme in our MRes-RGNN frame-
work which leverages the periodic patterns in traffic data.
Specifically, in our model, hop-links are added to connect
the current RGNN cell and the RGNN cells in a same phase
of adjacent periods. Suppose we want to predict the traffic
state at t+1, the updating process formula of the last RGNN
cell for a specific hop Res-RGNN branch without any gate
can be formulated as follows:

rt+1−β = σ(Θr ? [x(t+1)−β , e(t+1)−β , s̃(t+1)−β×2] + br),

ut+1−β = σ(Θu ? [x(t+1)−β , e(t+1)−β , s̃(t+1)−β×2] + bu),

ct+1−β = tanh(Θc ? [x(t+1)−β , e(t+1)−β , (rt � s̃(t+1)−β×2)]

+ bc),

s̃t+1−β = ut � s(t+1)−β×2 + (1− ut)� ct
+Wlinear s̃(t+1)−β×2,

(7)
where β is the number of hidden cells skipped through and
� is the element-wise multiplication for tensors. β can be
calculated by periods (daily or weekly).

Weighted Fusion for Multiple Res-RGNN Branches

As discussed previously, traffic states are affected by mul-
tiple temporal dependencies (e.g., near, daily and weekly).
The degrees of influence on the traffic states may be dif-
ferent. In our MRes-RGNN framework, a branch of Res-
RGNN targets at near dependency, while multiple hop Res-
RGNNs target at multiple periodic (daily and weekly) depen-
dencies. Inspired by the observations, we propose a novel
parametric-tensor-based fusion method that can fuse multi-
ple branches in the framework as well.

The fusion method of the hidden state at time t can be

(a) (b)

Figure 5: (a) Sensor networks of PEMS-BAY, each dot de-
notes a sensor station. (b) Heat map of weighted adjacency
matrix.

formulated as follows:

sf = Wc ⊗ sc +

γ∑
i=1

Wi ⊗ si, (8)

where sf denotes the fused hidden state features, ⊗ is
Hadamard product (i.e., element-wise multiplication for ten-
sors), sc are the hidden state features of the Res-RGNN
branch, γ denotes the number of hop Res-RGNN branches,
si means the hidden state features of the hop Res-RGNN
branch with the index i, and lastly Wc,W1, ...,Wγ are the
learnable parameters that adjust the degrees affected by dif-
ferent branches.

Once the features of the two branches are fused by the
proposed weighted strategy, the merged features sf can be
used as the input of a dense layer to obtain the output of the
MRes-RGNN framework.

Experiments
In this section, we evaluate the performance of our proposed
MRes-RGNN compared with other existing methods in traf-
fic prediction.

Experiment Settings
We configure a Linux server and the other configurations
to run the experiment as follows: 8 Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHZ; 256GB RAM; 4 NVIDIA P100
GPUs. Two large real-world datasets, i.e., METR-LA and
PEMS-BAY datasets, are used in the experiment:

• METR-LA: Traffic data are collected from observation
sensors in the highway of Los Angeles County. We use
207 sensors and 4 months of data dated from 1st Mar 2012
until 30th Jun 2012 in the experiment.

• PEMS-BAY: Traffic data are collected by California
Transportation Agencies Performance Measurement Sys-
tem (PeMS). We use 325 sensors in the Bay Area and 6
months of data dated from 1st Jan 2017 until 31th May
2017 in the experiment. The distribution of the sensors
and the road network are shown in Figure 5(a).
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Table 1: Baseline comparison on METR-LA and PEMS-
BAY.

Methods
METR-LA PEMS-BAY

MAE MAPE RMSE MAE MAPE RMSE
HA 3.65 11.2% 6.4 2.88 6.8% 4.76

ARIMA 3.47 8.0% 7.81 2.33 5.4% 4.76
VAR 3.93 8.2% 6.59 2.32 5.0% 4.25
SVR 3.45 8.0% 7.05 2.48 5.5% 5.18
FNN 3.31 7.8% 7.43 2.30 5.4% 4.63

FC-LSTM 2.94 7.5% 5.92 2.20 5.2% 4.55
DCRNN 2.49 5.5% 3.95 1.72 3.9% 3.97

M-RGNN 2.34 5.3% 3.94 1.67 3.8% 3.73
MRes-RGNN-NG 2.19 5.1% 3.86 1.61 3.7% 3.54
MRes-RGNN-G 2.07 4.9% 3.57 1.52 3.2% 3.23

Compared Methods and Evaluation Metrics
We compare traffic prediction performance of our proposed
MRes-RGNN with widely used time series regression mod-
els that include (i) HA: Historical Average, which can model
traffic flow as a seasonal process, and then use weighted av-
erage of previous seasons as traffic prediction; (ii) ARIMA:
Auto-regressive integrated moving average is a well-known
model that can understand and predict future values in a
time series; (iii) SVR: Support vector regression uses linear
support vector machine for regression tasks. Subsequently,
the traffic performance of MRes-RGNN is also compared
with the deep neural network based methods such as (iv)
FNN: Feed forward neural network with two hidden lay-
ers; (v) FC-LSTM: Fully connected LSTM neural networks;
(vi) DCRNN: MRes-RGNN (Li et al. 2018) is compared
with DCRNN uses both of the diffusion convolutions and
RNN together in traffic prediction. In summary, we compare
the traffic prediction performance of our proposed MRes-
RGNN with 6 existing methods as discussed previously.

Three evaluation metrics can be used to measure the traf-
fic prediction performance of above the methods as follows,
(i) Mean Absolute Error (MAE), (ii) Mean Absolute Per-
centage Error (MAPE), and lastly, (iii) Root Mean Squared
Error (RMSE).

Implementation Details
We first aggregate traffic speed readings into 5-minutes win-
dows for METR-LA, 60-minutes windows for PEMS-BAY,
and then apply Z-Score normalization. In each dataset, 70%,
20% and 10% of its dataset are split into training, validation
and testing datasets, respectively.

To construct a sensor graph, we compute the pairwise road
network distances among sensors and also build the adja-
cency matrix using the threshold Gaussian kernel:

w(i, j) =

{
exp(−dij

2

ϕ2 ), i 6= j and exp(−d2
i,j

ϕ2 ) ≥ ε,
0, otherwise,

(9)
where w(i, j) represents the edge weight from sensor i to
sensor j, di,j denotes the road network distance from sensor
i to sensor j, ϕ is the standard deviation of the distances and
ε is the threshold to control distribution and sparsity of the
matrix. At the end, the adjacency matrix of PEMS-BAY is
generated as shown in Figure 5(b).

In our implementation, two Res-RGNN layers are uti-
lized, and the graph convolution kernel size is set to 64.
To have a fair comparison, these parameters are set same in
DCRNN. The proposed framework utilizes one Res-RGNN
branch for near time, and one hop1 Res-RGNN branch for
daily period. In the above Res-RGNN branch, 6 observed
data points are used to forecast traffic conditions. Another
branch, the hop Res-RGNN for daily period, 4 historical
data points are utilized in the experiments. Due to the lim-
ited size of the datasets, a branch for a week hop is not used
in the experiments. To overcome this issue, we have utilized
the “metadata” as external factors to explore the weekly pat-
terns.

Notations of Variants of Our Framework
In these experiments, some variants of our proposed frame-
work are (i) M-RGNN denotes a RGNN branch and a hop
RGNN branch that both of them are utilized, (ii) MRes-
RGNN-G denotes our proposed framework with the gated
residual scheme and multiple RGNN branches, (iii) MRes-
RGNN-NG presents the residual shortcut connections are
adopted, while the gated residual scheme is not utilized,
(iv) RGNN denotes the proposed recurrent graph neural net-
works with only a branch for the near temporal dependency
without gated residual shortcuts, (v) Res-RGNN-G stands
for one branch of RGNN for the near with gated residual
shortcuts, and lastly, (vi) Res-RGNN-NG means one branch
of RGNN for the near with residual shortcuts.

Please note that, in the above variants, the external factors
are utilized.

Overview of Performance Evaluation
The traffic prediction performance comparison of different
approaches on both datasets is shown in Table 1. 3 out 7
variants of our proposed MRes-RGNN framework are uti-
lized in the experiments.

Some phenomena can be clearly observed from Table
1. (1) Our proposed framework MRes-RGNN-G together
with its variants M-RGNN and MRes-RGNN-NG have out-
performed other baselines using measurement from above
three evaluation metrics. (2) Even M-RGNN gets better re-
sults than other baselines. One of the reasons is the hop
scheme that can effectively model temporal dependencies.
(3) MRes-RGNN-G and MRes-RGNN-NG achieve better
traffic prediction performance than M-RGNN using mea-
surement from above three evaluation metrics. One of the
reasons is to introduce residual shortcut connections into M-
RGNN, while the performance is further improved by adopt-
ing the gated residual learning scheme.

The traditional time-series prediction methods such as
HA and ARIMA cannot get good traffic prediction results
as they rely on historical records to predict the future val-
ues without considering spatial and other related external
features. Even the regression-based methods such as VAR
and SVR can take spatial correlations as their features. As
a result, the regression-based methods can achieve better

1The hop size of the daily branch is set to (all the minutes in a
day)/q, where q is the length of the time segmentation in minute.
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Figure 6: Effectiveness of residual and gated mechanisms. (a) Speed prediction in the morning peak; (b) Speed prediction in
the evening peak;(c) Speed prediction for sudden changes in the morning; (d) MAE versus the number of training epochs.

performance results than other conventional time-series ap-
proaches. However, they are still hard to capture the complex
non-linear temporal dependencies and the dynamic spatial
relationships. Deep neural networks methods (e.g., FNN and
FC-LSTM) can overcome above the limitation. In Table 1,
FNN and FC-LSTM have outperformed VAR and SVR.

Again, In Table 1, our proposed MRes-RGNN framework
and DCRNN have outperformed FNN and FC-LSTM. One
of the reasons is that both our framework and DCRNN can
effectively model spatio-temporal dependencies using diffu-
sion convolutions and RNN together.

Effectiveness of Gated Residual Mechanism
In this section, we evaluate the effects of gated residual
mechanism. In the experiment, we only adopt a branch
to extract spatial and near temporal features. Figures 6(a)
and 6(b) show the forecasting visualization in the morning
peak hours and evening rush hours using METR-LA dataset,
while Figure 6(c) shows the forecasting results on situations
with sudden changes in the morning and evening, respec-
tively. In above these figures, GT denotes the ground truth.

In this experiment, Res-RGNN-NG has been proven that
can capture the trend of rush hours more accurately than
RGNN. Importantly, it can detect the ending of the rush
hours earlier than others. Therefore, the traffic performance
can be further improved by adopting the gated mechanism.
Figure 6c has shown that Res-RGNN is more sensitive to
sudden changes than RGNN.

To investigate the running performance of above the com-
pared deep learning models, the MAE of the testing data
of METR-LA is plotted on the training phase, as shown in
Figure 6(d). This figure has shown that the gated residual
mechanism can achieve much faster training procedure.

Effectiveness of Multiple Res-RGNN and External
Facotrs
In this section, we also investigate the traffic prediction
performance of multiple Res-RGNN branches and exter-
nal factors. Table 2 shows that the results of our proposed
MRes-RGNN and its variants on the METR-LA dataset.
In these figures, MRes-RGNN means our proposed frame-
work, which combines gated residual learning, the near
and the daily branches with external factors; Res-RGNN-N

Table 2: Results of MRes-RGNN and its variants on the
METR-LA dataset

Methods MAE MAPE RMSE
Res-RGNN-N 2.32 5.18% 3.88

Res-RGNN-ND 2.16 4.98% 3.72
MRes-RGNN 2.07 4.91% 3.57

Table 3: Results of MRes-RGNN and its variants on the
PEMS-BAY dataset

Methods MAE MAPE RMSE
Res-RGNN-N 2.32 5.18% 3.88

Res-RGNN-ND 2.16 4.98% 3.72
MRes-RGNN 2.07 4.91% 3.57

means only the near branch is adopted without external fac-
tors; Res-RGNN-ND denotes near and daily branches are
adopted without external factors.

From these figures, we can see that the Res-RGNN-N that
only uses the near branch performs better than the other
baselines as shown in Tables 2 and 3 . This demonstrates
the effectiveness of applying gated residual RGNN to learn
spatio-temporal features in traffic prediction. The perfor-
mance is improved by adding the daily branch. Besides,
considering the external factors can also improve the perfor-
mance. Lastly, in the Tables 2 and 3, the proposed method
that combines the near and daily with external features to-
gether can achieve the best results.

Conclusions
Traffic prediction is a vital part and challenging task in the
domain of intelligent transportation system as it is affected
by many complex factors, such as spatio-temporal depen-
dencies with external influences. In this paper, we propose to
adopt gated residual recurrent graph neural networks to cap-
ture graph-based spatial dependencies and temporal dynam-
ics jointly. Experimental results have demonstrated that the
proposed MRes-RGNN framework outperforms the state-
of-the-art baselines. In our future work, we plan to investi-
gate the spatio-temporal features learned by MRes-RGNN
for better interpretability. We will also investigate to ap-
ply our framework in network anomaly detection (Xie et al.
2018a; 2018b; 2017)
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